An Optimal Upgrading Framework for Water Distribution Systems Operation
Abstract
:1. Introduction
1.1. Optimization of WDS Design
1.2. Optimization of WDS Operation and Economics
1.3. Optimization of WDS Leakage Reduction
1.4. WDS Optimization Methods
2. Material and Method
2.1. Study Methodology
2.2. WDS Upgrading Framework
2.2.1. Hydraulic Simulation Model
2.2.2. Optimization Model
2.3. Demonstration
3. Results
3.1. Framework Outputs
3.1.1. Analysis of Investment Cost and Leakage Improvement
3.1.2. Non-Revenue Water (NRW) Assessment
3.1.3. Analysis of Energy Saving Cost
3.1.4. The Impact PRV Setting
3.1.5. Use of Framework
4. Discussion
Study Implications
5. Conclusions
Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dighade, R.R.; Kadu, M.S.; Pande, A.M. Challenges in water loss management of water distribution systems in developing countries. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 13838–13846. [Google Scholar]
- EurEau. Europe’s Water in Figures—An Overview of the European Drinking Water and Wastewater Sectors; The European Federation of National Associations of Water Services: Brussels, Belgium, 2021. [Google Scholar]
- Van Zyl, J.E.; Savic, D.A.; Walters, G.A. Operational optimization of water distribution systems using a hybrid genetic algorithm. J. Water Resour. Plan. Manag. 2004, 130, 160–170. [Google Scholar] [CrossRef]
- Ostfeld, A. Optimal design and operation of multiquality networks under unsteady conditions. J. Water Resour. Plan. Manag. 2005, 131, 116–124. [Google Scholar] [CrossRef]
- Ostfeld, A.; Tubaltzev, A. Ant colony optimization for least-cost design and operation of pumping water distribution systems. J. Water Resour. Plan. Manag. 2008, 134, 107–118. [Google Scholar] [CrossRef]
- Bin Mahmoud, A.A.; Piratla, K.R. Comparative evaluation of resilience metrics for water distribution systems using a pressure driven demand-based reliability approach. J. Water Supply Res. Technol. AQUA 2018, 67, 517–530. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, F.; Duan, H.-F.; Zhang, Q. Multi-objective optimal design of water distribution networks accounting for transient impacts. Water Resour. Manag. 2020, 34, 1517–1534. [Google Scholar] [CrossRef]
- Giustolisi, O.; Laucelli, D.; Berardi, L. Operational optimization: Water losses versus energy costs. J. Hydraul. Eng. 2013, 139, 410–423. [Google Scholar] [CrossRef]
- Maskit, M.; Ostfeld, A. Multi-Objective Operation-Leakage Optimization and Calibration of Water Distribution Systems. Water 2021, 13, 1606. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; Piratla, K.R. Optimal Operational Control of Water Pipeline Systems Using Real-Time Scheduling Framework. In Proceedings of the Pipelines 2019 Conference, Nashville, TN, USA, 21–24 July 2019. [Google Scholar]
- Mahmoud, B.; Abdulaziz, A.; Momeni, A.; Piratla, K.R. Optimal Near Real-Time Control of Water Distribution System Operations. Water 2023, 15, 1280. [Google Scholar] [CrossRef]
- Giustolisi, O.; Ugarelli, R.M.; Berardi, L.; Laucelli, D.B.; Simone, A. Strategies for the electric regulation of pressure control valves. J. Hydroinform. 2017, 19, 621–639. [Google Scholar] [CrossRef]
- Creaco, E.; Walski, T. Economic analysis of pressure control for leakage and pipe burst reduction. J. Water Resour. Plan. Manag. 2017, 143, 04017074. [Google Scholar] [CrossRef]
- Dai, P.D.; Viet, N.H. Optimization of Variable Speed Pump Scheduling for Minimization of Energy and Water Leakage Costs in Water Distribution Systems with Storages. In Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Kurek, W.; Ostfeld, A. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. J. Environ. Manag. 2013, 115, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Jowitt, P.W.; Xu, C. Optimal valve control in water-distribution networks. J. Water Resour. Plan. Manag. 1990, 116, 455–472. [Google Scholar] [CrossRef]
- Reis LF, R.; Porto, R.M.; Chaudhry, F.H. Optimal location of control valves in pipe networks by genetic algorithm. J. Water Resour. Plan. Manag. 1997, 123, 317–326. [Google Scholar] [CrossRef]
- Vairavamoorthy, K.; Lumbers, J. Leakage reduction in water distribution systems: Optimal valve control. J. Hydraul. Eng. 1998, 124, 1146–1154. [Google Scholar] [CrossRef]
- Araujo, L.S.; Ramos, H.; Coelho, S.T. Pressure control for leakage minimisation in water distribution systems management. Water Resour. Manag. 2006, 20, 133–149. [Google Scholar] [CrossRef]
- Nicolini, M.; Zovatto, L. Optimal location and control of pressure reducing valves in water networks. J. Water Resour. Plan. Manag. 2009, 135, 178–187. [Google Scholar] [CrossRef]
- El-Ghandour, H.A.; El-Ansary, A.S. Optimal Location and Regulation of Flow Control Valves for Leakage Reduction in Water Pipe Networks. J. Eng. Appl. Sci. 2011, 58, 479–494. [Google Scholar]
- Creaco, E.; Pezzinga, G. Multiobjective optimization of pipe replacements and control valve installations for leakage attenuation in water distribution networks. J. Water Resourc. Plan. Manag. 2015, 141, 04014059. [Google Scholar] [CrossRef]
- Ali, M.E. Knowledge-based optimization model for control valve locations in water distribution networks. J. Water Resour. Plan. Manag. 2015, 141, 04014048. [Google Scholar] [CrossRef]
- Saldarriaga, J.; Salcedo, C.A. Determination of optimal location and settings of pressure reducing valves in water distribution networks for minimizing water losses. Procedia Eng. 2015, 119, 973–983. [Google Scholar] [CrossRef]
- El-Ghandour, H.A. Comparison between two Hydraulic Control Valves Systems for Leakage Minimization in Water Distribution Networks Using Multi-Objective Memetic Algorithm. Dept C.(Irrigation). MEJ. Mansoura Eng. J. 2020, 45, 1–10. [Google Scholar] [CrossRef]
- Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in optimisation of water distribution systems? A literature review of system operation. Environ. (Model. Softw.) 2017, 93, 209–254. [Google Scholar] [CrossRef]
- Montalvo, I.; Izquierdo, J.; Schwarze, S.; Pérez-García, R. Multi-Objective Particle Swarm Optimization Applied to Water Distribution Systems Design: An Approach with Human Interaction. Math. Comput. Model. 2010, 52, 1219–1227. [Google Scholar] [CrossRef]
- Raad, D.; Sinske, A.; Van Vuuren, J. Robust Multi-Objective Optimization for Water Distribution System Design Using a Meta-Metaheuristic. Int. Trans. Oper. Res. 2009, 16, 595–626. [Google Scholar] [CrossRef]
- Boindala, S.P.; Ostfeld, A. Robust Multi-Objective Design Optimization of Water Distribution System under Uncertainty. Water 2022, 14, 2199. [Google Scholar] [CrossRef]
- Wang, Q.; Guidolin, M.; Savic, D.; Kapelan, Z. Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front. J. Water Resour. Plan. Manag. 2015, 141, 04014060. [Google Scholar] [CrossRef]
- Wang, Q.; Savi’c, D.A.; Kapelan, Z. GALAXY: A New Hybrid MOEA for the Optimal Design of Water Distribution Systems. Water Resour. Res. 2017, 53, 1997–2015. [Google Scholar] [CrossRef]
- Moosavian, N.; Lence, B.J. Fittest Individual Referenced Differential Evolution Algorithms for Optimization of Water Distribution Networks. J. Comput. Civ. Eng. 2019, 33. Available online: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000849 (accessed on 25 May 2024). [CrossRef]
- Sirsant, S.; Reddy, M.J. Improved MOSADE Algorithm Incorporating Sobol Sequences for Multi-Objective Design of Water Distribution Networks. Appl. Soft Comput. 2022, 120, 108682. [Google Scholar] [CrossRef]
- Klise, K.A.; Murray, R.; Haxton, T. An overview of the Water Network Tool for Resilience (WNTR). In Proceedings of the 1st International WDSA/CCWI Joint Conference, Kingston, ON, Canada, 23–25 July 2018. 075, 8p. [Google Scholar]
- Blank, J.; Deb, K. Pymoo: Multi-objective optimization in Python. IEEE Access 2020, 8, 89497–89509. [Google Scholar] [CrossRef]
- Demir, I.; Ergin, F.C.; Kiraz, B. A New Model for the Multi-Objective Multiple Allocation Hub Network Design and Routing Problem. IEEE Access 2019, 7, 90678–90689. [Google Scholar] [CrossRef]
- Berardi, L.; Giustolisi, O. Calibration of Design Models for Leakage Management of Water Distribution Networks. Water Resour. Manag. 2021, 35, 2537–2551. [Google Scholar] [CrossRef]
- Chee, R.; Lansey, K.; Chee, E. Estimation of water pipe installation construction costs. J. Pipeline Syst. Eng. Pract. 2018, 9, 04018008. [Google Scholar] [CrossRef]
- Ostfeld, A.; Uber, J.G.; Salomons, E.; Berry, J.W.; Hart, W.E.; Phillips, C.A.; Watson, J.-P.; Dorini, G.; Jonkergouw, P.; Kapelan, Z.; et al. The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. J. Water Resour. Plan. Manag. 2008, 134, 556–568. [Google Scholar] [CrossRef]
Decision Variable Type | # of Decision Variable | Range |
---|---|---|
PRV Setting | 8 | 15 to 45 m |
Replaced Pipes % | 1 | 0 to 10% |
Total | 9 | |
Constraint | Range | |
Minimum Pressure | >0 |
Investment ($) | 85,000 | 50,000 | 25,000 | Zero |
---|---|---|---|---|
Probability (%) | 70% | 40% | 20% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsanad, A.H.; Bin Mahmoud, A.A.; Aljadhai, S.I. An Optimal Upgrading Framework for Water Distribution Systems Operation. Water 2024, 16, 1737. https://doi.org/10.3390/w16121737
Alsanad AH, Bin Mahmoud AA, Aljadhai SI. An Optimal Upgrading Framework for Water Distribution Systems Operation. Water. 2024; 16(12):1737. https://doi.org/10.3390/w16121737
Chicago/Turabian StyleAlsanad, Abdulaziz H., Abdulrahman A. Bin Mahmoud, and Saad I. Aljadhai. 2024. "An Optimal Upgrading Framework for Water Distribution Systems Operation" Water 16, no. 12: 1737. https://doi.org/10.3390/w16121737
APA StyleAlsanad, A. H., Bin Mahmoud, A. A., & Aljadhai, S. I. (2024). An Optimal Upgrading Framework for Water Distribution Systems Operation. Water, 16(12), 1737. https://doi.org/10.3390/w16121737