Improving Flood Forecasting Skill by Combining Ensemble Precipitation Forecasts and Multiple Hydrological Models in a Mountainous Basin
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Post-Processing Method
3.2. Hydrological Models
3.3. Generation and Evaluation of Ensemble Flood Forecasting
4. Results
4.1. Calibration and Validation of Two Hydrological Models
4.2. Evaluation of Ensemble Flood Forecasting Performance for Four Schemes
4.3. Application to a Typical Flood Event
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ICHARM Report. Global Trends in Water Related Disasters: An Insight for Policymakers; International Centre for Water Hazard and Risk Management (UNESCO): Tsukuba, Japan, 2009; Available online: http://www.icharm.pwri.go.jp (accessed on 25 March 2024).
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- WMO. Manual on Flood Forecasting and Warning; WMO No. 1072; World Meteorological Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Difrancesco, K.; Tullos, D. Flexibility in Water Resources Management: Review of Concepts and Development of Assessment Measures for Flood Management Systems. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 1527–1539. [Google Scholar] [CrossRef]
- Hopson, T.M.; Webster, P.J. A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–2007. J. Hydrometeorol. 2010, 11, 618–641. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Dutra, E.; Krzeminski, B.; Muraro, D.; Thielen, J.; Pappenberger, F. GloFAS–global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 2013, 17, 1161–1175. [Google Scholar] [CrossRef]
- Thiemig, V.; Bisselink, B.; Pappenberger, F.; Thielen, J. A pan-African medium-range ensemble flood forecast system. Hydrol. Earth Syst. Sci. 2015, 19, 3365–3385. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, Q.J.; Wu, W.; Yang, Q. Which precipitation forecasts to use? Deterministic versus coarser-resolution ensemble NWP models. Q. J. R. Meteorol. Soc. 2021, 147, 900–913. [Google Scholar] [CrossRef]
- Toth, Z.; Talagrand, O.; Candille, G.; Zhu, Y. Probability and ensemble forecasts. Forecast Verif. Pract. Guide Atmos. Sci. 2003, 137, 163. [Google Scholar]
- Boucher, M.A.; Anctil, F.; Perreault, L.; Tremblay, D. A comparison between ensemble and deterministic hydrological forecasts in an operational context. Adv. Geosci. 2011, 29, 85–94. [Google Scholar] [CrossRef]
- Yucel, I.; Onen, A.; Yilmaz, K.; Gochis, D. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol. 2015, 523, 49–66. [Google Scholar] [CrossRef]
- Rodwell, M.; Palmer, T. Using numerical weather prediction to assess climate models. Q. J. R. Meteorol. Soc. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 129–146. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Ming, X.; Liang, Q.; Xia, X.; Li, D.; Fowler, H.J. Real-time flood forecasting based on a high-performance 2-D hydrodynamic model and numerical weather predictions. Water Resour. Res. 2020, 56, e2019WR025583. [Google Scholar] [CrossRef]
- Xiang, Y.; Peng, T.; Gao, Q.; Shen, T.; Qi, H. Evaluation of TIGGE precipitation forecast and its applicability in streamflow predictions over a Mountain River Basin, China. Water 2022, 14, 2432. [Google Scholar] [CrossRef]
- Alfieri, L.; Pappenberger, F.; Wetterhall, F.; Haiden, T.; Richardson, D.; Salamon, P. Evaluation of ensemble streamflow predictions in Europe. J. Hydrol. 2014, 517, 913–922. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, L.; Liang, Z.; Fu, X.; Wang, J.; Xu, J.; Zhang, Y.; Zhong, Q. Study of early flood warning based on postprocessed predicted precipitation and Xinanjiang model. Weather Clim. Extrem. 2023, 42, 100611. [Google Scholar] [CrossRef]
- Krzysztofowicz, R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour. Res. 1999, 35, 2739–2750. [Google Scholar] [CrossRef]
- Pappenberger, F.; Matgen, P.; Beven, K.J.; Henry, J.-B.; Pfister, L. Influence of uncertain boundary conditions and model structure on flood inundation predictions. Adv. Water Resour. 2006, 29, 1430–1449. [Google Scholar] [CrossRef]
- Ajami, N.K.; Duan, Q.; Sorooshian, S. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 2007, 45, 208–214. [Google Scholar] [CrossRef]
- Qu, B.; Zhang, X.; Pappenberger, F.; Zhang, T.; Fang, Y. Multi-model grand ensemble hydrologic forecasting in the Fu river basin using Bayesian model averaging. Water 2017, 9, 74. [Google Scholar] [CrossRef]
- Cuo, L.; Pagano, T.C.; Wang, Q. A review of quantitative precipitation forecasts and their use in short-to medium-range streamflow forecasting. J. Hydrometeorol. 2011, 12, 713–728. [Google Scholar] [CrossRef]
- Pappenberger, F.; Bartholmes, J.; Thielen, J.; Cloke, H.L.; Buizza, R.; de Roo, A. New dimensions in early flood warning across the globe using grand-ensemble weather predictions. Geophys. Res. Lett. 2008, 35, 1956–1964. [Google Scholar] [CrossRef]
- Swinbank, R.; Kyouda, M.; Buchanan, P.; Froude, L.; Hamill, T.M.; Hewson, T.D.; Keller, J.H.; Matsueda, M.; Methven, J.; Pappenberger, F. The TIGGE project and its achievements. Bull. Am. Meteorol. Soc. 2016, 97, 49–67. [Google Scholar] [CrossRef]
- Ajami, N.K.; Duan, Q.; Gao, X.; Sorooshian, S. Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results. J. Hydrometeorol. 2006, 7, 755–768. [Google Scholar] [CrossRef]
- Dion, P.; Martel, J.-L.; Arsenault, R. Hydrological ensemble forecasting using a multi-model framework. J. Hydrol. 2021, 600, 126537. [Google Scholar] [CrossRef]
- Troin, M.; Arsenault, R.; Wood, A.W.; Brissette, F.; Martel, J.-L. Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches over the Past 40 Years. Water Resour. Res. 2021, 57, e2020WR028392. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Xu, X.; Sun, W.; Pang, B.; Yue, J. Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 335–341. [Google Scholar] [CrossRef]
- Sharma, S.; Siddique, R.; Reed, S.; Ahnert, P.; Mejia, A. Hydrological model diversity enhances streamflow forecast skill at short-to medium-range timescales. Water Resour. Res. 2019, 55, 1510–1530. [Google Scholar] [CrossRef]
- Xu, J.; Anctil, F.; Boucher, M.-A. Hydrological post-processing of streamflow forecasts issued from multimodel ensemble prediction systems. J. Hydrol. 2019, 578, 124002. [Google Scholar] [CrossRef]
- Teja, K.N.; Manikanta, V.; Das, J.; Umamahesh, N. Enhancing the predictability of flood forecasts by combining Numerical Weather Prediction ensembles with multiple hydrological models. J. Hydrol. 2023, 625, 130176. [Google Scholar] [CrossRef]
- Wanders, N.; Thober, S.; Kumar, R.; Pan, M.; Sheffield, J.; Samaniego, L.; Wood, E.F. Development and evaluation of a pan-European multimodel seasonal hydrological forecasting system. J. Hydrometeorol. 2019, 20, 99–115. [Google Scholar] [CrossRef]
- Han, S.; Coulibaly, P. Probabilistic Flood Forecasting Using Hydrologic Uncertainty Processor with Ensemble Weather Forecasts. J. Hydrometeorol. 2019, 20, 1379–1398. [Google Scholar] [CrossRef]
- Scheuerer, M.; Hamill, T.M. Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Weather Rev. 2015, 143, 4578–4596. [Google Scholar] [CrossRef]
- Wilks, D.S. Comparison of ensemble-MOS methods in the Lorenz’96 setting. Meteorol. Appl. 2006, 13, 243–256. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Li, Z. Postprocessing of ensemble weather forecasts using a stochastic weather generator. Mon. Weather Rev. 2014, 142, 1106–1124. [Google Scholar] [CrossRef]
- Hamill, T.M.; Colucci, S.J. Verification of Eta–RSM short-range ensemble forecasts. Mon. Weather Rev. 1997, 125, 1312–1327. [Google Scholar] [CrossRef]
- Atger, F. Spatial and interannual variability of the reliability of ensemble-based probabilistic forecasts: Consequences for calibration. Mon. Weather Rev. 2003, 131, 1509–1523. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174. [Google Scholar] [CrossRef]
- Roulston, M.S.; Smith, L.A. Combining dynamical and statistical ensembles. Tellus A Dyn. Meteorol. Oceanogr. 2003, 55, 16–30. [Google Scholar] [CrossRef]
- Wilks, D.S. Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteorol. Appl. J. Forecast. Pract. Appl. Train. Tech. Model. 2009, 16, 361–368. [Google Scholar] [CrossRef]
- Gneiting, T.; Raftery, A.E.; Westveld, A.H.; Goldman, T. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 2005, 133, 1098–1118. [Google Scholar] [CrossRef]
- Cloke, H.L.; Pappenberger, F.; van Andel, S.J.; Schaake, J.; Thielen, J.; Ramos, M.-H. Hydrological Ensemble Prediction Systems; Wiley-Blackwell: Chichester, UK, 2013. [Google Scholar]
- Javanshiri, Z.; Fathi, M.; Mohammadi, S.A. Comparison of the BMA and EMOS statistical methods for probabilistic quantitative precipitation forecasting. Meteorol. Appl. 2021, 28, e1974. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, Y.; Zou, X.; Peng, T.; Yin, Z.; Ren, Y. Post-Processing Ensemble Precipitation Forecasts and Their Applications in Summer Streamflow Prediction over a Mountain River Basin. Atmosphere 2023, 14, 1645. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Li, X.; Chen, H.; Xie, P.; Li, W. Combining postprocessed ensemble weather forecasts and multiple hydrological models for ensemble streamflow predictions. J. Hydrol. Eng. 2020, 25, 04019060. [Google Scholar] [CrossRef]
- Sloughter, J.M.L.; Raftery, A.E.; Gneiting, T.; Fraley, C. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Weather Rev. 2007, 135, 3209–3220. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.; Jena, P.P.; Chatterjee, C.; Mishra, A. Identification of the best multi-model combination for simulating river discharge. J. Hydrol. 2015, 525, 313–325. [Google Scholar] [CrossRef]
- Vansteenkiste, T.; Tavakoli, M.; Ntegeka, V.; De Smedt, F.; Batelaan, O.; Pereira, F.; Willems, P. Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections. J. Hydrol. 2014, 519, 743–755. [Google Scholar] [CrossRef]
- Zhao, R.-J. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Arsenault, R.; Gatien, P.; Renaud, B.; Brissette, F.; Martel, J.-L. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. J. Hydrol. 2015, 529, 754–767. [Google Scholar] [CrossRef]
- Mathevet, T.; Gupta, H.; Perrin, C.; Andréassian, V.; Le Moine, N. Assessing the performance and robustness of two conceptual rainfall-runoff models on a worldwide sample of watersheds. J. Hydrol. 2020, 585, 124698. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, J.; Li, L.; Peng, T.; Yin, Z. Evaluation of eight global precipitation datasets in hydrological modeling. Remote Sens. 2021, 13, 2831. [Google Scholar] [CrossRef]
- Nascimento, N.D.O.; Yang, X.; Makhlouf, Z.; Michel, C. GR3J: A daily watershed model with three free parameters. Hydrol. Sci. J. 1999, 44, 263–277. [Google Scholar]
- Li, L.; Xu, C.Y.; Xia, J.; Engeland, K.; Reggiani, P. Uncertainty estimates by Bayesian method with likelihood of AR (1) plus Normal model and AR (1) plus Multi-Normal model in different time-scales hydrological models. J. Hydrol. 2011, 406, 54–65. [Google Scholar] [CrossRef]
- Li, X.-Q.; Chen, J.; Xu, C.-Y.; Li, L.; Chen, H. Performance of post-processed methods in hydrological predictions evaluated by deterministic and probabilistic criteria. Water Resour. Manag. 2019, 33, 3289–3302. [Google Scholar] [CrossRef]
- Shu, Z.; Zhang, J.; Jin, J.; Wang, L.; Wang, G.; Wang, J.; Sun, Z.; Liu, J.; Liu, Y.; He, R. Evaluation and application of quantitative precipitation forecast products for mainland China based on TIGGE multimodel data. J. Hydrometeorol. 2021, 22, 1199–1219. [Google Scholar] [CrossRef]
- Harrigan, S.; Prudhomme, C.; Parry, S.; Smith, K.; Tanguy, M. Benchmarking ensemble streamflow prediction skill in the UK. Hydrol. Earth Syst. Sci. 2018, 22, 2023–2039. [Google Scholar] [CrossRef]
- Bennett, J.C.; Wang, Q.J.; Robertson, D.E.; Schepen, A.; Li, M.; Michael, K. Assessment of an ensemble seasonal streamflow forecasting system for Australia. Hydrol. Earth Syst. Sci. 2017, 21, 6007–6030. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Xu, C.-Y.; Zhang, X.J.; Xiong, L.; Guo, Q. Postprocessing Ensemble Weather Forecasts for Introducing Multisite and Multivariable Correlations Using Rank Shuffle and Copula Theory. Mon. Weather Rev. 2022, 150, 551–565. [Google Scholar] [CrossRef]
- Wang, L.; Bao, H. Ensemble flood forecasting based on ensemble NWP and the GMKHM distributed hydrological model. MATEC Web Conf. 2018, 246, 01108. [Google Scholar] [CrossRef]
- Das, T.; Bárdossy, A.; Zehe, E.; He, Y. Comparison of conceptual model performance using different representations of spatial variability. J. Hydrol. 2008, 356, 106–118. [Google Scholar] [CrossRef]
Datasets | Sources | Ensemble Members (Perturbed) | Temporal Resolution | Spatial Resolution | Temporal Span |
---|---|---|---|---|---|
Observed meteorological data | 175 meteorological stations | - | Daily | Station | 2014–2020 |
Ensemble precipitation forecasts (EPFs) | ECMWF (European Centre for Medium-Range Weather Forecasts) | 50 | 7 lead days at 6 h | 0.5 grid | 2014–2020 |
NCEP (National Centers for Environmental Prediction) | 20 | ||||
Observed discharge data | Shuibuya hydropower station | - | Daily | Station | 2014–2020 |
Parameters | Description | Range | Calibrated Value | |
---|---|---|---|---|
XAJ | WM | Areal tension water capacity (mm) | Humid regions: 100~160 | 134.16 |
WUM | Fraction of upper water in WM | 0~0.6 | 0.26 | |
WLM | Fraction of lower water in WM | 0.4~1 | 0.65 | |
K | Evaporation coefficient | 0~0.6 | 0.55 | |
C | Coefficient of evapotranspiration in the lower soil layer | 0.2~1 | 0.62 | |
IM | Impermeable coeflicient | 0~0.2 | 0.07 | |
B | Tension water distribution index | 0~0.02 | 0.01 | |
EX | Free water distribution index | 1~1.5 | 1.39 | |
SM | Areal free water capacity (mm) | 0~60 | 59.98 | |
KI | Fraction of free water to interflow | 0~1 | 0.50 | |
KG | Fraction of free water to groundwater | 0~1, KI + KG < 1 | 0.50 | |
CI | Interflow recession coefficient | 0.8~1 | 0.80 | |
CG | Groundwater recession coefficient | 0.8~1 | 0.90 | |
N | Number of reservoirs of the Nash model | 0~5 | 0.27 | |
K | Storage constant of the Nash model | 0~5 | 3.04 | |
GR4J | X1 | Production reservoir: storage of rainfall on the soil surface (mm) | 1~750 | 187.07 |
X2 | Groundwater exchange coefficient: a function of groundwater exchange that influences the routing reservoir | −10~10 | 2.91 | |
X3 | Routing storage: amount of water that can be stored in soil porous (mm) | 1~400 | 68.84 | |
X4 | Time peak: the time when the ordinate peak of flood hydrograph is created | 0.5~10 | 1.33 |
Schemes | Raw | GPP | ||||
---|---|---|---|---|---|---|
ARIL | PCI | PUCI | ARIL | PCI | PUCI | |
(A) CMWF + XAJ | 1.304 | 0.331 | 0.330 | 2.615 | 0.764 | 0.331 |
(B) GE + XAJ | 1.877 | 0.360 | 0.245 | 2.935 | 0.825 | 0.315 |
(C) ECMWF + MHM | 1.765 | 0.450 | 0.312 | 2.671 | 0.816 | 0.343 |
(D) GE + MHM | 2.317 | 0.470 | 0.246 | 2.980 | 0.863 | 0.323 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Y.; Peng, T.; Qi, H.; Yin, Z.; Shen, T. Improving Flood Forecasting Skill by Combining Ensemble Precipitation Forecasts and Multiple Hydrological Models in a Mountainous Basin. Water 2024, 16, 1887. https://doi.org/10.3390/w16131887
Xiang Y, Peng T, Qi H, Yin Z, Shen T. Improving Flood Forecasting Skill by Combining Ensemble Precipitation Forecasts and Multiple Hydrological Models in a Mountainous Basin. Water. 2024; 16(13):1887. https://doi.org/10.3390/w16131887
Chicago/Turabian StyleXiang, Yiheng, Tao Peng, Haixia Qi, Zhiyuan Yin, and Tieyuan Shen. 2024. "Improving Flood Forecasting Skill by Combining Ensemble Precipitation Forecasts and Multiple Hydrological Models in a Mountainous Basin" Water 16, no. 13: 1887. https://doi.org/10.3390/w16131887
APA StyleXiang, Y., Peng, T., Qi, H., Yin, Z., & Shen, T. (2024). Improving Flood Forecasting Skill by Combining Ensemble Precipitation Forecasts and Multiple Hydrological Models in a Mountainous Basin. Water, 16(13), 1887. https://doi.org/10.3390/w16131887