Surface Modification of PVDF and PTFE Hollow Fiber Membranes for Enhanced Nitrogen Removal in a Membrane-Aerated Biofilm Reactor
Abstract
:Highlights
- Plasma-grafting acrylic acid composite membrane for MABR was prepared.
- Higher O2 transfer rate and better hydrophilicity for modified membranes than pristine.
- Modified PVDF membrane demonstrated superior nitrogen removal during startup.
- Activity of denitrifying bacteria was enhanced in the modified PVDF MABR.
Abstract
1. Introduction
2. Materials and Methods
2.1. Membrane Modification and Characterization
2.2. MABR Configuration and Operating Condition
2.3. Analytical Methods
3. Results and Discussion
3.1. Performance and Characterization of Modified Membrane Fibers
3.1.1. Surface Hydrophilicity of Modified Hollow Fiber Membranes
3.1.2. Surface Chemistry of Modified Hollow Fiber Membranes
3.1.3. Morphology of Membrane Surface
3.1.4. Oxygen Supply Capacity of Membranes
3.2. Performance of MABRs during the Startup Phase
3.2.1. PVDF and PVDF-P-AA Reactors
3.2.2. PTFE and PTFE-P-AA Reactors
3.3. Analysis of Microbial Community Diversity and Community Structure
3.3.1. Analysis of Microbial Community Diversity
3.3.2. Analysis of Microbial Community Structure
3.3.3. Analysis of OTR after Operation of MABR
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Ren, L.; Qiao, Y.; Li, X.; Zheng, J.; Ma, J.; Wang, Z. Recent advances in membrane biofilm reactor for micropollutants removal: Fundamentals, performance and microbial communities. Bioresour. Technol. 2022, 343, 126139. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Bai, H.; Kong, F.; Liss, S.N.; Liao, B. Recent advances in membrane aerated biofilm reactors. Crit. Rev. Environ. Sci. Technol. 2021, 51, 649–703. [Google Scholar] [CrossRef]
- Casey, E.; Glennon, B.; Hamer, G. Review of membrane aerated biofilm reactors. Resour. Conserv. Recycl. 1999, 27, 203–215. [Google Scholar] [CrossRef]
- Semmens, M.J.; Dahm, K.; Shanahan, J.; Christianson, A. COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Res. 2003, 37, 4343–4350. [Google Scholar] [CrossRef] [PubMed]
- Klementiev, A.D.; Jin, Z.; Whiteley, M. Micron scale spatial measurement of the o2 gradient surrounding a bacterial biofilm in real time. mBio 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lackner, S.; Terada, A.; Horn, H.; Henze, M.; Smets, B.F. Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Res. 2010, 44, 6073–6084. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.J.; Yuan, Z. A model-based assessment of nitric oxide and nitrous oxide production in membrane-aerated autotrophic nitrogen removal biofilm systems. J. Membr. Sci. 2013, 428, 163–171. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Z.; Chu, H.; Li, J.; Ngo, H.H.; Guo, W.; Zhang, N.; Zhang, H. Comparison study on the performance of two different gas-permeable membranes used in a membrane-aerated biofilm reactor. Sci. Total Environ. 2019, 658, 1219–1227. [Google Scholar] [CrossRef]
- McLamore, E.; Jackson, W.A.; Morse, A. Abiotic transport in a membrane aerated bioreactor. J. Membr. Sci. 2007, 298, 110–116. [Google Scholar] [CrossRef]
- Syron, E.; Casey, E. Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements. Environ. Sci. Technol. 2008, 42, 1833–1844. [Google Scholar] [CrossRef]
- Martin, K.J.; Nerenberg, R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments. Bioresour. Technol. 2012, 122, 83–94. [Google Scholar] [CrossRef]
- Hou, F.; Li, B.; Xing, M.; Wang, Q.; Hu, L.; Wang, S. Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor (MABR). Bioresour. Technol. 2013, 140, 1–9. [Google Scholar] [CrossRef]
- Nisola, G.M.; Orata-Flor, J.; Oh, S. Partial nitrification in a membrane-aerated biofilm reactor with composite PEBA/PVDF hollow fibers. Desalination Water Treat. 2013, 51, 5275–5282. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Chung, F.-Y.; Chou, P.-Y.; Huang, C. Surface Modification of Polytetrafluoroethylene by Atmospheric Pressure Plasma-Grafted Polymerization. Plasma Chem. Plasma Process. 2020, 40, 1507–1523. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Y.; Ma, C.; Wang, X. Influence of mixed monomers on the microbial affinity properties of PTFE membranes modified by plasma methods. Res. Environ. Sci. 2020, 33, 465–470. [Google Scholar] [CrossRef]
- Vatanpour, V.; Zoqi, N. Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes. Appl. Surf. Sci. 2017, 396, 1478–1489. [Google Scholar] [CrossRef]
- Chen, K.-S.; Tsao, Y.-C.; Tsen, C.-H.; Chen, C.C.; Liao, S.-C. Cold Plasma Surface Modified Electrospun Microtube Array Membrane for Chitosan Immobilization and Their Properties. World Acad. Sci. Eng. Technol. Int. J. Bioeng. Life Sci. 2016, 3, 661–664. [Google Scholar]
- Chen, W.-Y.; Matthews, A.; Jones, F.R.; Chen, K.-S. Deposition of a stable and high concentration of carboxylic acid functional groups onto a silicon surface via a tailored remote atmospheric pressure plasma process. Surf. Coat. Technol. 2018, 336, 67–71. [Google Scholar] [CrossRef]
- Wang, J.; Nie, L.; Zhang, C.; Wang, B. Low-pressure air plasma-assisted acrylic grafted polyetherimide ultrafiltration membranes with excellent oil-water separation and high anti-fouling performances. Mater. Today Commun. 2023, 35, 106325. [Google Scholar] [CrossRef]
- Khongnakorn, W.; Bootluck, W.; Jutaporn, P. Surface modification of FO membrane by plasma-grafting polymerization to minimize protein fouling. J. Water Process Eng. 2020, 38, 101633. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Cohen, Y. Fouling resistant and performance tunable ultrafiltration membranes via surface graft polymerization induced by atmospheric pressure air plasma. Sep. Purif. Technol. 2022, 286, 120490. [Google Scholar] [CrossRef]
- Characklis, W.G.; Wilderer, P.A. The Structure and Function of Biofilms; John Wiley & Sons: Chichester, UK, 1989. [Google Scholar]
- Ganj, M.; Asadollahi, M.; Mousavi, S.A.; Bastani, D.; Aghaeifard, F. Surface modification of polysulfone ultrafiltration membranes by free radical graft polymerization of acrylic acid using response surface methodology. J. Polym. Res. 2019, 26, 231. [Google Scholar] [CrossRef]
- Aksoy, Y.; Hasar, H. Fabrication of gas-permeable polyvinylidene fluoride (PVDF) hollow-fiber membrane by dry-jet wet spinning and its application in membrane biofilm reactors. J. Water Process Eng. 2021, 40, 101879. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Yuan, S.; Zhu, J.; Houtmeyers, S.; Li, J.; Dewil, R.; Gao, C.; Van Der Bruggen, B. A chemically assembled anion exchange membrane surface for monovalent anion selectivity and fouling reduction. J. Mater. Chem. A 2019, 7, 6348–6356. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, Y.; Zhang, J.; Jiang, H.; Chen, R. Janus ceramic membranes with asymmetric wettability for high-efficient microbubble aeration. J. Membr. Sci. 2023, 671, 121418. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, J.; Liao, H.; Li, X.; Shen, L.; Lin, H.; Sun, L.; Ou, R.; He, D. Hot-pressed membrane assemblies enhancing the biofilm formation and nitrogen removal in a membrane-aerated biofilm reactor. Sci. Total Environ. 2022, 833, 155003. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ma, J.; Li, L.; Tian, Y.; Zhang, Z.; Liao, H.; Li, J.; Tang, W.; He, D. Exploring the essential factors of performance improvement in sludge membrane bioreactor technology coupled with symbiotic algae. Water Res. 2020, 181, 115843. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, Z.; Yang, Y.; Mei, X.; Wu, Z. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing. Water Res. 2013, 47, 859–869. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Jiang, X.; Zhou, S.; Wu, M.; Pan, M.; Chen, H. Microbial community compositional analysis for membrane bioreactor treating antibiotics containing wastewater. Chem. Eng. J. 2017, 325, 300–309. [Google Scholar] [CrossRef]
- Choi, J.; Kim, E.S.; Ahn, Y. Microbial community analysis of bulk sludge/cake layers and biofouling-causing microbial consortia in a full-scale aerobic membrane bioreactor. Bioresour. Technol. 2017, 227, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.J.; Kwon, H.; Jeong, S.Y.; Lee, C.H.; Kim, T.G. Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors. Water Res. 2016, 101, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Chandran, K.; Stensel, D. Microbial ecology of denitrification in biological wastewater treatment. Water Res. 2014, 64, 237–254. [Google Scholar] [CrossRef]
- Gong, W.; Fan, A.; Zhang, H.; Luo, L.; Liang, H. Cow manure anaerobic fermentation effluent treatment by oxygen-based membrane aerated biofilm reactor. Chem. Eng. J. 2020, 395, 125116. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, N.; Rene, E.R.; Wu, D.; Sun, D.; Qiu, B. Stimulation of anaerobic biofilm development in the presence of low concentrations of toxic aromatic pollutants. Bioresour. Technol. 2019, 281, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Su, C.; Liu, W.; Qin, R.; Tang, L.; Deng, X.; Wu, S.; Chen, M. Exposure to polyamide 66 microplastic leads to effects performance and microbial community structure of aerobic granular sludge. Ecotoxicol. Environ. Saf. 2020, 190, 110070. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; He, H.; Zou, J.; Yang, Y.; Li, J. Effects of high-concentration influent suspended solids on aerobic granulation in sequencing batch reactors treating real textile wastewater. J. Water Process Eng. 2024, 57, 104609. [Google Scholar] [CrossRef]
- Jiang, L.Q.; An, D.F.; Zhang, K.; Li, G.D.; Wang, X.Y.; Lang, L.; Jiang, M.G.; Wang, L.S.; Jiang, C.L.; Jiang, Y. Nakamurella albus sp. nov.: A Novel Actinobacterium Isolated from a Lichen Sample. Curr. Microbiol. 2020, 77, 1896–1901. [Google Scholar] [CrossRef]
- Maixner, F.; Noguera, D.R.; Anneser, B.; Stoecker, K.; Wegl, G.; Wagner, M.; Daims, H. Nitrite concentration influences the population structure of Nitrospira-like bacteria. Environ. Microbiol. 2006, 8, 1487–1495. [Google Scholar] [CrossRef]
- Harms, G.; Layton, A.C.; Dionisi, H.M.; Gregory, I.R.; Garrett, V.M.; Hawkins, S.A.; Robinson, K.G.; Sayler, G.S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 2003, 37, 343–351. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, T. Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing. Water Res. 2012, 46, 2772–2782. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhang, H.; Yang, F.; Li, Y.; Xiao, J.; Zhang, X. Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor. J. Membr. Sci. 2006, 272, 161–168. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Ren, Y.; Wang, Y.; Wang, Y.; Zhang, H. Transition of fouling characteristics after development of membrane wetting in membrane-aerated biofilm reactors (MABRs). Chemosphere 2022, 299, 134355. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Sampling Device | Time (Day) |
---|---|---|
1-1 | R-PVDF | 20 |
1-2 | R-PVDF-P-AA | 20 |
1-3 | R-PTFE | 20 |
1-4 | R-PTFE-P-AA | 20 |
2-1 | R-PVDF | 30 |
2-2 | R-PVDF-P-AA | 30 |
2-3 | R-PTFE | 30 |
2-4 | R-PTFE-P-AA | 30 |
Sample ID | OTU | Chao | Coverage | Shannon | Simpon |
---|---|---|---|---|---|
1-1 | 904 | 1058 | 0.995060 | 4.85 | 0.015 |
1-2 | 1023 | 1190 | 0.994887 | 5.23 | 0.017 |
1-3 | 971 | 1044 | 0.996245 | 5.04 | 0.0114 |
1-4 | 815 | 1006 | 0.995282 | 4.67 | 0.0198 |
2-1 | 978 | 1180 | 0.993924 | 4.96 | 0.0187 |
2-2 | 1207 | 1409 | 0.993652 | 5.32 | 0.0221 |
2-3 | 1129 | 1276 | 0.994393 | 5.33 | 0.0122 |
2-4 | 821 | 997 | 0.995183 | 4.74 | 0.0201 |
Membrane Species | OTR-Before (mg O2·min−1) | OTR-After (mg O2·min−1) | Reduction |
---|---|---|---|
PVDF | 0.15 | 0.12 | 20.0% |
PVDF-P-AA | 0.22 | 0.20 | 9.09% |
PTFE | 0.21 | 0.18 | 14.29% |
PTFE-P-AA | 0.26 | 0.25 | 3.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zai, W.; Chen, Y.; Qin, Q.; Li, X.; Liu, D. Surface Modification of PVDF and PTFE Hollow Fiber Membranes for Enhanced Nitrogen Removal in a Membrane-Aerated Biofilm Reactor. Water 2024, 16, 1747. https://doi.org/10.3390/w16121747
Zai W, Chen Y, Qin Q, Li X, Liu D. Surface Modification of PVDF and PTFE Hollow Fiber Membranes for Enhanced Nitrogen Removal in a Membrane-Aerated Biofilm Reactor. Water. 2024; 16(12):1747. https://doi.org/10.3390/w16121747
Chicago/Turabian StyleZai, Wenfeng, Yangman Chen, Qingdong Qin, Xiangkun Li, and Dezhao Liu. 2024. "Surface Modification of PVDF and PTFE Hollow Fiber Membranes for Enhanced Nitrogen Removal in a Membrane-Aerated Biofilm Reactor" Water 16, no. 12: 1747. https://doi.org/10.3390/w16121747
APA StyleZai, W., Chen, Y., Qin, Q., Li, X., & Liu, D. (2024). Surface Modification of PVDF and PTFE Hollow Fiber Membranes for Enhanced Nitrogen Removal in a Membrane-Aerated Biofilm Reactor. Water, 16(12), 1747. https://doi.org/10.3390/w16121747