Hydrothermal Carbonization Technology for Wastewater Treatment under the “Dual Carbon” Goals: Current Status, Trends, and Challenges
Abstract
:1. Introduction
2. HTC Technology
2.1. Basic Principle
2.2. Main Types and Methods of Hydrochar
2.2.1. Ordinary HTC
2.2.2. HTC Using Catalysts
2.2.3. Multi-Step HTC
2.2.4. HTC Used in the Hydrothermal Process of Liquid Circulation
2.2.5. Co-HTC
2.2.6. HTC at Different Temperatures
3. Application of HTC in Water Environment Management
3.1. Wastewater Treatment
3.1.1. Use of Hydrochar for Heavy Metal Ions
3.1.2. Use of Hydrochar for Organic Pollutants
3.1.3. Use of Hydrochar for Inorganic Anions
3.2. Surface Water Restoration
3.3. Groundwater Purification
Raw Materials | Hydrothermal Conditions | Modification Treatment | Product | Type of Protection | References |
---|---|---|---|---|---|
Prunus serrulata bark | 200 °C, and 6 h | —— | The maximum adsorption capacity for atrazine in the river is 63.35 mg/g. | surface water restoration | [104] |
Water hyacinth | 240 °C, and 0.5–24.0 h | —— | With the increase in residence time, the higher heating value in all hydrochar products was 16.83 MJ/kg to 20.63 MJ/kg. | surface water restoration | [105] |
Glucose | 180 °C, 10 h | FeCl3·6H2O, MnCl2·4H2O | The product can break algal cells and destroy the photosynthetic system of algal cells, and deal with organic substances. | surface water restoration | [106] |
Water hyacinth | 150 °C, 24 h | Mg/Al-layered double hydroxide modification | The maximum adsorption capacity of the product for mordant brown (anionic dye) was 311.0 mg/g. | surface water restoration | [107] |
Switchgrass | 300 °C, 30 min | —— | The hydrochar-formed permeable reaction wall demonstrated rapid removal of U (VI). | groundwater purification | [113] |
Swine feces | 180 °C, 2 h; 230 °C, 7 h | H2SO4 | The removal efficiency of pathogenic RV and HAdV in the hydrated modified column was >3 logarithms (complete removal). | groundwater purification | [114] |
Anaerobic digestion of swine manure | 180 °C, 45 min | —— | Hydrochar enhance toluene removal from groundwater, stimulate the growth of denitrifiers without toluene degradability, and increase NO3−-N removal. | groundwater purification | [112] |
4. Research Advances in the Context of the “Dual Carbon” Goals
4.1. Influence of HTC Technology on Carbon Emission
4.2. Comparison with Other Environmental Governance Technologies
4.3. Experiments with HTC Technology
5. Challenges and Countermeasures
5.1. Technical Challenges
5.2. Economic Costs
5.3. Environmental and Social Impact
5.4. Policy and Management
6. Conclusions and Perspective
6.1. Summary of the Main Research Results
6.2. Suggestions for Future Research Directions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Z.; Zhang, X.; Dong, H.; Wang, S.; Reis, S.; Li, Y.; Gu, B. Integrated livestock sector nitrogen pollution abatement measures could generate net benefits for human and ecosystem health in China. Nat. Food 2022, 3, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Su, M.; Wang, Y.; Cui, S.; Meng, F.; Yue, W.; Liu, Y.; Xu, C.; Yang, Z. Food production in China requires intensified measures to be consistent with national and provincial environmental boundaries. Nat. Food 2020, 1, 572–582. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Croz, D.M.D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Raihan, A.; Voumik, L.C.; Mohajan, B.; Rahman, M.S.; Zaman, M.R. Economy-energy-environment nexus: The potential of agricultural value-added toward achieving China’s dream of carbon neutrality. Carbon Res. 2023, 2, 43. [Google Scholar] [CrossRef]
- Qiu, L.; Yu, R.; Hu, F.; Zhou, H.; Hu, H. How can China’s medical manufacturing listed firms improve their technological innovation efficiency? An analysis based on a three-stage DEA model and corporate governance configurations. Technol. Forecast. Soc. Chang. 2023, 194, 122684. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, B.; Wu, B.; Han, D.; Hu, Y.; Ren, C.; Zhang, C.; Wei, X.; Wu, Y.; Mol, A.P.J.; et al. Decoupling livestock and crop production at the household level in China. Nat. Sustain. 2021, 4, 48–55. [Google Scholar] [CrossRef]
- Li, F.; Cheng, S.; Yu, H.; Yang, D. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. J. Clean. Prod. 2016, 126, 451–460. [Google Scholar] [CrossRef]
- Jing, Q.; Luo, W.; Bai, H.; Xu, H. A method for city-level energy-related CO2 emission estimation. J. Environ. Sci. 2018, 38, 4879–4886. [Google Scholar]
- Wang, Y.; Quan, S.; Tang, X.; Hosono, T.; Hao, Y.; Tian, J.; Pang, Z. Organic and inorganic carbon sinks reduce long-term deep carbon emissions in the continental collision margin of the southern Tibetan plateau: Implications for Cenozoic climate cooling. J. Geophys. Res.-Solid Earth 2024, 129, e2024JB028802. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; An, H.; Peng, L.; Zhou, H.; Hu, F. Has China’s low-carbon strategy pushed forward the digital transformation of manufacturing enterprises? Evidence from the low-carbon city pilot policy. Environ. Impact Assess. Rev. 2023, 102, 107184. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, L.; Peng, L.; Zhou, H.; Hu, F. Enterprise pollution reduction through digital transformation? Evidence from Chinese manufacturing enterprises. Technol. Soc. 2024, 77, 102520. [Google Scholar] [CrossRef]
- Li, H.; Zhang, T.; Shaheen, S.M.; Abdelrahman, H.; Ali, E.F.; Bolan, N.S.; Li, G.; Rinklebe, J. Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: Multivariate and multiscale investigations. Bioresour. Technol. 2022, 351, 126976. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Luo, J. The Tapio decoupling principle and key strategies for changing factors of Chinese urban carbon footprint based on cloud computing. Int. J. Environ. Res. Public Health 2021, 18, 2101. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Chen, J.; He, B.; Liu, J. Digitalization and carbon emission reduction technology R&D in a Stackelberg model. Appl. Econ. Lett. 2024, 1–6. [Google Scholar] [CrossRef]
- Wu, F.; Li, F.; Zhao, X.; Bolan, N.S.; Fu, P.; Lam, S.S.; Mašek, O.; Ong, H.C.; Pan, B.; Qiu, X.; et al. Meet the challenges in the “carbon age”. Carbon Res. 2022, 1, 1. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Shaheen, S.M.; Abdelrahman, H.; Ali, E.F.; Bolan, N.S.; Ok, Y.S.; Li, G.; Tsang, D.C.W.; Rinklebe, J. Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. J. Hazard. Mater. 2022, 425, 127906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, H.; Yan, T.; Shaheen, S.M.; Niu, Y.; Zhang, Y.; Abdelrahman, H.; Ali, E.F.; Bolan, N.S.; Rinklebe, J. Organic matter stabilization and phosphorus activation during vegetable waste composting: Multivariate and multiscale investigation. Sci. Total Environ. 2023, 891, 164608. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Zhang, T.; Li, P.; Jiang, R.; Wu, S.; Nie, H.; Wang, Y. Phosphorus recovery from biogas fermentation liquid by Ca-Mg loaded biochar. J. Environ. Sci. 2015, 29, 106–114. [Google Scholar] [CrossRef]
- He, X.; Zhang, T.; Ren, H.; Li, G.; Ding, L.; Pawlowski, L. Phosphorus recovery from biogas slurry by ultrasound/H2O2 digestion coupled with HFO/biochar adsorption process. Waste Manag. 2017, 60, 219–229. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, H.; Li, H.; He, X.; Shi, Y.; Kruse, A. Microwave digestion-assisted HFO/biochar adsorption to recover phosphorus from swine manure. Sci. Total Environ. 2018, 621, 1512–1526. [Google Scholar] [CrossRef]
- He, X.; Zhang, T.; Xue, Q.; Zhou, Y.; Wang, H.; Bolan, N.S.; Jiang, R.; Tsang, D.C.W. Enhanced adsorption of Cu(II) and Zn(II) from aqueous solution by polyethyleneimine modified straw hydrochar. Sci. Total Environ. 2021, 778, 146116. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.; Shaheen, S.M.; Zhao, Q.; Liu, X.; Rinklebe, J.; Ren, H. Ammonium nitrogen recovery from digestate by hydrothermal pretreatment followed by activated hydrochar sorption. Chem. Eng. J. 2020, 379, 122254. [Google Scholar] [CrossRef]
- Huang, R.; Fang, C.; Lu, X.; Jiang, R.; Tang, Y. Transformation of phosphorus during (hydro)thermal treatments of solid biowastes: Reaction mechanisms and implications for P reclamation and recycling. Environ. Sci. Technol. 2017, 51, 10284–10298. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, T.; Ren, H.; Kruse, A.; Cui, R. Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution. Bioresour. Technol. 2018, 247, 370–379. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, T.; Sharma, B.K.; Nie, H. Optimization and mechanism studies on cell disruption and phosphorus recovery from microalgae with magnesium modified hydrochar in assisted hydrothermal system. Sci. Total Environ. 2019, 646, 1140–1154. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, T.; Clark, J.; Aminabhavi, T.; Kruse, A.; Tsang, D.C.W.; Sharma, B.K.; Zhang, F.; Ren, H. Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chem. 2020, 22, 5628–5638. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sust. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, L.; Ren, H.; Guo, Z.; Tan, J. Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater. J. Hazard. Mater. 2010, 176, 444–450. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Ding, L.; Ren, H.; Xu, K.; Wu, Y.; Sheng, D. Modeling assessment for ammonium nitrogen recovery from wastewater by chemical precipitation. J. Environ. Sci. 2011, 23, 881–890. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, T.; Jiang, R.; Ohtake, H. Phosphate enhance recovery from wastewater by mechanism analysis and optimization of struvite settleability in fluidized bed reactor. Sci. Rep. 2016, 6, 32215. [Google Scholar] [CrossRef]
- Xu, X.; Feng, F.; Wan, Z.; Wang, Y.; Yu, M.; Han, X.; Wu, G.; Xing, W. Rapid electron transfer reinforced by interfacial Co-O bonding in MOF/COF hybrids for highly efficient degrade tetracycline by activating peroxymonosulfate. Colloid Surf. A-Physicochem. Eng. Asp. 2024, 689, 133686. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T. Biowaste valorization to produce advance carbon materials-hydrochar for potential application of Cr (VI) and Cd (II) adsorption in wastewater: A review. Water 2022, 14, 3675. [Google Scholar] [CrossRef]
- Zhang, T.; Li, P.; Fang, C.; Jiang, R. Phosphate recovery from animal manure wastewater by struvite crystallization and CO2 degasification reactor. Ecol. Chem. Eng. S. 2014, 21, 89–99. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Huang, W.; Lu, J.; Luo, S.; Czech, B.; Li, T.; Wang, H. Capture-reduction mechanism for promoting Cr(VI) removal by sulfidated microscale zerovalent iron/sulfur-doped graphene-like biochar composite. Carbon Res. 2023, 2, 11. [Google Scholar] [CrossRef]
- Mumme, J.; Eckervogt, L.; Pielert, J.; Diakité, M.; Rupp, F.; Kern, J. Hydrothermal carbonization of anaerobically digested maize silage. Bioresour. Technol. 2011, 102, 9255–9260. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chang, Y.; Li, A. Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sust. Energ. Rev. 2019, 108, 423–440. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Wu, Q.; Liu, S. Preparation, properties and applications of hydrochar. Prog. Chem. 2016, 28, 121–130. [Google Scholar]
- Funke, A.; Ziegler, F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Kruse, A.; Funke, A.; Titirici, M.M. Hydrothermal conversion of biomass to fuels and energetic materials. Curr. Opin. Chem. Biol. 2013, 17, 515–521. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Fan, J. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind. Eng. Chem. Res. 2012, 51, 9023–9031. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, H.; Yu, H. Thermochemical conversion of lignin to functional materials: A review and future directions. Green Chem. 2015, 17, 4888–4907. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, G.; Kong, G.; Liu, M.; Cao, T.; Guo, Z.; Zhang, X.; Han, L. Valorizing manure waste into green coal-like hydrochar: Parameters study, physicochemical characteristics, combustion behaviors and kinetics. Renew. Energy 2023, 216, 119103. [Google Scholar] [CrossRef]
- Yan, W.; Hoekman, S.K.; Broch, A.; Coronella, C.J. Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ. Prog. Sustain. Energy 2014, 33, 676–680. [Google Scholar] [CrossRef]
- Reza, M.T.; Andert, J.; Wirth, B.; Busch, D.; Pielert, J.; Lynam, J.G.; Mumme, J. Hydrothermal carbonization of biomass for energy and crop production. Appl. Bioenergy 2014, 1, 11–29. [Google Scholar] [CrossRef]
- Lynam, J.G.; Reza, M.T.; Yan, W.; Vásquez, V.R.; Coronella, C.J. Hydrothermal carbonization of various lignocellulosic biomass. Biomass Convers. Biorefinery 2015, 5, 173–181. [Google Scholar] [CrossRef]
- Djandja, O.S.; Liew, R.K.; Liu, C.; Liang, J.; Yuan, H.; He, W.; Feng, Y.; Lougou, B.G.; Duan, P.-G.; Lu, X.; et al. Catalytic hydrothermal carbonization of wet organic solid waste: A review. Sci. Total Environ. 2023, 873, 162119. [Google Scholar] [CrossRef]
- Zhao, H.; Lu, X.; Wang, Y.; Sun, B.; Wu, X.; Lu, H. Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization. J. Mater. Sci. 2017, 52, 10787–10799. [Google Scholar] [CrossRef]
- Petrovic, J.T.; Stojanovic, M.D.; Milojkovic, J.V.; Petrovic, M.S.; Sostaric, T.D.; Lausevic, M.D.; Mihajlovic, M.L. Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb2+ from aqueous solution. J. Environ. Manag. 2016, 182, 292–300. [Google Scholar] [CrossRef]
- Jiang, L.; Li, K.; Xia, L.; Gao, J.; Tang, L.; Jia, Y. KOH-modified hydrochar produced from Cd/Zn hyperaccumulator Sedum alfredii Hance for aqueous Cd(II) removal: Behavior and mechanism. J. Environ. Chem. Eng. 2023, 11, 110925. [Google Scholar] [CrossRef]
- Qian, W.; Luo, X.; Wang, X.; Guo, M.; Li, B. Removal of methylene blue from aqueous solution by modified bamboo hydrochar. Ecotoxicol. Environ. Saf. 2018, 157, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shen, D.; Wang, Z. Preparation of citric acid-sewage sludge hydrochar and its adsorption performance for Pb(II) in aqueous solution. Polymers 2022, 14, 968. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhai, Y.; Zhu, Y.; Peng, C.; Xu, B.; Wang, T.; Li, C.; Zeng, G. Acetic acid and sodium hydroxide-aided hydrothermal carbonization of woody biomass for enhanced pelletization and fuel properties. Energy Fuels 2017, 31, 12200–12208. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Zheng, M.; Xiao, Y.; Hu, H.; Liang, Y.; Liu, Y.; Dong, H. Preparation of high-performance porous carbon materials by citric acid-assisted hydrothermal carbonization of bamboo and their application in electrode materials. Energy Fuels 2022, 36, 9303–9312. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.; Qiao, Y.; Wang, B.; Yu, Y.; Xu, M. Transformation of nitrogen during hydrothermal carbonization of sewage sludge: Effects of temperature and Na/Ca acetates addition. Proc. Combust. Inst. 2021, 38, 4335–4344. [Google Scholar] [CrossRef]
- Mumme, J.; Titirici, M.M.; Pfeiffer, A.; Lueder, U.; Reza, M.T.; Masek, O. Hydrothermal carbonization of digestate in the presence of zeolite: Process efficiency and composite properties. ACS Sustain. Chem. Eng. 2015, 3, 2967–2974. [Google Scholar] [CrossRef]
- Lang, Q.; Zhang, B.; Liu, Z.; Jiao, W.; Xia, Y.; Chen, Z.; Li, D.; Ma, J.; Gai, C. Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization. J. Environ. Manag. 2019, 233, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, D.; Xing, Y.; Liu, B.; Zhou, Y.; Lu, P. Role of nitrate in the production of iron-modified hydrochar for arsenic removal. Water Air Soil Pollut. 2024, 235, 233. [Google Scholar] [CrossRef]
- Jiao, N.; Zhu, Y.; Li, H.; Yu, Y.; Xu, Y.; Zhu, J. Two-step hydrothermal pretreatments for co-producing xylooligosaccharides and humic-like acid from vinegar residue. Fermentation 2023, 9, 589. [Google Scholar] [CrossRef]
- Tan, J.; Chen, H.; Gao, Y.; Li, H. Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance. Electrochim. Acta 2015, 178, 144–152. [Google Scholar] [CrossRef]
- Leng, S.; Leng, L.; Chen, L.; Chen, J.; Chen, J.; Zhou, W. The effect of aqueous phase recirculation on hydrothermal liquefaction/carbonization of biomass: A review. Bioresour. Technol. 2020, 318, 124081. [Google Scholar] [CrossRef] [PubMed]
- Stemann, J.; Putschew, A.; Ziegler, F. Hydrothermal carbonization: Process water characterization and effects of water recirculation. Bioresour. Technol. 2013, 143, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.H.; Reza, M.T.; Lynam, J.G.; Coronella, C.J. Effects of water recycling in hydrothermal carbonization of loblolly pine. Environ. Prog. Sustain. Energy 2014, 33, 1309–1315. [Google Scholar] [CrossRef]
- Zhu, X.; He, M.; Xu, Z.; Luo, Z.; Gao, B.; Ruan, R.; Wang, C.-H.; Wong, K.-H.; Tsang, D. Combined acid pretreatment and co-hydrothermal carbonization to enhance energy recovery from food waste digestate. Energy Conv. Manag. 2022, 266, 115855. [Google Scholar] [CrossRef]
- Wang, T.; Si, B.; Gong, Z.; Zhai, Y.; Cao, M.; Peng, C. Co-hydrothermal carbonization of food waste-woody sawdust blend: Interaction effects on the hydrochar properties and nutrients characteristics. Bioresour. Technol. 2020, 316, 123900. [Google Scholar] [CrossRef]
- Li, C.; Cai, R.; Hasan, A.; Lu, X.; Yang, X.; Zhang, Y. Fertility assessment and nutrient conversion of hydrochars derived from co-hydrothermal carbonization between livestock manure and corn cob. J. Environ. Chem. Eng. 2023, 11, 109166. [Google Scholar] [CrossRef]
- Sharma, H.B.; Dubey, B.K. Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization. Waste Manag. 2020, 118, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Zhu, X.Q.; Peng, Y.; Xu, M.; Huang, Y.; Xia, A.; Zhu, X.; Liao, Q. Structure evolution characteristic of hydrochar and nitrogen transformation mechanism during co-hydrothermal carbonization process of microalgae and biomass. Energy 2024, 295, 131028. [Google Scholar] [CrossRef]
- Xu, Y.; Lou, Z.; Yi, P.; Chen, J.; Ma, X.; Wang, Y.; Li, M.; Chen, W.; Liu, Q.; Zhou, J.; et al. Improving abiotic reducing ability of hydrothermal biochar by low temperature oxidation under air. Bioresour. Technol. 2014, 172, 212–218. [Google Scholar] [CrossRef]
- Zhou, S.; Han, L.; Yang, Z.; Ma, Q. Influence of hydrothermal carbonization temperature on combustion characteristics of livestock and poultry manures. Trans. Chin. Soc. Agric. Eng. 2017, 33, 233–240. [Google Scholar]
- Nguyen, D.; Zhao, W.X.; Mäkelä, M.; Alwahabi, Z.T.; Kwong, C.W. Effect of hydrothermal carbonisation temperature on the ignition properties of grape marc hydrochar fuels. Fuel 2022, 313, 122668. [Google Scholar] [CrossRef]
- Gao, P.; Zhou, Y.; Meng, F.; Zhang, Y.; Liu, Z.; Zhang, W.; Xue, G. Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy 2016, 97, 238–245. [Google Scholar] [CrossRef]
- Peng, J.; Kang, X.; Zhao, S.; Zhao, P.; Ragauskas, A.J.; Si, C.; Xu, T.; Song, X. Growth mechanism of glucose-based hydrochar under the effects of acid and temperature regulation. J. Colloid Interface Sci. 2023, 630, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Jiang, Z.; Ji, W.; Chen, Y.; Ma, J.; Gui, X.; Zhao, J.; Zhou, C. Effects of hydrothermal carbonization temperature on carbon retention, stability, and properties of animal manure-derived hydrochar. Int. J. Agric. Biol. Eng. 2022, 15, 124–131. [Google Scholar] [CrossRef]
- Maniscalco, M.P.; Volpe, M.; Messineo, A. Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies 2020, 13, 4098. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Li, J.; Fang, Z.; Bolan, N.; Bhatnagar, A.; Gao, B.; Hou, D.; Wang, S.; Song, H.; et al. Engineered biochar for environmental decontamination in aquatic and soil systems: A review. Carbon Res. 2022, 1, 4. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Chen, H.; Cai, T.; Liu, Z. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review. Environ. Pollut. 2021, 268, 115910. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cui, H.; Cheng, Y.; Xue, L.; Wang, B.; He, H.; Hua, Y.; Chu, Q.; Feng, Y.; Yang, L. Chemical aging of hydrochar improves the Cd2+ adsorption capacity from aqueous solution. Environ. Pollut. 2021, 287, 117562. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, G.S.; Schnorr, C.E.; Dotto, G.L.; Vieillard, J.; Netto, M.S.; Silva, L.F.O.; De Brum, I.A.S.; Thyrel, M.; Lima, É.C.; Lassi, U. Wood waste-based functionalized natural hydrochar for the effective removal of Ce(III) ions from aqueous solution. Environ. Sci. Pollut. Res. 2023, 30, 64067–64077. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, Y.; Liu, H.; Zhou, H. One-step hydrothermal carbonization of amine modified black liquor and lignin for efficient Cr(VI) adsorption. J. Water Process. Eng. 2022, 46, 102583. [Google Scholar] [CrossRef]
- Song, Q.; Ma, L.; Liu, J.; Bai, C.; Geng, J.; Wang, H.; Li, B.; Wang, L.; Li, S. Preparation and adsorption performance of 5-azacytosine-functionalized hydrothermal carbon for selective solid-phase extraction of uranium. J. Colloid Interface Sci. 2012, 386, 291–299. [Google Scholar] [CrossRef]
- Bedin, K.C.; Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Almeida, V.C. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for methylene blue removal. Chem. Eng. J. 2016, 286, 476–484. [Google Scholar] [CrossRef]
- Zhou, N.; Chen, H.; Xi, J.; Yao, D.; Zhou, Z.; Tian, Y.; Lu, X. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresour. Technol. 2017, 232, 204–210. [Google Scholar] [CrossRef]
- Regmi, P.; Moscoso, J.L.G.; Kumar, S.; Cao, X.; Mao, J.; Schafran, G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J. Environ. Manag. 2012, 109, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yang, T.; Zhu, N.; Li, D.; Chen, Z.; Lang, Q.; Liu, Z.; Jiao, W. Enhanced adsorption of Pb(II) onto modified hydrochar: Modeling and mechanism analysis. Bioresour. Technol. 2019, 288, 121593. [Google Scholar] [CrossRef]
- Elaigwu, S.E.; Rocher, V.; Kyriakou, G.; Greenway, G.M. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of prosopis africana shell. J. Ind. Eng. Chem. 2014, 20, 3467–3473. [Google Scholar] [CrossRef]
- Ramesh, S.; Sundararaju, P.; Banu, K.S.P.; Karthikeyan, S.; Doraiswamy, U.; Soundarapandian, K. Hydrothermal carbonization of arecanut husk biomass: Fuel properties and sorption of metals. Environ. Sci. Pollut. Res. 2019, 26, 3751–3761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qu, J.; Yuan, Y.; Song, H.; Liu, Y.; Wang, S.; Tao, Y.; Zhao, Y.; Li, Z. Simultaneous scavenging of Cd(II) and Pb(II) from water by sulfide-modified magnetic pinecone-derived hydrochar. J. Clean Prod. 2022, 341, 130758. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into biochar and hydrochar production and applications: A review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Xia, M.; Chen, Z.; Li, Y.; Li, C.; Ahmad, N.M.; Cheema, W.A.; Zhu, S. Removal of Hg(II) in aqueous solutions through physical and chemical adsorption principles. RSC Adv. 2019, 9, 20941–20953. [Google Scholar] [CrossRef]
- Tian, S.-R.; Liu, Y.-G.; Liu, S.-B.; Zeng, G.-M.; Jiang, L.-H.; Tan, X.-F.; Huang, X.-X.; Yin, Z.-H.; Liu, N.; Li, J. Hydrothermal synthesis of montmorillonite/hydrochar nanocomposites and application for 17β-estradiol and 17α-ethynylestradiol removal. RSC Adv. 2018, 8, 4273–4283. [Google Scholar] [CrossRef]
- Ngoc, D.M.; Hieu, N.C.; Trung, N.H.; Chien, H.H.; Thi, N.Q.; Hai, N.D.; Chao, H. Tetracycline removal from water by adsorption on hydrochar and hydrochar-derived activated carbon: Performance, mechanism, and cost calculation. Sustainability 2023, 15, 4412. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Li, P.; Yang, L.; Wu, L.; Gao, F.; Qi, X.; Zhang, Z. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal. Bioresour. Technol. 2021, 319, 124199. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Meas, A.; Shan, S.; Yang, R.; Gai, X.; Wang, H.; Tsend, N. Hydrochars from bamboo sawdust through acid assisted and two-stage hydrothermal carbonization for removal of two organics from aqueous solution. Bioresour. Technol. 2018, 261, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tsend, N.; Li, T.; Liu, H.; Yang, R.; Gai, X.; Wang, H.; Shan, S. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals. Bioresour. Technol. 2019, 273, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Ronix, A.; Pezoti, O.; Souza, L.S.; Souza, I.P.A.F.; Bedin, K.C.; Souza, P.S.C.; Silva, T.L.; Melo, S.A.R.; Cazetta, A.L.; Almeida, V.C. Hydrothermal carbonization of coffee husk: Optimization of experimental parameters and adsorption of methylene blue dye. J. Environ. Chem. Eng. 2017, 5, 4841–4849. [Google Scholar] [CrossRef]
- Zbair, M.; Bottlinger, M.; Ainassaari, K.; Ojala, S.; Stein, O.; Keiski, R.L.; Bensitel, M.; Brahmi, R. Hydrothermal carbonization of argan nut shell: Functional mesoporous carbon with excellent performance in the adsorption of bisphenol a and diuron. Waste Biomass Valorization 2020, 11, 1565–1584. [Google Scholar] [CrossRef]
- Bai, C.-X.; Shen, F.; Qi, X.-H. Preparation of porous carbon directly from hydrothermal carbonization of fructose and phloroglucinol for adsorption of tetracycline. Chin. Chem. Lett. 2017, 28, 960–962. [Google Scholar] [CrossRef]
- Ghimire, S.; Wang, L.; Zhang, B.; Li, X.; Shahbazi, A. Production and modification of hydrochar from anaerobically digested cattail for adsorbing ammonium and phosphorous in wastewater. Water Sci. Technol. 2021, 84, 1678–1692. [Google Scholar] [CrossRef]
- Akter, J.; Islam, M.A.; Kibria, K.Q.; Islam, M.A. Adsorption of phosphate ions on chicken feather hydrochar and hydrochar-soil mixtures. Water Air Soil Pollut. 2021, 232, 413. [Google Scholar] [CrossRef]
- Fu, J.; Jin, J.; Ji, H.; Liu, Y.; Fu, X. Adsorption characteristics of arsenic and fluoride in water by magnetic hydrothermal carbon. J. Jiangsu Univ. Sci. Technol. (Nat. Sci.) 2019, 40, 423–430. [Google Scholar]
- Ge, X.; Chen, X.; Liu, M.; Wang, C.; Zhang, Y.; Wang, Y.; Tran, H.T.; Joseph, S.; Zhang, T. Toward a better understanding of phosphorus nonpoint source pollution from soil to water and the application of amendment materials: Research trends. Water 2023, 15, 1531. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, W.; Li, S. Adsorption characteristics of phosphate on cerium modified water hyacinth biochar. Environ. Sci. 2021, 42, 4815–4825. [Google Scholar]
- Netto, M.S.; Georgin, J.; Franco, D.; Mallmann, E.S.; Foletto, E.L.; Godinho, M.; Pinto, D.; Dotto, G.L. Effective adsorptive removal of atrazine herbicide in river waters by a novel hydrochar derived from Prunus serrulata bark. Environ. Sci. Pollut. Res. 2022, 29, 3672–3685. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; Wang, J.; Li, X.; Cheng, J.; Yang, H.; Chen, H. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 2013, 58, 376–383. [Google Scholar] [CrossRef]
- Li, M.; Xiang, P.; Jiang, W.; Zhang, Z.; Mo, J. Performance and mechanism of MnFe2O4@HTC activated persulfate system for algae removal. J. Environ. Sci. 2021, 41, 3535–3544. [Google Scholar]
- Waly, S.M.; El-Wakil, A.M.; Abou El-Maaty, W.M.; Awad, F.S. Hydrothermal synthesis of Mg/Al-layered double hydroxide modified water hyacinth hydrochar for remediation of wastewater containing mordant brown dye. RSC Adv. 2024, 14, 15281–15292. [Google Scholar] [CrossRef]
- Takaya, C.A.; Fletcher, L.A.; Singh, S.; Anyikude, K.U.; Ross, A.B. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere 2016, 145, 518–527. [Google Scholar] [CrossRef]
- Yu, Y.; Han, L.; Jiang, X. Production, properties and environmental application of hydrochar. Environ. Chem. 2018, 37, 1232–1244. [Google Scholar]
- Marco, K.; Peter, S.N.; Mark, G.J.; Markus, K. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar]
- Vozhdayev, G.V.; Spokas, K.A.; Molde, J.S.; Heilmann, S.M.; Wood, B.M.; Valentas, K.J. Response of maize germination and growth to hydrothermal carbonization filtrate type and amount. Plant Soil 2015, 396, 127–136. [Google Scholar] [CrossRef]
- Ni, P.-Y.; Zhang, X.; Ye, M.; He, R. Biochar enhanced the stability of toluene removal in extracted groundwater amended with nitrate under microaerobic conditions. Chemosphere 2024, 353, 141551. [Google Scholar] [CrossRef]
- Kumar, S.; Loganathan, V.A.; Gupta, R.B.; Barnett, M.O. An assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization. J. Environ. Manag. 2011, 92, 2504–2512. [Google Scholar] [CrossRef]
- Chung, J.W.; Breulmann, M.; Clemens, A.; Fühner, C.; Foppen, J.W.; Lens, P. Simultaneous removal of rotavirus and adenovirus from artificial ground water using hydrochar derived from swine feces. J. Water Health 2016, 14, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gui, B.; Wu, C.; He, C.; Li, L.; Ling, X.; Zuo, X. Hydrothermal carbonization of sewage sludge coupled with fenton oxidation pretreatment: Moderate oxidation to enhance hydrochar yield and properties. J. Environ. Chem. Eng. 2023, 11, 110788. [Google Scholar] [CrossRef]
- Shi, Y.; Li, C.; Chai, R.; Wu, J.; Wang, Y. Effect of different hydrothermal parameters on calorific value and pyrolysis characteristics of hydrochar of kitchen waste. Energies 2023, 16, 3561. [Google Scholar] [CrossRef]
- Marx, S.; van der Merwe, K. Utilization of hydrochar derived from waste paper sludge through hydrothermal liquefaction for the remediation of phenol contaminated industrial wastewater. Water Pract. Technol. 2021, 16, 756–771. [Google Scholar] [CrossRef]
- He, X.; Zhang, T.; Niu, Y.; Xue, Q.; Ali, E.F.; Shaheen, S.M.; Tsang, D.C.W.; Rinklebe, J. Impact of catalytic hydrothermal treatment and Ca/Al-modified hydrochar on lability, sorption, and speciation of phosphorus in swine manure: Microscopic and spectroscopic investigations. Environ. Pollut. 2022, 299, 118877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, X.; Fan, X.; Tsang, D.C.; Li, G.; Shen, Y. Corn waste valorization to generate activated hydrochar to recover ammonium nitrogen from compost leachate by hydrothermal assisted pretreatment. J. Environ. Manag. 2019, 236, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhou, W.; Xu, B. A deep neural network-based assistive decision method for financial risk prediction in carbon trading market. J. Circuits Syst. Comput. 2023, 33, 2450153. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, W.; Liu, S.; Xu, B. The Optimization of carbon emission prediction in low carbon energy economy under big data. IEEE Access 2024, 12, 14690–14702. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, H. Revisiting the linkage between financial inclusion and energy productivity: Technology implications for climate change. Sustain. Energy Technol. Assess. 2023, 57, 103275. [Google Scholar] [CrossRef]
- Jia, B.; Zhou, G. Estimation of global karst carbon sink from 1950s to 2050s using response surface methodology. Geo-Spat. Inf. Sci. 2023, 2165974. [Google Scholar] [CrossRef]
- Zheng, S.; Hai, Q.; Zhou, X.; Stanford, R.J. A novel multi-generation system for sustainable power, heating, cooling, freshwater, and methane production: Thermodynamic, economic, and environmental analysis. Energy 2024, 290, 130084. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, T.; He, X.; Jiang, R. Assessment of phosphorus recovery from swine wastewater in Beijing, China. Sustainability 2017, 9, 1845. [Google Scholar] [CrossRef]
- Yang, C.; Nutakki, T.U.K.; Alghassab, M.A.; Alkhalaf, S.; Alturise, F.; Alharbi, F.S.; Elmasry, Y.; Abdullaev, S. Optimized integration of solar energy and liquefied natural gas regasification for sustainable urban development: Dynamic modeling, data-driven optimization, and case study. J. Clean Prod. 2024, 447, 141405. [Google Scholar] [CrossRef]
Raw Materials | Hydrothermal Conditions | Catalyst Type | Modification Treatment | Product | References |
---|---|---|---|---|---|
Grape pomace | 220 °C, 1 h | hydroxides | KOH | The KOH treatment increased the sorption capacity for Pb2+ from 27.8 mg/g up to 137 mg/g at pH 5. | [49] |
Sedum Alfredii Hance | 180–270 °C, 5 h | hydroxides | KOH | The adsorption capacity of hydrochar for Cd(II) was greatly enhanced after KOH modification, and the maximum Cd(II) adsorption capacity was 25.69 mg/g. | [50] |
Bamboo sawdust | 473 K, 24 h | hydroxides | NaOH | The adsorption capacity of hydrochar to methylene blue after modified treatment is 655.76 mg/g. | [51] |
Sludge | 180 °C, 2 h | acids | citric acid | Featured a maximum surface area of 59.95 m2/g, and exhibited the highest equilibrium adsorption capacity for Pb(II). | [52] |
Sawdust | 200–250 °C | acids | CH3COOH | Had a higher calorific value and energy density. | [53] |
Bamboo powder | 180 °C, 6 h | acids | citric acid | Citric acid could improve the carbonization degree of hydrochar, and optimize the pore structure distribution. | [54] |
Raw sewage sludge | 160–250 °C, 30 min | salts | CaAc2, NaAc | The addition of calcium acetate can reduce the retention of nitrogen in the hydrate, and the addition of sodium acetate can slightly enhance the hydrolysis of the protein. | [55] |
Cow dung and corn digestate | 190–270 °C | molecular sieves | natural zeolite | Increases the surface area and pore volume of the hydrochar, and significantly boosts the recovery rates of nitrogen, sulfur and energy. | [56] |
Pig manure | 180, 200, and 220 °C, 10 h | metal oxides | CaO | Facilitates the transformation of phosphorus from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP). | [57] |
Raw Materials | Hydrothermal Conditions | Product | References |
---|---|---|---|
Food waste digestate (FWD), wood waste (WW) | 220 °C, 4 h | The comprehensive combustion and combustion stability indices were improved with the maximum values of 3.98 × 10−9 %2°C−5 and 4.22 × 102 %°C−3, respectively. | [64] |
Food waste (FW), woody sawdust (WS) | 180–260 °C, 1 h, and a stirrer speed of 100 r/min | Hydrochar yield consistently decreased with the increase in both the FW ratio and HTC temperature, and the C retention from 260 °C hydrochar was low (approximately 65%). | [65] |
Livestock manure (SM), corn cob (CC) | 180–260 °C, 1–4 h | The addition of CC could effectively reduce the ash content, and enhance the N recovery to 38.95–47.61% (SM:CC = 1:1). | [66] |
Food waste (FW), yard waste (YW) | 220–260 °C, 1–4 h | The sulfur in SS and CS gradually converted into thiophenic sulfur and sulfates. | [67] |
Corn straw, chlorella | 240 °C, 1 h | Moderate reaction conditions favored nitrogen enrichment and increased porosity in the hydrochar. | [68] |
Raw Materials | Hydrothermal Conditions | Product | References |
---|---|---|---|
Spartina alterniflora biomass | 240 °C, 4 h | The contents of carboxyl group and carbonyl group on the surface of hydrochar were increased by low temperature oxidation. | [69] |
Livestock manure | 180–240 °C, 1 h | Both hydrochar yield and carbon retention decreased with increasing reaction temperatures. | [70] |
Grape marc | 180–260 °C, 30 min | The 260 °C solid hydrochar exhibited the shortest ignition delay time (0.2 s) and the lowest ignition temperature (179 °C). | [71] |
Eucalyptus bark | 220–300 °C, 2–10 h | The oxygen-containing functional group decreased with the increase in temperature. | [72] |
Glucose | 160–220 °C, 1–12 h | The increase in the reaction temperature (160–220 °C) enhanced the aromatization degree of hydrochar. | [73] |
Chicken, dairy, swine manures | 200–350 °C, 2 h | With the increase in temperature, the carbon retention rate decreased, and the aromatics and thermal oxidation resistance is increased. | [74] |
Type | Methods | Advantage |
---|---|---|
HTC | Biomass is mixed with water and directly carbonized under specific temperature and pressure conditions. | Makes full use of biomass resources, less process, and low difficulty to operate. |
HTC with catalyst | A certain amount of catalyst was added to modify the hydrochar. | Complex structure and excellent performance, which improves the HTC yield and energy recovery efficiency. |
Multi-step HTC | The reaction conditions are manipulated through multiple stages of varying temperatures and durations. | Has unique pore structure and surface characteristics, which optimizes the structure, improves the carbonization efficiency and reduces the energy loss. |
Liquid phase circulating HTC | Repeatedly recycle by-products of hydrothermal fluid. | Improves the conversion rate of biomass and utilization efficiency of water resources and reduces the cost of carbonization process and wastewater treatment. |
Co-HTC | Mix a variety of raw materials together and carry out HTC at the same time. | Reduces the carbonization temperature, and improves the material performance, combustion performance and resource utilization rate. |
High temperature HTC | The hydrothermal temperature is higher in the carbonization process. | High calorific value, and excellent product stability, with long-term carbon sequestration potential. |
Low temperature HTC | The hydrothermal temperature is low in the carbonization process. | Has better hydrochar yield, carbon recovery and energy recovery, and has an obvious short-term carbon sequestration effect. |
Raw Materials | Hydrothermal Conditions | Modification Treatment | Adsorbates | Product | References |
---|---|---|---|---|---|
Black liquor | 150, 180, 200, 220 °C, and 0.5 h | hexamethylenediamine (HMDA) | 50 mL of Cr(VI) solutions | The maximum adsorption capacity of Cr(VI) was 741.74 mg/g at 45 °C and pH 2. | [80] |
Glucose | 180 °C, 48 h | —— | 20.00 mL of pure uranyl ion (UO22+) solutions | The highly selective separation of U(VI) was achieved, and the maximum adsorption capacity reached 408.36 mg at 333.15 K and pH 4.5. | [81] |
Sucrose | 190 °C, 11 h | KOH activated | 25.0 mL of methylene blue solutions (500 mg/L) | The maximum adsorption capacity of methylene blue was 704.2 mg/g. | [82] |
Banana peels | 230 °C, 2 h | phosphoric acid | 40 mL of Pb2+ stock solutions (2000 mg/L) | The adsorption capacities of Pb2+ for dehydrated and fresh banana peel hydrochar were 359 mg/g and 193 mg/g, respectively. | [83] |
Willow twigs | 300 °C, 30 min | —— | 50 mL aqueous copper or cadmium solutions (40 mg/L) | The hydrochar exhibited adsorption capacities of 34 mg/g (0.313 mmol/g) for Cd2+ and 31 mg/g (0.503 mmol/g) for Cu2+. | [84] |
Pine sawdust | 260 °C, 2 h | H2O2 | 25 mL of Pb2+ solutions (1–200 mg/L) | The maximum adsorption capacity of Pb2+ reached 92.80 mg/g at pH 5.0 and 298 K. | [85] |
Pseudomonas aeruginosa shells | 200 °C, 20 min | —— | 50 mL of Pb2+ or Cd2+ aqueous solution (10–100 mg/L) | It was found to be more effective at adsorbing Pb2+ and Cd2+ compared to biochar. | [86] |
Arecanut husk | 180–220 °C, 9 h | citric acid | Zn2+, Cr6+, Ni2+, Pb2+ solutions (0–100 mg/L) | The maximum removal efficiency of Pb2+ in wastewater was 95.08% at 25 mg/L. | [87] |
Pinecone | 200 °C, 5 h | FeCl3·6H2O, CH3COONa, Na3C6H5O7 | 100 mL of Cd(II)/Pb(II) solutions (10–300 mg/L) | The maximum single-layer adsorption capacity of MHC-S4 for Cd (II) and Pb (II) was 62.49 and 149.33 mg/g, respectively. | [88] |
Raw Materials | Hydrothermal Conditions | Modification Treatment | Adsorbates | Product | References |
---|---|---|---|---|---|
Municipal sludge | 600 °C, 2 h | Zn/Fe | 0.10–0.30 g/L TC, 0.20–0.50 g/L CIP | The product demonstrated maximum adsorption capacities of 145.0 mg/g for TC and 74.2 mg/g for CIP. | [93] |
Bamboo shavings | 200 °C, 3 h | acid assisted | 30 mL of Congo red or 2-naphthol solutions (0.5 mg/mL) | The resultant material exhibited maximum adsorption capacities of 90.51 mg/g for Congo Red and 72.93 mg/g for 2-naphthol. | [94] |
Montmorillonite and rice husks | 180 °C, 16 h | KOH | 100 mL of estrogen stock solutions (2.5 mg/mL) | KOH improved the adsorption capacity of estrogen. | [91] |
Rice straw | 160–200 °C, 40–70 min | —— | 30 mL of Congo red, berberine hydrochloride, 2-naphthol, Zn2+ and Cu2+ solutions (0.5 mg/mL) | The maximum adsorption capacities for Congo Red, berberine hydrochloride, 2-naphthol, Zn2+, and Cu2+ were 222.1 mg/g, 174.0 mg/g, 48.7 mg/g, 112.8 mg/g, and 144.9 mg/g, respectively. | [95] |
Coffee husks | 210 °C, 243 h | —— | 25.0 mL of the MB solutions (300 mg/L) | The adsorption capacity of methylene blue was 34.85 mg/g, mainly by physical adsorption. | [96] |
Moroccan nut shells (ANS) | 180, 200 °C, and 6 h. | —— | 200 mL of BPA (60 mg/L) and diuron (40 mg/L) solutions | The hydrochar generated at 200 °C removed about 92% and 95% of BPA and diuron, respectively, with high adsorption efficiency. | [97] |
Fructose | 180 °C, 2 h | phloroglucinol | 25 mL of tetracycline solutions | The adsorption capacity of the product to tetracycline in water was 274.7 mg/g. | [98] |
Raw Materials | Hydrothermal Conditions | Modification Treatment | Adsorbates | Product | References |
---|---|---|---|---|---|
Anaerobically digested cattails | 200, 250 and 300 °C, 1 h | CH3COOH and NaOH | 1470 mg/L COD, 50 mg/L NH4+-N and 151 mg/L TP | The adsorption capacities of NH4+-N and PO43−-P were 92.6–122.4 mg/g and 1.6–15.8 mg/g, respectively. | [99] |
Chicken feathers | 150–170 °C, 1–3 h | —— | 0–150 mg/L KH2PO4 | The maximum adsorption capacity (qm) of hydrochar was 21.70 mg/g at 30 °C. | [100] |
Microalgae | 348 K, 40 min | Mg | 20 mL of P solutions (20–15,000 mg/L) | The modified hydrochar exhibited strong affinity for phosphate, with a maximum adsorption capacity of 89.61 mg/g. | [25] |
Sodium alginate | 210 °C, 5 h | Fe3O4 | As (V) solutions (1–100 mg/L), F solutions (1–50 mg/L) | At a dosage of 2 g/L, the maximum adsorption capacity of arsenic and fluoride was 26.06 mg/g and 15.64 mg/g, respectively. | [101] |
Type of Technology | Environmental Management Effectiveness | Advantage | Shortcoming | Energy Consumption |
---|---|---|---|---|
Adsorption | Effective removal of organic matter and certain inorganic substances | Easy to operate, high removal efficiency can be achieved. Adaptable, adsorbents can be reused. | The cost of adsorbents can be high, and energy is required to regenerate or replace adsorbents. | Medium to high |
Membrane technology | Separation and purification of particulates and dissolved substances in water bodies | Modular design, easy to expand, high separation efficiency, and high degree of automation. | Membrane materials can be expensive, with membrane fouling and membrane replacement costs, and may require chemical cleaning. | Medium to high |
Precipitation | Removal of suspended solids and certain dissolved solids from water | The processing capacity is large, the operating cost is relatively low, and the application range is wide. | A large amount of sedimentation tank space is required and may produce a large amount of sludge that is difficult to control. | Low to moderate |
Enzyme technology | Decomposes and transforms organic matter | Efficient for specific pollutants, pollutants can be converted into harmless substances, reducing sludge production. | Enzyme stability may be low, requiring appropriate Ph and temperature conditions, and initial enzyme cost. | Medium to low |
HTC | Efficient treatment of organic waste into high-value products | Environmental protection, reduce secondary pollution, good resource effect, high treatment efficiency under high-temperature and high-pressure conditions. | Equipment costs are higher, dependence on biomass or carbon-containing waste, and energy consumption can be higher. | high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Xu, Q.; Abou-Elwafa, S.F.; Alshehri, M.A.; Zhang, T. Hydrothermal Carbonization Technology for Wastewater Treatment under the “Dual Carbon” Goals: Current Status, Trends, and Challenges. Water 2024, 16, 1749. https://doi.org/10.3390/w16121749
Liu G, Xu Q, Abou-Elwafa SF, Alshehri MA, Zhang T. Hydrothermal Carbonization Technology for Wastewater Treatment under the “Dual Carbon” Goals: Current Status, Trends, and Challenges. Water. 2024; 16(12):1749. https://doi.org/10.3390/w16121749
Chicago/Turabian StyleLiu, Guoqing, Qing Xu, Salah F. Abou-Elwafa, Mohammed Ali Alshehri, and Tao Zhang. 2024. "Hydrothermal Carbonization Technology for Wastewater Treatment under the “Dual Carbon” Goals: Current Status, Trends, and Challenges" Water 16, no. 12: 1749. https://doi.org/10.3390/w16121749
APA StyleLiu, G., Xu, Q., Abou-Elwafa, S. F., Alshehri, M. A., & Zhang, T. (2024). Hydrothermal Carbonization Technology for Wastewater Treatment under the “Dual Carbon” Goals: Current Status, Trends, and Challenges. Water, 16(12), 1749. https://doi.org/10.3390/w16121749