Trophic Status of Lake Niesłysz (Poland) and Related Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Laboratory Studies
- -
- Standard Method 4500-NO2− for nitrite nitrogen (NO2−-N);
- -
- Standard Method 4500-NO3− for nitrate nitrogen (NO3−-N);
- -
- Standard Method 4500-NH4+ for ammonium nitrogen (NH4+-N);
- -
- Standard Method 4500-N for total nitrogen (TN);
- -
- Standard Method 4500-P for total reactive phosphorus (TRP) and total phosphorus (TP);
- -
- Standard Method 10200-H for chlorophyll a (CHL);
- -
- Standard Method 5210-B for biochemical oxygen demand (BOD5);
- -
- Standard Method 5310-B for total organic carbon (TOC).
2.3. Assessing the Lake’s Tolerance to Surrounding Environmental Pressures
2.4. Determination of the Trophic State Index (TSI)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Water Quality
Station | Depth | NO2−-N | NO3−-N | NH4+-N | TN | TRP | TP | Redfield Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | mg N L−1 | mg P L−1 | TN:TP | TIN:TRP | |||||||||||||
W | S | W | S | W | S | W | S | W | S | W | S | W | S | W | S | ||
S1 | 1 | 0.007 | 0.003 | 0.159 | 0.038 | 0.015 | 0.008 | 0.846 | 0.515 | 0.040 | 0.018 | 0.056 | 0.036 | 33.4 | 31.6 | 10.0 | 6.0 |
4 | 0.007 | 0.002 | 0.152 | 0.022 | 0.012 | 0.011 | 0.856 | 0.529 | 0.037 | 0.016 | 0.055 | 0.036 | 34.4 | 32.5 | 10.2 | 4.8 | |
8 | 0.007 | 0.006 | 0.153 | 0.016 | 0.016 | 0.011 | 0.865 | 0.732 | 0.038 | 0.014 | 0.057 | 0.037 | 33.5 | 43.7 | 10.2 | 5.2 | |
14 | 0.008 | 0.006 | 0.151 | 0.226 | 0.015 | 0.002 | 0.829 | 0.827 | 0.035 | 0.015 | 0.053 | 0.030 | 34.6 | 60.9 | 11.0 | 34.5 | |
20 | 0.006 | 0.003 | 0.154 | 0.122 | 0.018 | 0.045 | 0.827 | 0.898 | 0.038 | 0.030 | 0.055 | 0.045 | 33.2 | 44.1 | 10.4 | 12.5 | |
33 | 0.006 | 0.006 | 0.150 | 0.014 | 0.018 | 0.480 | 0.869 | 1.633 | 0.047 | 0.149 | 0.069 | 0.162 | 27.8 | 22.3 | 8.2 | 7.4 | |
av | 0.007 | 0.004 | 0.153 | 0.073 | 0.016 | 0.093 | 0.849 | 0.856 | 0.039 | 0.040 | 0.058 | 0.058 | 32.8 | 39.2 | 10.0 | 11.7 | |
S2 | 1 | 0.006 | 0.001 | 0.172 | 0.035 | 0.016 | 0.016 | 0.887 | 0.817 | 0.049 | 0.018 | 0.066 | 0.031 | 29.7 | 58.3 | 8.8 | 6.4 |
4 | 0.006 | 0.004 | 0.170 | 0.018 | 0.020 | 0.009 | 0.885 | 0.811 | 0.057 | 0.016 | 0.071 | 0.037 | 27.6 | 48.5 | 7.6 | 4.3 | |
8 | 0.007 | 0.004 | 0.170 | 0.017 | 0.027 | 0.003 | 0.884 | 0.886 | 0.057 | 0.024 | 0.081 | 0.044 | 24.1 | 44.5 | 7.9 | 2.2 | |
av | 0.006 | 0.003 | 0.171 | 0.023 | 0.021 | 0.009 | 0.885 | 0.838 | 0.054 | 0.019 | 0.073 | 0.037 | 27.1 | 50.4 | 8.1 | 4.3 | |
S3 | 1 | 0.008 | 0.002 | 0.154 | 0.017 | 0.028 | 0.005 | 0.883 | 0.936 | 0.037 | 0.014 | 0.053 | 0.037 | 36.8 | 55.9 | 11.4 | 3.8 |
4 | 0.008 | 0.002 | 0.143 | 0.017 | 0.029 | 0.009 | 0.862 | 0.946 | 0.037 | 0.015 | 0.055 | 0.041 | 34.6 | 51.0 | 10.8 | 4.1 | |
8 | 0.009 | 0.001 | 0.137 | 0.017 | 0.032 | 0.011 | 0.843 | 0.975 | 0.042 | 0.045 | 0.066 | 0.066 | 28.2 | 32.7 | 9.4 | 1.4 | |
av | 0.008 | 0.002 | 0.145 | 0.017 | 0.030 | 0.008 | 0.863 | 0.952 | 0.039 | 0.025 | 0.058 | 0.048 | 33.2 | 46.5 | 10.5 | 3.1 |
3.2. Redfield Ratio
3.3. Tolerance of the Lake to the Pressure of the Surrounding Environment
3.4. Level of Trophy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Auddy, N.; Rai, A.K.; Chatterjee, S.; Pobi, K.; Dutta, S.; Nayek, S. Trophic classification and assessment of lake health using indexing approach and geostatistical methods for sustainable management of water resources. Water Pract. Technol. 2023, 18, 967–980. [Google Scholar] [CrossRef]
- Zawiska, I.; Jasiewicz, J.; Rzodkiewicz, M.; Woszczyk, M. Relative impact of environmental variables on the lake trophic state highlights the complexity of eutrophication controls. J. Environ. Manag. 2023, 345, 118679. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Zhu, G.; Cai, Y.; Vilmi, A.; Xu, H.; Zhu, M.; Gong, Z.; Zhang, Y.; Qin, B. Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains ecoregion: Implications for eutrophication management. J. Environ. Manag. 2020, 260, 109923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xue, B.; Cai, Y.; Xu, H.; Zou, W. Utility of Trophic State Index in lakes and reservoirs in the Chinese Eastern Plains ecoregion: The key role of water depth. Ecol. Indic. 2023, 148, 110029. [Google Scholar] [CrossRef]
- Carlson, R.E. Estimating trophic state. Lake Line 2007, 27, 25–28. [Google Scholar]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Kratzer, C.R.; Brezonik, P.L.A. Carlson-Type Trophic State Index for nitrogen in Florida Lakes. J. Am. Water Resour. Assoc. 1981, 17, 713–715. [Google Scholar] [CrossRef]
- Bajkiewicz-Grabowska, E. Assessment of the ecological state of lakes as proposed by the Polish Limnological Society. Limnol. Rev. 2010, 10, 105–116. [Google Scholar] [CrossRef]
- Kondracki, J. Regional Geography of Poland; PWN: Warszawa, Poland, 2023; p. 635. (In Polish) [Google Scholar]
- Konopczyński, W.; Wąsicki, A. Jezioro Niesłysz—Komunikat o jakości wód w 2005 r. (Lake Niesłysz—Report on Water Quality in 2005); Wydział Monitoringu Środowiska (Environmental Monitoring Department): Zielona Góra, Poland, 2006; p. 41. (In Polish) [Google Scholar]
- Numer Ewidencji Jeziora PR-1/9-182/60 (Lake Registration Number PR-1/9-182/60); IRŚ, Instytut Rybactwa Śródlądowego w Olsztynie (Institute of Inland Fisheries in Olsztyn): Olsztyn, Poland, 1960. (In Polish)
- APHA. Standard Methods for Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1999; ISBN 0875532357. [Google Scholar]
- Nędzarek, A.; Tórz, A.; Kubiak, J. Oxygen conditions and trophic state of Lake Głębokie (Szczecin, Poland) in the years 2008–2010. Limnol. Rev. 2010, 10, 131–140. [Google Scholar]
- Ficker, H.; Luger, M.; Gassner, H. From dimictic to monomictic: Empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshwat. Biol. 2017, 62, 1335–1345. [Google Scholar] [CrossRef]
- Woolway, R.I.; Merchant, C.J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 2019, 12, 271–276. [Google Scholar] [CrossRef]
- Hutchinson, G.E.; Löffler, H. The thermal classification of lakes. Proc. Nat. Acad. Sci. USA 1956, 42, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Lewis, W.M. A revised classification of lakes based no mixing. Can. J. Fish. Aquat. Sci. 1983, 40, 1779–1787. [Google Scholar] [CrossRef]
- Steinsberger, T.; Schwefel, R.; Wüest, A.; Müller, B. Hypolimnetic oxygen depletion rates in deep lakes: Effects of trophic state and organic matter accumulation. Limnol. Oceanog. 2020, 65, 3128–3138. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology. Lake and River Ecosystems; Elsevier Academic Press: London, UK, 2001; p. 1006. [Google Scholar]
- Zdanowski, B.; Stawecki, K.; Pyka, J.; Dunalska, J.; Hutorowicz, J.; Prusik, S. Changes in the environmental conditions of mesotrophic lakes in the river-lake system of the Marózka and upper Łyna rivers (Mazurian Lakeland, Poland). Arch. Pol. Fish. 2006, 14, 283–300. [Google Scholar]
- Pyka, J.P.; Zdanowski, B.; Stawecki, K.; Prusik, S. Trends in environmental changes in the selected lakes of the Mazury and Suwałki Lakelands. Limnol. Rev. 2007, 7, 101–109. [Google Scholar]
- Tórz, A.; Bonisławska, M.; Nędzarek, A.; Rybczyk, A.; Tański, A. Hydrochemical conditions of three lakes located in the West Pomeranian region in the annual cycle. J. Water Land Dev. 2023, 56, 262–274. [Google Scholar] [CrossRef]
- Kubiak, J.; Machula, S.; Czerniejewski, P.; Brysiewicz, A.; Wawrzyniak, W. Long term changes in the quality and water trophy of Lake Ińsko—The effect of the re-oligotrophication? J. Water Land Dev. 2021, 51, 30–37. [Google Scholar]
- Zhou, J.; Yoshida, T.; Kitazawa, D. Numerical analysis of the relationship between mixing regime, nutrient status, and climatic variables in Lake Biwa. Sci. Rep. 2022, 12, 19691. [Google Scholar] [CrossRef]
- Phillips, G.; Pietiläinen, O.P.; Carvalho, L.; Solimini, A.; Lyche Solheim, A.; Cardoso, A.C. Chlorophyll-nutrient relationships of different lake types using a large European dataset. Aquat. Ecol. 2008, 42, 213–226. [Google Scholar] [CrossRef]
- Regulation MI Regulation of the Ministry of Infrastructure of 25 June 2021 on the Classification of Ecological Status, Ecological Potential and Chemical Status, and the Method of Classification of the Status of Surface Water Bodies, as Well as Environmental Quality Standards for Priority Substances. J. Laws 2021. Available online: https://leap.unep.org/en/countries/pl/national-legislation/regulation-classification-ecological-status-ecological-1 (accessed on 12 June 2024).
- Domysheva, V.; Vorobyeva, S.; Golobokova, L.; Netsvetaeva, O.; Onischuk, N.; Sakirko, M.; Khuriganova, O.; Fedotov, A. Assessment of the Current Trophic Status of the Southern Baikal Littoral Zone. Water 2023, 15, 1139. [Google Scholar] [CrossRef]
- Jekatierynczuk-Rudczyk, E.; Zieliński, P.; Grabowska, M.; Ejsmont-Karabin, J.; Karpowicz, M.; Więcko, A. The trophic status of Suwałki Landscape Park lakes based on selected parameters (NE Poland). Environ. Monit. Assess. 2014, 186, 5101–5121. [Google Scholar] [CrossRef]
- Maberly, S.C.; Pitt, J.A.; Davies, P.S.; Carvalho, L. Nitrogen and Phosphorus Limitation and the Management of Small Productive Lakes. Inland Water 2020, 10, 159–172. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, R.; Zhou, Q.; Jeppesen, E.; Yang, K. Trophic status and lake depth play important roles in determining the nutrient-chlorophyll a relationship: Evidence from thousands of lakes globally. Water Res. 2023, 242, 120182. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Han, X.; Brookes, J.D.; Qin, B. High probability of nitrogen and phosphorus co-limitation occurring in eutrophic lakes. Environ. Pollut. 2022, 292, 118276. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.S. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Sorano, P.A.; Wagner, T. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. Water Res. 2020, 185, 116236. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Zhu, G.; Xu, H.; Zhu, M.; Qin, B.; Zhang, Y.; Bi, Y.; Liu, M.; Wu, T. Elucidating phytoplankton limiting factors in lakes and reservoirs of the Chinese Eastern Plains ecoregion. J. Environ. Manag. 2022, 318, 115542. [Google Scholar] [CrossRef]
- Carlson, R.E.; Havens, K.E. Simple graphical methods for the interpretation of relationships between trophic state variables. Lake Reserv. Manag. 2005, 21, 107–118. [Google Scholar] [CrossRef]
Characteristic or Indicator | Unit | Value |
---|---|---|
Lake | ||
Surface area | ha | 486.2 |
Islands area | ha | 10.4 |
Maximum depth | m | 34.7 |
Mean depth | m | 7.1 |
Volume | 103 m3 | 34,457.6 |
Maximum length | m | 4700 |
Maximum width | m | 1700 |
Shoreline length | m | 18,925 |
Shoreline length of islands | m | 2050 |
Catchment | ||
Total catchment area | km2 | 56.24 |
Arable land | % | 39.0 |
Grassland | % | 3.5 |
Woodland area | % | 47.0 |
Water | % | 9.5 |
Built-up area | % | 1.0 |
Station | Depth | T | DO | BOD5 | TOC | Chlorophyll a | SD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | mg O2 L−1 | mg O2 L−1 | mg C L−1 | μg L−1 | m | ||||||||
m | W | S | W | S | W | S | W | S | W | S | W | S | |
S1 | 1 | 4.0 | 25.7 | 14 | 10.2 | 4.6 | 2.6 | 12.9 | 11.7 | 1.9 | 5.3 | 7.5 | 6.5 |
4 | 3.5 | 20.9 | 13.6 | 10.7 | 3.4 | 2.9 | 13.0 | 17.1 | 2.3 | 5.3 | |||
8 | 3.8 | 14.4 | 13.5 | 6.6 | 4.0 | 2.6 | 13.4 | 12.1 | 1.9 | 4.7 | |||
14 | 3.9 | 7.2 | 13.2 | 3.6 | 3.5 | 0.6 | 13.0 | 19.8 | 2.3 | 2.1 | |||
20 | 3.9 | 6.0 | 13.3 | 3.4 | 4.9 | 0.6 | 13.1 | 12.1 | 1.9 | 2.1 | |||
33 | 4.0 | 5.7 | 13.2 | 1.0 | 3.5 | 1.5 | 13.7 | 19.9 | 1.9 | 2.1 | |||
S2 | 1 | 4.0 | 25.8 | 14.1 | 10.1 | 4.7 | 1.6 | 13.0 | 11.6 | 1.8 | 10.7 | 7.0 | 6.0 |
4 | 4.0 | 21.7 | 14.1 | 11.1 | 3.7 | 1.9 | 13.5 | 17.0 | 1.8 | 16.0 | |||
8 | 4.0 | 19.1 | 13.4 | 3.2 | 4.2 | 1.7 | 13.7 | 12.2 | 1.8 | 5.3 | |||
S3 | 1 | 4.0 | 25.5 | 14.4 | 10.5 | 5.1 | 1.4 | 14.7 | 16.8 | 2.3 | 17.5 | 7.0 | 5.0 |
4 | 4.0 | 21.6 | 14.1 | 13.1 | 4.6 | 2.1 | 14.3 | 12.0 | 2.4 | 17.1 | |||
8 | 4.0 | 15.3 | 14.3 | 1.6 | 4.6 | 2.0 | 14.9 | 18.5 | 2.4 | 23.5 |
T | DO | BOD5 | TOC | CHL | NO2−-N | NO3−-N | NH4+-N | TN | TRP | TP | |
---|---|---|---|---|---|---|---|---|---|---|---|
T | 1.00 | ||||||||||
DO | −0.28 | 1.00 | |||||||||
BOD5 | −0.58 | 0.79 | 1.00 | ||||||||
TOC | 0.01 | −0.44 | −0.32 | 1.00 | |||||||
CHL | 0.71 | −0.27 | −0.47 | 0.26 | 1.00 | ||||||
NO2−-N | −0.83 | 0.45 | 0.68 | −0.07 | −0.74 | 1.00 | |||||
NO3−-N | −0.82 | 0.46 | 0.54 | −0.11 | −0.68 | 0.71 | 1.00 | ||||
NH4+-N | −0.18 | −0.42 | −0.19 | 0.44 | −0.16 | 0.11 | −0.22 | 1.00 | |||
TN | −0.29 | −0.38 | −0.18 | 0.42 | 0.03 | 0.13 | −0.09 | 0.84 | 1.00 | ||
TRP | −0.49 | −0.20 | 0.13 | 0.35 | −0.30 | 0.33 | 0.08 | 0.89 | 0.83 | 1.00 | |
TP | −0.47 | −0.18 | 0.14 | 0.36 | −0.26 | 0.33 | 0.05 | 0.87 | 0.83 | 0.99 | 1.00 |
Parameters | Value | Points | |
---|---|---|---|
The resilience of Niesłysz Lake to degradation | |||
Mean depth | m | 7.1 | 1 |
Volume of the lake in relation to shoreline length | 103 m3 m−1 | 2.04 | 2 |
Percentage of lake stratification during summer stagnation | % | 18.2 | 2 |
Surface area of the active bottom in relation to epilimnion volume | m2 m−3 | 0.11 | 1 |
Intensity of water exchange | % | 20 | 1 |
Schindler’s coefficient—quotient of total catchment to lake capacity | m2 m−3 | 1.6 | 1 |
Final Score (average) | 1.33 | ||
Category of lake resistance | Category II | ||
Descriptive lake characteristics | Medium resistance of a lake to the influence of its basin | ||
Susceptibility of the catchment area to supply material to Niesłysz Lake | |||
Ohle’s Index | 11.56 | 1 | |
Balance type of lake | Flow-through | 3 | |
Density of river network | km km−2 | 0.8 | 1 |
Average slope in catchment | m km−1 | 5 | 0 |
Contribution of endorheic areas | % | 40 | 2 |
Geological structure of catchment | sand-loamy | 1 | |
Land use in catchment | forest-agricultural | 1 | |
Final Score (average) | 1.29 | ||
Groups of susceptibility of catchment | 2nd susceptibility group | ||
Descriptive catchment characteristics | The basin has little influence on the release and transport of biogenic matter to the lake |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nędzarek, A.; Budzyński, M. Trophic Status of Lake Niesłysz (Poland) and Related Factors. Water 2024, 16, 1736. https://doi.org/10.3390/w16121736
Nędzarek A, Budzyński M. Trophic Status of Lake Niesłysz (Poland) and Related Factors. Water. 2024; 16(12):1736. https://doi.org/10.3390/w16121736
Chicago/Turabian StyleNędzarek, Arkadiusz, and Michał Budzyński. 2024. "Trophic Status of Lake Niesłysz (Poland) and Related Factors" Water 16, no. 12: 1736. https://doi.org/10.3390/w16121736
APA StyleNędzarek, A., & Budzyński, M. (2024). Trophic Status of Lake Niesłysz (Poland) and Related Factors. Water, 16(12), 1736. https://doi.org/10.3390/w16121736