UV/Advanced Oxidation Process for Removing Humic Acid from Natural Water: Comparison of Different Methods and Effect of External Factors
Abstract
:1. Introduction
2. Methods
2.1. Reagents and Equipment
2.1.1. Reagents
2.1.2. Experimental Equipment
2.2. Experimental Indicators and Testing Methods
2.2.1. Routine Indicator Measurement
- (1)
- Physical Indicators
- (2)
- Chemical Oxygen Demand (COD)
2.2.2. Dissolved Organic Carbon (DOC) Measurement
2.2.3. UV254 Measurement
2.2.4. Other Relevant Indicators
- (1)
- Organic Matter Degradation Rate
- (2)
- Specific Electrical Energy per Order (EE/O)
2.3. Experimental Operation and Procedures
3. Results and Discussion
3.1. Degradation Efficiency of HA by UV/PMS in Aqueous Solutions
3.2. Degradation Efficiency of HA by UV/PDS in Aqueous Solutions
3.3. Degradation Efficiency of HA by UV/SPC in Aqueous Solutions
3.4. Degradation Efficiency of HA by UV/S(IV) in Aqueous Solutions
3.5. Comparison of Oxidant Efficacy in HA Degradation
3.6. Effect of External Conditions on the UV/PMS Process for HA Degradation
3.6.1. Effect of Initial Solution pH on HA Degradation
3.6.2. Effect of Illumination Time on HA Degradation
3.6.3. Effect of Oxidant Concentration on HA Degradation
3.6.4. Effect of HA Concentration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reyes, T.G.; Crisosto, J.M. Characterization of dissolved organic matter in river water by conventional methods and direct sample analysis-time of flight-mass spectrometry. J. Chem. 2016, 11, 1537370. [Google Scholar] [CrossRef]
- Vogt, R.D.; Garmo, Ø.A.; Austnes, K.; Kaste, Ø.; Haaland, S.; Sample, J.E.; Thrane, J.-E.; Skancke, L.B.; Gundersen, C.B.; de Wit, H.A. Factors Governing Site and Charge Density of Dissolved Natural Organic Matter. Water 2024, 16, 1716. [Google Scholar] [CrossRef]
- Ryu, J.H.; Jung, J.H.; Park, K.Y.; Song, W.J.; Choi, B.G.; Kweon, J.H. Humic acid removal and microbial community function in membrane bioreactor. J. Hazard. Mater. 2021, 417, 126088. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.W.; Zeng, G.M.; Gong, J.L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B.B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Dash, S.; Karnena, M.K. A review on techniques used for removal of natural organic matter (NOM) from the water. IJSREM 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, Y.Y.; He, K.Y.; Sun, M.M.; Zhang, Z.H. Ti4O7 reactive electrochemical membrane for humic acid removal: Insights of electrosorption and electrooxidation. Sep. Purif. Technol. 2022, 293, 121112. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Removal of natural organic matter (NOM) and its constituents from water by adsorption—A review. Chemosphere 2017, 166, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Ruecker, A.; Uzun, H.; Karanfil, T.; Tsui, M.T.K.; Chow, A.T. Disinfection byproduct precursor dynamics and water treatability during an extreme flooding event in a coastal blackwater river in southeastern United States. Chemosphere 2017, 188, 90–98. [Google Scholar] [CrossRef]
- Wang, L.; Wei, S.; Jiang, Z.E. Effects of humic acid on enhanced removal of lead ions by polystyrene-supported nano-Fe (0) nanocomposite. Sci. Rep. 2020, 10, 19663. [Google Scholar] [CrossRef]
- Alayande, A.B.; Hong, S. Ultraviolet light-activated peroxymonosulfate (UV/PMS) system for humic acid mineralization: Effects of ionic matrix and feasible application in seawater reverse osmosis desalination. Environ. Pollut. 2022, 307, 119513. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.Q. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. Water Res. 2021, 190, 116759. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.M.; Li, X.; Zhou, C.Q.; Lu, C.C.; Liu, B.G.; Wang, G.X. Insight into oxidation and adsorption treatment of algae-laden water: Algal organic matter transformation and removal. J. Chem. Eng. 2021, 420, 129887. [Google Scholar] [CrossRef]
- Mulyati, S.; Aprilia, S.; Muchtar, S.; Syamsuddin, Y.; Rosnelly, C.M.; Bilad, M.R.; Samsuri, S.; Ismail, N.M. Fabrication of Polyvinylidene Difluoride Membrane with Enhanced Pore and Filtration Properties by Using Tannic Acid as an Additive. Polymers 2022, 14, 186. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.C.; Bian, Y.N.; Hursthouse, A.S.; Xu, S.N.; Xiong, N.N.; Wan, P. The role of magnetic MOFs nanoparticles in enhanced iron coagulation of aquatic dissolved organic matter. Chemosphere 2020, 247, 125921. [Google Scholar] [CrossRef]
- Du, T.T.; Zhang, G.; Zou, J. Coupling photocatalytic and electrocatalytic oxidation towards simultaneous removal of humic acid and ammonia−nitrogen in landscape water. Chemosphere 2022, 286, 131717. [Google Scholar] [CrossRef] [PubMed]
- Giannakoudakis, D.A.; Qayyum, A.; Barczak, M.; Colmenares-Quintero, R.F.; Borowski, P.; Triantafyllidis, K.; Colmenares, J.C. Mechanistic and kinetic studies of benzyl alcohol photocatalytic oxidation by nanostructured titanium (hydro)oxides: Do we know the entire story? Appl. Catal. B Environ. 2023, 320, 121939. [Google Scholar] [CrossRef]
- Asria, M.; Naghizadehb, A.; Hasania, A.; Mortazavi-Derazkolab, S.; Javida, A.; Masoudic, F. Sustainable green synthesis of ZnFe2O4@ZnO nanocomposite using Oleaster tree bark methanolic extract for photocatalytic degradation of aqueous humic acid in the presence of UVc irradiation. Water Supply Res. Technol. 2023, 72, 1800–1814. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, Z.; Graham, N.J.; Liu, M.J.; Yu, W.Z. Enhancing ultrafiltration performance by gravity-driven up-flow slow biofilter pre-treatment to remove natural organic matters and biopolymer foulants. Water Res. 2021, 195, 117010. [Google Scholar] [CrossRef] [PubMed]
- Lado Ribeiro, A.R.; Rodríguez-Chueca, J.J.; Giannakis, S. Urban and industrial wastewater disinfection and decontamination by advanced oxidation processes(AOPs): Current issues and future trends. Water 2021, 13, 560. [Google Scholar] [CrossRef]
- Barisci, S.; Suri, R. Removal of polyfluorinated telomer alcohol by advanced oxidation processes(AOPs) in different water matrices and evaluation of degradation mechanisms. J. Water Process Eng. 2020, 39, 101745. [Google Scholar] [CrossRef]
- Cao, Y.J.; Ren, Y.J.; Zhang, Q.F.; Zhao, M.M.; Bai, C.X.; Wang, T.F. Research Progress of UV-Advanced Oxidation for Treatment of Natural Organic Matters, China. Chem. Biol. Eng. 2022, 39, 1–5. [Google Scholar]
- GB 11892-891; Water Quality-Determination of Permanganate Index. National Standard of the People’s Republic of China: Beijing, China, 1990.
- Yang, J.L.; Zhu, M.S.; Dionysiou, D.D. What is the role of light in persulfate-based advanced oxidation for water treatment? Water Res. 2021, 189, 116627. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y. Study on the Transformation and Mechanism of Organic Matter in Secondary Effluent in Ultraviolet Persulfate System. Master’s Thesis, Beijing University of Chemical Engineering, Beijing, China, 2022. [Google Scholar]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Liu, B.H.; Ye, M.T.; Ren, Z.X.; Lichtfouse, E.; Chen, Z.B. Towards synergistic combination of biochar/ultrasonic persulfate enhancing removal of natural humic acids from water. J. Environ. Chem. Eng. 2022, 10, 107809. [Google Scholar] [CrossRef]
- Sun, H.Y.; Xing, R.Z.; Ye, X.Y.; Yin, K.K.; Zhang, Y.L.; Chen, Z.; Zhou, S.G. Reactive oxygen species accelerate humification process during iron mineral-amended sludge composting. Bioresour. Technol. 2023, 370, 128554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, T.; Laila, N.; Huang, K.; Wang, X.W.; Lei, R.; Bai, X.Y.; Xu, Q.Y. Carbon dots/TiO2 enhanced visible light-assisted photocatalytic of leachate: Simultaneous effects and Mechanism insights. Water Res. 2023, 245, 120659. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; von Gunten, U.; Kim, J.H. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Y. Removal of Reclaimed Water Disinfection by-Product Precursors Based on Uv Advanced Oxidation Technology. Master’s Thesis, Shandong Construction University, Jinan, China, 2020. [Google Scholar]
- Yuan, D.; Tang, J.; Nie, Z.; Tang, S. Study on the removal of humic acid from water by ultraviolet activated sodium percarbonate, China. Yanshan Univ. 2021, 45, 220–226. [Google Scholar]
- Bremner, D.H.; Molina, R.; Martínez, F.; Melero, J.A.; Segura, Y. Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US-Fe2O3/SBA-15-H2O2). Appl. Catal. B Environ. 2009, 90, 380–388. [Google Scholar] [CrossRef]
- Li, Y.; Dong, H.; Li, L.; Xiao, J.; Xiao, S.; Jin, Z. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Res. 2021, 202, 117451. [Google Scholar] [CrossRef]
- Liu, W.K.; Liu, B.; Li, X. UV/Fe(II) synergistically activated S(IV) per-treatment on HA-enhanced Ca2+ scaling in NF filtration: Fouling mitigation, mechanisms and correlation analysis of membrane resistance in different filtration stage. Chemosphere 2022, 308, 136302. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Qiu, W.; Li, J.; Zhao, Y.M.; Jiang, J.; Pang, S. Sulfite enhanced transformation of iopamidol by UV photolysis in the presence of oxygen: Role of oxysulfur radicals. Water Res. 2021, 189, 116625. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.G.; Srinivas, M.; Arunakumari, M.L. Heterogeneous advanced photo- Fenton process using peroxymonosulfate and peroxydisulfate in presence of zero valent metallic iron: A comparative study with hydrogen peroxide photo-Fenton process. J. Water Process Eng. 2016, 13, 117–126. [Google Scholar] [CrossRef]
- Wu, P.; Liu, Z.Y.; Stroet, M.; Liao, J.L.; Chai, Z.F.; Mark, A.E.; Ning, L.; Wang, D.Q. Understanding the Effect of pH on the Solubility and Aggregation Extent of Humic Acid in Solution by Combining Simulation and the Experiment. Environ. Sci. Technol. 2022, 56, 917–927. [Google Scholar]
- Wang, W.Y.; Li, R.H.; Bu, F.; Gao, Y.; Gao, B.Y.; Yue, Q.Y.; Yang, M.; Li, Y. Coagulation and membrane fouling mechanism of Al species in removing humic acid: Effect of pH and a dynamics process analysiss. Sep. Purif. Technol. 2023, 309, 123130. [Google Scholar] [CrossRef]
- Yuan, D.L.; Zhai, Z.H.; Zhu, E.Y.; Liu, H.L.; Jiao, T.F.; Tang, S.F. Humic Acid Removal in Water via UV Activated Sodium Perborate Process. Coatings 2022, 12, 885. [Google Scholar] [CrossRef]
- Lominchar, M.A.; Santos, A.; Miguel, E.D.; Romero, A. Remediation of aged diesel contaminated soil by alkaline activated persulfate. Sci. Total Environ. 2018, 622–623, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Liu, Y.Z.; Li, B.H.; Feng, L.; Du, Z.W.; Zhang, L.Q. Reaction kinetics of dissolved black carbon with hydroxyl radical, sulfate radical and reactive chlorine radicals. Sci. Total Environ. 2022, 828, 153984. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.Z.; Yuan, S.J.; Wang, W.; Jin, J.L.; Zhan, X.M.; Xiao, L.W.; Hu, Z.H. Photodegradation of roxarsone in the aquatic environment: Influencing factors, mechanisms, and artificial neural network modeling. Environ. Sci. Pollut. Res. 2021, 29, 7844–7852. [Google Scholar] [CrossRef]
- Ji, G.X. Characterization of the Removal of Natural Organic Matter from Source Water by Ultraviolet/Peroxysulfate Advanced Oxidation Technology. Master’s Thesis, Shandong Construction University, Jinan, China, 2020. [Google Scholar]
- Mengge, F.; Xin, Y.; Qingqing, K.; Lei, Y.; Zhang, X.R.; Aghdam, E.; Yin, R.; Shang, C. Sequential ClO2-UV/chlorine process for micropollutant removal and disinfection byproduct control. Sci. Total Environ. 2022, 806, 150354. [Google Scholar]
- Tang, S.; Tang, J.; Yuan, D.; Wang, Z.; Zhang, Y.; Rao, Y. Elimination of humic acid in water: Comparison of UV/PDS and UV/PMS. RSC Adv. 2020, 10, 17627–17634. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Chen, J.B.; Zhang, L.M.; Li, W.W.; Huang, T.Y. Activated Carbon Supported Co3O4 Catalysts to Activate Peroxymonosulfate for Orange, G Degradation. Huan Jing Ke Xue 2016, 37, 2591–2600. [Google Scholar]
- Jiang, F.; Qiu, B.; Sun, D. Advanced degradation of refractory pollutants in incineration leachate by UV/Peroxymonosulfate. Chem. Eng. J. 2018, 349, 338–346. [Google Scholar] [CrossRef]
- Juan, L.; Yang, S.; Jin, J.; Yang, T.; Cao, Y. Oxidative treatment of NOM by selective oxidants in drinking water treatment and its impact on DBP formation in postchlorination. Sci. Total Environ. 2022, 858, 159908. [Google Scholar]
- Xia, G.; Huang, Y.; Li, F.; Wang, L.C.; Pang, J.B.; Li, L.W.; Wang, K. A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging. Front. Chem. Sci. Eng. 2020, 14, 1039–1051. [Google Scholar] [CrossRef]
- Li, X.; Wu, B.; Zhang, Q.; Xu, D.; Liu, Y.; Ma, F.; Gu, Q.; Li, F. Mechanisms on the impacts of humic acids on persulfate/Fe2+-based groundwater remediation. Chem. Eng. J. 2019, 378, 122142. [Google Scholar]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical review of the science and sustainability of persulphate advanced oxidation processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
Method | Advantages | Disadvantages |
---|---|---|
Adsorption | ① High NOM degradation efficiency ② Simple design and easy operation | ① Frequent replacement and regeneration of adsorbents increase costs ② Saturated adsorbents require disposal, causing secondary pollution |
Coagulation | Strong adaptability with high NOM degradation efficiency | Causes secondary pollution |
Biological | ① Can remove biodegradable components of NOM ② Relatively environmentally friendly, no extra chemicals | ① Requires additional nutrients ② Poor environmental adaptability |
Electrochemical | ① No secondary pollution, environmentally friendly ② No need for additional chemicals | High energy consumption |
Membrane Filtration | ① Simple process, easy to automate, reliable operation ② Low energy consumption | ① Severe membrane fouling ② High membrane cost |
Advanced Oxidation | ① Efficient degradation of organic matter ② Applicable to various water bodies, widely adaptable | ① Complex operation, requires monitoring and control of reaction conditions ② Residual oxidants may be toxic |
System | First-Order Kinetic Equation | kobs (min−1) | R2 | EE/O ((kWh)/m−3) |
---|---|---|---|---|
UV/PMS | Ln(C0/C) = 0.01034t + 0.1516 | 0.01034 | 0.928 | 0.0157 |
UV/PDS | Ln(C0/C) = 0.0094t + 0.1355 | 0.00940 | 0.919 | 0.0204 |
UV/SPC | Ln(C0/C) = 0.00342t + 0.0147 | 0.00342 | 0.975 | 0.0561 |
UV/S(IV) | Ln(C0/C) = 0.00051t + 0.0077 | 0.00051 | 0.978 | 0.3750 |
HA | First-Order Kinetic Equation | kobs (min−1) | R2 |
---|---|---|---|
3 | Ln(C0/C) = 0.01467t + 0.0414 | 0.01467 | 0.9868 |
5 | Ln(C0/C) = 0.01763t + 0.0585 | 0.01763 | 0.9850 |
7 | Ln(C0/C) = 0.00912t + 0.0573 | 0.00912 | 0.9856 |
9 | Ln(C0/C) = 0.01249t + 0.0483 | 0.01249 | 0.9907 |
11 | Ln(C0/C) = 0.0139t + 0.05940 | 0.01390 | 0.9808 |
HA | First-Order Kinetic Equation | kobs (min−1) | R2 |
---|---|---|---|
5 | Ln(C0/C) = 0.0167t + 0.7213 | 0.0167 | 0.9841 |
10 | Ln(C0/C) = 0.0149t + 0.6789 | 0.0149 | 0.9812 |
15 | Ln(C0/C) = 0.0121t + 0.6591 | 0.0121 | 0.9936 |
20 | Ln(C0/C) = 0.011t + 0.6139 | 0.0110 | 0.9868 |
25 | Ln(C0/C) = 0.0098t + 0.5631 | 0.0098 | 0.9886 |
Processing | Concentration | pH | AOPs | Time | Degradation Rate | Reference |
---|---|---|---|---|---|---|
UV/PMS (H2SO5) | 2 mg·L−1 | 7 | PDS: 0.5 mmol·L−1 | 180 min | 100% | [10] |
UV/SPC (Na2CO3) | 5 mg·L−1 | 9.9 | SPC: 0.5 mmol·L−1 | 90 min | 92.1% | [31] |
UV/SPB (NaBO3) | 10 mg·L−1 | 3 | SPB: 1 mmol·L−1 | 60 min | 88.8% | [39] |
UV/H2O2 | 15 mg·L−1 | 4 | H2O2: 3 mmol·L−1 | 180 min | 21.9% | [45] |
UV/PDS (H2S2O8) | 6 | PDS: 3 mmol·L−1 | 120 min | 92.9% | [45] | |
UV/PMS (H2SO5) | 10 mg·L−1 | 3 | PMS: 3 mmol·L−1 | 180 min | 92.09% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Q.; Song, X.; Fan, J.; Chen, C.; Li, Z. UV/Advanced Oxidation Process for Removing Humic Acid from Natural Water: Comparison of Different Methods and Effect of External Factors. Water 2024, 16, 1815. https://doi.org/10.3390/w16131815
Shen Q, Song X, Fan J, Chen C, Li Z. UV/Advanced Oxidation Process for Removing Humic Acid from Natural Water: Comparison of Different Methods and Effect of External Factors. Water. 2024; 16(13):1815. https://doi.org/10.3390/w16131815
Chicago/Turabian StyleShen, Qingchao, Xiaosan Song, Jishuo Fan, Cheng Chen, and Zhuohao Li. 2024. "UV/Advanced Oxidation Process for Removing Humic Acid from Natural Water: Comparison of Different Methods and Effect of External Factors" Water 16, no. 13: 1815. https://doi.org/10.3390/w16131815
APA StyleShen, Q., Song, X., Fan, J., Chen, C., & Li, Z. (2024). UV/Advanced Oxidation Process for Removing Humic Acid from Natural Water: Comparison of Different Methods and Effect of External Factors. Water, 16(13), 1815. https://doi.org/10.3390/w16131815