Integrated Struvite Precipitation and Fenton Oxidation for Nutrient Recovery and Refractory Organic Removal in Palm Oil Mill Effluent
Abstract
:1. Introduction
1.1. Struvite Precipitation
1.2. Fenton Oxidation
2. Materials and Methods
2.1. Wastewater and Chemicals
2.2. Design of Experiments
2.3. Struvite Precipitation
2.4. Fenton Oxidation
2.5. Analytical Methods
3. Results and Discussion
3.1. ANOVA Statistical Analysis
3.2. Struvite Precipitation: The Influence of Variables
3.2.1. Interactions between the Mg2+/NH4+ Molar Ratio and PO43−/NH4+ Molar Ratio
3.2.2. Interactions between Mg2+/NH4+ Molar Ratio or PO43−/NH4+ Molar Ratio with pH
3.3. Fenton Oxidation: The Influence of Variables
3.3.1. Interactions between H2O2 Dosage with Molar Ratio of Fe2+/H2O2
3.3.2. Interactions between H2O2 Dosage or Molar Ratio of Fe2+/H2O2 with Reaction Time
3.4. Optimization and Model Validation
Treatment Method | Optimum Conditions | Predicted Removal Efficiency | Actual Removal Efficiency | Error (%) |
---|---|---|---|---|
Struvite precipitation | Mg2+/NH4+ molar ratio: 1; PO43−/NH4+ molar ratio: 1; pH: 8.2 | 81.8% NH4+ | 78.8 ± 1.6% NH4+ | 3.7 |
Fenton oxidation | H2O2 dosage: 2680 mg L−1; Fe2+/H2O2 molar ratio: 0.8; Reaction time: 56 min | 77.1% sCOD | 76.0 ± 1.0% sCOD | 1.1 |
TCOD | sCOD | NH4+-N | |
---|---|---|---|
AnT-POME | 2025 ± 106 | 1350 ± 336 | 298 ± 41 |
Effluent after anaerobic treatment + struvite precipitation + Fenton oxidation (this study) | 313 ± 39 | 308 ± 46 | 41 ± 7.1 |
Effluent after anaerobic + aerobic treatment [38,39,40] | 768 ± 242 | n.a. | 44 ± 44 |
Standard Discharge Limit (Department Of Environment (Malaysia), 1984) [41] | 400 | n.a. | 150 |
Treatment Methods | Removal Performance |
---|---|
Anaerobic treatment + struvite precipitation + Fenton oxidation (this study) | 76.0% COD 78.8% NH4+ 67.1% TN |
Anaerobic treatment + coagulation [42] | 69% COD 52% NH4+ |
Anaerobic treatment + membrane technology [4] | 100% TOC 84% TN |
Anaerobic treatment + sequencing batch reactor + adsorption [43] | 98.3% COD 98.3% NH4+ |
3.4.1. Characterization of Struvite Precipitate from AnT-POME
3.4.2. Economic Assessment of Chemical Costs
3.5. Challenges and Future Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MPOC Malaysian Palm Oil Industry–MPOC. Available online: https://mpoc.org.my/malaysian-palm-oil-industry/ (accessed on 4 January 2022).
- Cheng, Y.W.; Chong, C.C.; Lam, M.K.; Ayoub, M.; Cheng, C.K.; Lim, J.W.; Yusup, S.; Tang, Y.; Bai, J. Holistic Process Evaluation of Non-Conventional Palm Oil Mill Effluent (POME) Treatment Technologies: A Conceptual and Comparative Review. J. Hazard. Mater. 2021, 409, 124964. [Google Scholar] [CrossRef]
- Yacob, S.; Hung, Y.-T.; Shirai, Y.; Ali Hassan, M. Treatment of Palm Oil Wastewaters. Waste Treat. Food Process. Ind. 2005, 7, 101–117. [Google Scholar] [CrossRef]
- Bello, M.M.; Abdul Raman, A.A. Trend and Current Practices of Palm Oil Mill Effluent Polishing: Application of Advanced Oxidation Processes and Their Future Perspectives. J. Environ. Manag. 2017, 198, 170–182. [Google Scholar] [CrossRef]
- Abdullah, M.F.; Md Jahim, J.; Abdul, P.M.; Mahmod, S.S. Effect of Carbon/Nitrogen Ratio and Ferric Ion on the Production of Biohydrogen from Palm Oil Mill Effluent (POME). Biocatal. Agric. Biotechnol. 2020, 23, 101445. [Google Scholar] [CrossRef]
- Shim, S.; Won, S.; Reza, A.; Kim, S.; Ahmed, N.; Ra, C. Design and Optimization of Fluidized Bed Reactor Operating Conditions for Struvite Recovery Process from Swine Wastewater. Processes 2020, 8, 422. [Google Scholar] [CrossRef]
- Faraj, H.; Jamrah, A.; Al-Omari, S.; Al-Zghoul, T.M. Optimization of an Electrocoagulation-Assisted Adsorption Treatment System for Dairy Wastewater. Case Stud. Chem. Environ. Eng. 2024, 9, 100574. [Google Scholar] [CrossRef]
- Gao, L.; Cao, Y.; Wang, L.; Li, S. A Review on Sustainable Reuse Applications of Fenton Sludge during Wastewater Treatment. Front. Environ. Sci. Eng. 2022, 16, 77. [Google Scholar] [CrossRef]
- Siciliano, A.; Limonti, C.; Curcio, G.M.; Molinari, R. Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater. Sustainability 2020, 12, 7538. [Google Scholar] [CrossRef]
- Ha, T.H.; Mahasti, N.N.N.; Lu, M.C.; Huang, Y.H. Ammonium-Nitrogen Recovery as Struvite from Swine Wastewater Using Various Magnesium Sources. Sep. Purif. Technol. 2023, 308, 122870. [Google Scholar] [CrossRef]
- Rayshouni, H.; Wazne, M. Effects of Calcium on the Removal of Ammonium from Aged Landfill Leachate by Struvite Precipitation. Water 2022, 14, 1993. [Google Scholar] [CrossRef]
- Gong, W.; Li, Y.; Luo, L.; Luo, X.; Cheng, X.; Liang, H. Application of Struvite-MAP Crystallization Reactor for Treating Cattle Manure Anaerobic Digested Slurry: Nitrogen and Phosphorus Recovery and Crystal Fertilizer Efficiency in Plant Trials. Int. J. Environ. Res. Public Health 2018, 15, 1397. [Google Scholar] [CrossRef] [PubMed]
- Riadi, L.; Miracle, T.; Hartawati, M. Fenton Degradation of Lignin Wastewater in a Batch Process for Pulp and Paper Industry: Kinetic and Economic Aspect. Int. J. Eng. Technol. 2019, 11, 1102–1107. [Google Scholar] [CrossRef]
- Akgül, S.T. Investigation of the Treatability of Essential Oil Industry Wastewater Using Fenton Oxidation Process. Desalin. Water Treat. 2022, 267, 52–61. [Google Scholar] [CrossRef]
- Javeed, T.; Nawaz, R.; Al-Hussain, S.A.; Irfan, A.; Irshad, M.A.; Ahmad, S.; Zaki, M.E.A. Application of Advanced Oxidation Processes for the Treatment of Color and Chemical Oxygen Demand of Pulp and Paper Wastewater. Water 2023, 15, 1347. [Google Scholar] [CrossRef]
- De Carluccio, M.; Fiorentino, A.; Rizzo, L. Multi-Barrier Treatment of Mature Landfill Leachate: Effect of Fenton Oxidation and Air Stripping on Activated Sludge Process and Cost Analysis. J. Environ. Chem. Eng. 2020, 8, 104444. [Google Scholar] [CrossRef]
- Wong, L.P.; Isa, M.H.; Bashir, M.J.K. Disintegration of Palm Oil Mill Effluent Organic Solids by Ultrasonication: Optimization by Response Surface Methodology. Process Saf. Environ. Prot. 2018, 114, 123–132. [Google Scholar] [CrossRef]
- Minitab Interpret the Key Results for Analyze Taguchi Design. Available online: https://support.minitab.com/en-us/minitab/help-and-how-to/statistical-modeling/doe/how-to/taguchi/analyze-taguchi-design/interpret-the-results/key-results/ (accessed on 6 June 2024).
- Tang, Y.M.; Tan, K.T.; Wong, L.P. Valorization of Palm Oil Mill Effluent via Enhanced Oil Recovery as an Alternative Feedstock for Biodiesel Production. Water Sci. Technol. 2023, 88, 1404–1416. [Google Scholar] [CrossRef]
- Faggiano, A.; De Carluccio, M.; Cerrato, F.; Garcia Junior, C.A.; Proto, A.; Fiorentino, A.; Rizzo, L. Improving Organic Matter and Nutrients Removal and Minimizing Sludge Production in Landfill Leachate Pre-Treatment by Fenton Process through a Comprehensive Response Surface Methodology Approach. J. Environ. Manag. 2023, 340, 117950. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, Y.; Xu, B.; Li, M.; Wang, J.; Shao, Y.; Chen, F.; Sun, M.; Liu, B. Effects of Physicochemical Parameters on Struvite Crystallization Based on Kinetics. Int. J. Environ. Res. Public Health 2022, 19, 7204. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Fu, R.; Lv, H.; Zhu, G.; Lu, B.; Zhou, Z.; Wu, X.; Chen, H. Phosphate Recovery from Swine Wastewater by a Struvite Precipitation Electrolyzer. Sci. Rep. 2019, 9, 8893. [Google Scholar] [CrossRef]
- Taddeo, R.; Lepistö, R. Struvite Precipitation in Raw and Co-Digested Swine Slurries for Nutrients Recovery in Batch Reactors. Water Sci. Technol. 2015, 71, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, Z.; Liu, F.; Ding, Y.; Qi, P.; You, H.; Jin, C. Effective Removal of Ammonia Nitrogen from Waste Seawater Using Crystal Seed Enhanced Struvite Precipitation Technology with Response Surface Methodology for Process Optimization. Environ. Sci. Pollut. Res. 2018, 25, 628–638. [Google Scholar] [CrossRef]
- Huang, A.H.; Liu, J.C. Removal of Ammonium as Struvite from Wet Scrubber Wastewater. Water. Air. Soil Pollut. 2014, 225, 2062. [Google Scholar] [CrossRef]
- Su, C.C.; Chen, C.M.; Anotai, J.; Lu, M.C. Removal of Monoethanolamine and Phosphate from Thin-Film Transistor Liquid Crystal Display (TFT-LCD) Wastewater by the Fluidized-Bed Fenton Process. Chem. Eng. J. 2013, 222, 128–135. [Google Scholar] [CrossRef]
- Chen, R.F.; Liu, T.; Rong, H.W.; Zhong, H.T.; Wei, C.H. Effect of Organic Substances on Nutrients Recovery by Struvite Electrochemical Precipitation from Synthetic Anaerobically Treated Swine Wastewater. Membranes 2021, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B. What Is Magnesium Hydroxide? Available online: https://www.wwdmag.com/what-is-articles/article/21004707/what-is-magnesium-hydroxide (accessed on 4 June 2024).
- González-Morales, C.; Fernández, B.; Molina, F.J.; Naranjo-Fernández, D.; Matamoros-Veloza, A.; Camargo-Valero, M.A. Influence of Ph and Temperature on Struvite Purity and Recovery from Anaerobic Digestate. Sustainability 2021, 13, 10730. [Google Scholar] [CrossRef]
- Hao, X.D.; Wang, C.C.; Lan, L.; Van Loosdrecht, M.C.M. Struvite Formation, Analytical Methods and Effects of PH and Ca2+. Water Sci. Technol. 2008, 58, 1687–1692. [Google Scholar] [CrossRef]
- Ogata, F.; Uematsu, Y.; Fukuda, M.; Saenjum, C.; Kabayama, M.; Nakamura, T.; Kawasaki, N. Changes in the Mechanism of the Reaction between Phosphate and Magnesium Ions: Effect of Initial Concentration and Contact Time on Removal of Phosphate Ions from Aqueous Media. J. Environ. Chem. Eng. 2020, 8, 104385. [Google Scholar] [CrossRef]
- USP Technologies Fentons Reagent General Chemistry Using H2O2. Available online: https://usptechnologies.com/fentons-reagent-general-chemistry-using-h2o2/ (accessed on 5 February 2024).
- Saeed, M.O.; Azizli, K.; Isa, M.H.; Bashir, M.J.K. Application of CCD in RSM to Obtain Optimize Treatment of POME Using Fenton Oxidation Process. J. Water Process Eng. 2015, 8, e7–e16. [Google Scholar] [CrossRef]
- Gamaralalage, D.; Sawai, O.; Nunoura, T. Degradation Behavior of Palm Oil Mill Effluent in Fenton Oxidation. J. Hazard. Mater. 2019, 364, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Zahrim, A.Y.; Nasimah, A.; Hilal, N. Pollutants Analysis during Conventional Palm Oil Mill Effluent (POME) Ponding System and Decolourisation of Anaerobically Treated POME via Calcium Lactate-Polyacrylamide. J. Water Process Eng. 2014, 4, 159–165. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.H.; Show, P.L. A Review on Conventional and Novel Materials towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Yashni, G.; Al-Gheethi, A.; Radin Mohamed, R.M.S.; Arifin, S.N.H.; Mohd Salleh, S.N.A. Conventional and Advanced Treatment Technologies for Palm Oil Mill Effluents: A Systematic Literature Review. J. Dispers. Sci. Technol. 2020, 42, 1766–1784. [Google Scholar] [CrossRef]
- Norhan, M.A.; Abdullah, S.R.S.; Hasan, H.A.; Ismail, N.I. A Constructed Wetland System for Bio-Polishing Palm Oil Mill Effluent and Its Future Research Opportunities. J. Water Process Eng. 2021, 41, 102043. [Google Scholar] [CrossRef]
- Sa’at, S.K.M.; Zaman, N.Q.; Yusoff, M.S. Effect of Hydraulic Retention Time on Palm Oil Mill Effluent Treatment in Horizontal Sub-Surface Flow Constructed Wetland. In Proceedings of the 6th International Conference on Environment (ICENV2018): Empowering Environment and Sustainable Engineering Nexus through Green Technology, Penang, Malaysia, 11–13 December 2018; Volume 2124. [Google Scholar]
- Sa’at, S.K.M.; Zaman, N.Q. Suitability of Ipomoea Aquatica for the Treatment of Effluent from Palm Oil Mill. J. Built Environ. Technol. Eng. 2017, 2, 39–44. [Google Scholar]
- Department of Environment Ministry of Natural Resources and Environmental Sustainability Environmental Quality Act 1974 [ACT 127]. Available online: https://www.doe.gov.my/environmental-quality-prescribed-premises-crude-palm-oil-amendment-regulations-1982-p-u-a-183-82/ (accessed on 9 May 2024).
- Saad, M.S.; Wirzal, M.D.H.; Putra, Z.A. Review on Current Approach for Treatment of Palm Oil Mill Effluent: Integrated System. J. Environ. Manag. 2021, 286, 112209. [Google Scholar] [CrossRef] [PubMed]
- Farraji, H.; Mohammadpour, R.; Zaman, N.Q. Post-Treatment of Palm Oil Mill Effluent Using Zeolite and Wastewater. J. Oil Palm Res. 2021, 33, 103–118. [Google Scholar] [CrossRef]
- Perwitasari, D.S.; Muryanto, S.; Jamari, J.; Bayuseno, A.P. Optimization of Struvite Crystallization and Heavy Metal Recovery in Wastewater Using Response Surface Methodology. Orient. J. Chem. 2018, 34, 336–345. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, Y.; Zeng, C.; Lai, X.; Chen, S. Zero Sludge Discharge Strategy for Fenton Oxidation Wastewater Treatment Technology: Biological Regeneration and in-Situ Cyclic Utilization—A Feasibility Study. J. Clean. Prod. 2022, 376, 134259. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, K.; Yang, J.; Yu, Z.; Yu, W.; Xu, Q.; Wu, Q.; Liang, S.; Hu, J.; Hou, H.; et al. Phosphorus Recovery from the Liquid Phase of Anaerobic Digestate Using Biochar Derived from Iron−rich Sludge: A Potential Phosphorus Fertilizer. Water Res. 2020, 174, 115629. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gao, M.; She, Z.; Jin, C.; Zhao, Y.; Yang, S.; Guo, L.; Wang, S. Effects of Hexavalent Chromium on Performance and Microbial Community of an Aerobic Granular Sequencing Batch Reactor. Environ. Sci. Pollut. Res. 2015, 22, 4575–4586. [Google Scholar] [CrossRef] [PubMed]
Types of Wastewater | Molar Ratio of N:P:Mg | pH | Removal Efficiency | Reference |
---|---|---|---|---|
Swine wastewater | 1:1.2:1 | 9.0 | 87.96% N; 93.07% P | [10] |
Landfill leachate | 1:1.25:1.25 | 9.5 | 97% NH4+ | [11] |
Dairy wastewater | 1.2:1:1.6 | 10.0 | >89% N; >99% P | [12] |
Types of Wastewater | H2O2 and Fe2+ Dosage | Reaction Time (min) | Removal Efficiency | Reference |
---|---|---|---|---|
Essential oil wastewater | 88 mM H2O2; 54 mM Fe2+ | n.a. | 81% COD | [14] |
Pulp and paper wastewater | 0.25 mL H2O2; 40 mg L−1 FeSO4 | 20 | 84.49% COD | [15] |
Landfill leachate | H2O2/Fe2+ = 1; Fe2+ = 3500 mg L−1 | 120 | 82% COD | [16] |
Parameters | Average Concentration in mg L−1 (n = 4) |
---|---|
TCOD | 2025 ± 106 |
sCOD | 1370 ± 295 |
TN | 442 ± 68 |
NH4+–N | 298 ± 41 |
PO43−–P | 4 ± 4 |
Mg2+ | 5 ± 1 |
TSS | 613 ± 68 |
Factors | Low | High | Response |
---|---|---|---|
Mg2+/NH4+ molar ratio | 0.8 | 1.4 | NH4+ removal efficiency (%) |
PO43−/NH4+ molar ratio | 0.8 | 1 | |
pH | 7.5 | 8.5 |
Factors | Low | High | Response |
---|---|---|---|
H2O2 dosage (mg L−1) | 1500 | 3000 | sCOD removal efficiency (%) |
Fe2+/H2O2 molar ratio | 0.5 | 1.5 | |
Reaction time (min) | 30 | 60 |
Source | F-Value | p-Value | Remarks |
---|---|---|---|
Quadratic Model | 187.10 | <0.0001 | significant |
A: Mg2+/NH4+ molar ratio | 380.49 | <0.0001 | |
B: PO43−/NH4+ molar ratio | 134.84 | <0.0001 | |
C: pH | 5.54 | 0.0382 | |
AB | 75.19 | <0.0001 | |
AC | 6.90 | 0.0235 | |
BC | 3.55 | 0.0862 | |
A2 | 76.69 | <0.0001 | |
C2 | 762.61 | <0.0001 | |
Lack of Fit | 0.2943 | 0.9157 | not significant |
Source | F-Value | p-Value | Remarks |
---|---|---|---|
Quadratic Model | 165.92 | <0.0001 | significant |
A: H2O2 dosage (mg L−1) | 251.66 | <0.0001 | |
B: Fe2+/H2O2 molar ratio | 7.71 | 0.0157 | |
C: Reaction time (min) | 183.19 | <0.0001 | |
AB | 3.74 | 0.0751 | |
AC | 19.55 | 0.0007 | |
B2 | 529.69 | <0.0001 | |
Lack of Fit | 1.32 | 0.3955 | not significant |
Characterization of Final Effluent after Anaerobic Treatment + Struvite Precipitation + Fenton Oxidation (mg L−1) | Optimum Conditions of Struvite Precipitation | Mg2+ Cost (USD kg−1- Average Removed NH4+) | PO43− Cost (USD kg−1- Average Removed NH4+) | Total Chemicals Cost (USD kg−1-Average Removed NH4+) |
---|---|---|---|---|
TCOD: 313 ± 39 sCOD: 308 ± 46 TSS: 350 ± 28 VSS: 43 ± 13 TN: 72 ± 7.7 NH4+-N: 41 ± 7.1 PO43−-P: ~0 | (i) Mg2+/NH4+ molar ratio: 1; (ii) PO43−/NH4+ molar ratio: 1; (iii) pH: 8.2 | 2.03 | 3.63 | 5.66 |
Optimum conditions of Fenton Oxidation | Fe2+ cost (USD kg−1-average removed sCOD) | H2O2 cost (USD kg−1-average removed sCOD) | Total chemicals cost (USD kg−1-average removed sCOD) | |
(i) H2O2 dosage: 2680 mg L−1 (ii) Fe2+/H2O2 molar ratio: 0.8 (iii) Reaction time: 56 min | 0.13 | 2.11 | 2.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sea, Y.F.; Chua, A.S.M.; Ngoh, G.C.; Rabuni, M.F. Integrated Struvite Precipitation and Fenton Oxidation for Nutrient Recovery and Refractory Organic Removal in Palm Oil Mill Effluent. Water 2024, 16, 1788. https://doi.org/10.3390/w16131788
Sea YF, Chua ASM, Ngoh GC, Rabuni MF. Integrated Struvite Precipitation and Fenton Oxidation for Nutrient Recovery and Refractory Organic Removal in Palm Oil Mill Effluent. Water. 2024; 16(13):1788. https://doi.org/10.3390/w16131788
Chicago/Turabian StyleSea, Yi Fen, Adeline Seak May Chua, Gek Cheng Ngoh, and Mohamad Fairus Rabuni. 2024. "Integrated Struvite Precipitation and Fenton Oxidation for Nutrient Recovery and Refractory Organic Removal in Palm Oil Mill Effluent" Water 16, no. 13: 1788. https://doi.org/10.3390/w16131788
APA StyleSea, Y. F., Chua, A. S. M., Ngoh, G. C., & Rabuni, M. F. (2024). Integrated Struvite Precipitation and Fenton Oxidation for Nutrient Recovery and Refractory Organic Removal in Palm Oil Mill Effluent. Water, 16(13), 1788. https://doi.org/10.3390/w16131788