Multi-Stage Optimization of Drainage Systems for Integrated Grey–Green Infrastructure under Backward Planning
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Site Description
2.2. Scenario Change Simulations
2.2.1. Land Use Change Scenario
2.2.2. Climate Change Scenario
2.3. Intelligent Optimization Algorithms for Multi-Stage IGGI
2.3.1. Objective Function Formulations
2.3.2. Constraints
2.3.3. Optimal Grey Infrastructure
2.3.4. Optimal IGGI Infrastructure
2.3.5. Backward Planning
2.4. Performance Evaluation Factor
2.5. Decision-Making Based on LCC and Tech-R
3. Results and Discussion
3.1. Climate Simulation and Analysis
3.2. IGGI Schemes along Backward Planning
3.3. Performance Evaluation under Extreme Rainfall Scenarios
3.4. Determination of Optimal IGGI Scheme
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, S.H.; Ren, Z.G.; Shan, X.F.; Deng, Q.L.; Zhou, Z. Seasonal different effects of land cover on urban heat island in Wuhan’s metropolitan area. Urban Clim. 2023, 49, 101547. [Google Scholar] [CrossRef]
- Zhao, S.H.; Liu, M.; Tao, M.H.; Zhou, W.; Lu, X.Y.; Xiong, Y.J.; Li, F.; Wang, Q. The role of satellite remote sensing in mitigating and adapting to global climate change. Sci. Total Environ. 2023, 904, 166820. [Google Scholar] [CrossRef] [PubMed]
- Yavasli, D.D.; Erlat, E. Climate model projections of aridity patterns in Turkiye: A comprehensive analysis using CMIP6 models and three aridity indices. Int. J. Climatol. 2023, 43, 6207–6224. [Google Scholar] [CrossRef]
- He, H.; Li, R.; Pei, J.; Bilodeau, J.-P.; Huang, G. Current overview of impact analysis and risk assessment of urban pluvial flood on road traffic. Sustain. Cities Soc. 2023, 99, 104993. [Google Scholar] [CrossRef]
- Yuan, H.J.; Wang, M.; Li, J.J.; Zhang, D.Q.; Ikram, R.M.A.; Su, J.; Zhou, S.Q.; Wang, Y.K.; Zhang, Q.F. Matrix scenario-based urban flooding damage prediction via convolutional neural network. J. Environ. Manag. 2024, 349, 119470. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J. Development of hazard capacity factor design model for net-zero: Evaluation of the flood adaptation effects considering green-gray infrastructure interaction. Sustain. Cities Soc. 2023, 96, 104625. [Google Scholar] [CrossRef]
- Yimer, E.A.; De Trift, L.; Lobkowicz, I.; Villani, L.; Nossent, J.; van Griensven, A. The underexposed nature-based solutions: A critical state-of-art review on drought mitigation. J. Environ. Manag. 2024, 352, 119903. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Coll, M.; Ballester-Merelo, F.; Martinez-Peiró, M.; De la Hoz-Franco, E. Real-Time Early Warning System Design for Pluvial Flash Floods-A Review. Sensors 2018, 18, 2255. [Google Scholar] [CrossRef]
- Hu, L.T.; Meng, J.; Xiong, C.Y.; Fang, W.; Yang, J.X.; Liu, M.M.; Bi, J.; Ma, Z.W. City-level resilience to extreme weather shocks revealed by satellite nighttime lights in China. Sustain. Cities Soc. 2024, 101, 105167. [Google Scholar] [CrossRef]
- Wee, G.; Chang, L.C.; Chang, F.J.; Amin, M.Z.M. A flood Impact-Based forecasting system by fuzzy inference techniques. J. Hydrol. 2023, 625, 130117. [Google Scholar] [CrossRef]
- Hu, H.; Tian, Z.; Sun, L.; Wen, J.; Liang, Z.; Dong, G.; Liu, J. Synthesized trade-off analysis of flood control solutions under future deep uncertainty: An application to the central business district of Shanghai. Water Res. 2019, 166, 115067. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.J. Maintenance of low impact development facilities: A case study of pilot sponge cities in China. J. Clean. Prod. 2023, 425, 139008. [Google Scholar] [CrossRef]
- Tamm, O.; Saaremäe, E.; Rahkema, K.; Jaagus, J.; Tamm, T. The intensification of short-duration rainfall extremes due to climate change-Need for a frequent update of intensity-duration-frequency curves. Clim. Serv. 2023, 30, 100349. [Google Scholar] [CrossRef]
- Li, S.S.; Leitao, J.P.; Wang, Z.L.; Bach, P.M. A drainage network-based impact matrix to support targeted blue-green-grey stormwater management solutions. Sci. Total Environ. 2024, 912, 168623. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, R.; Longobardi, A. Adapting drainage networks to the urban development: An assessment of different integrated approach alternatives for a sustainable flood risk mitigation in Northern Italy. Sustain. Cities Soc. 2023, 98, 104856. [Google Scholar] [CrossRef]
- Williams, J.B.; Jose, R.; Moobela, C.; Hutchinson, D.J.; Wise, R.; Gaterell, M. Residents’ perceptions of sustainable drainage systems as highly functional blue green infrastructure. Landsc. Urban Plan. 2019, 190, 103610. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.Y.; Xiong, L.H.; He, S.; Wang, L.F.; Yu, Z.B. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China-Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Feng, H.; Zhang, N. The influencing factors and mechanisms for urban flood resilience in China: From the perspective of social-economic-natural complex ecosystem. Ecol. Indic. 2023, 147, 109959. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Liu, J.H.; Lv, Y.P.; Chen, J.; Yang, Z.X.; Zhang, N. Performance assessment for the integrated green-gray-blue infrastructure under extreme rainfall scenarios. Front. Ecol. Evol. 2023, 11, 1242492. [Google Scholar] [CrossRef]
- Xu, C.Q.; Tang, T.; Jia, H.F.; Xu, M.; Xu, T.; Liu, Z.J.; Long, Y.; Zhang, R.R. Benefits of coupled green and grey infrastructure systems: Evidence based on analytic hierarchy process and life cycle costing. Resour. Conserv. Recycl. 2019, 151, 104478. [Google Scholar] [CrossRef]
- Alves, A.; Sanchez, A.; Vojinovic, Z.; Seyoum, S.; Babel, M.; Brdjanovic, D. Evolutionary and Holistic Assessment of Green-Grey Infrastructure for CSO Reduction. Water 2016, 8, 402. [Google Scholar] [CrossRef]
- Ortega-Fernández, A.; Martín-Rojas, R.; García-Morales, V.J. Artificial Intelligence in the Urban Environment: Smart Cities as Models for Developing Innovation and Sustainability. Sustainability 2020, 12, 7860. [Google Scholar] [CrossRef]
- Chen, W.J.; Wang, W.Q.; Huang, G.R.; Wang, Z.L.; Lai, C.G.; Yang, Z.Y. The capacity of grey infrastructure in urban flood management: A comprehensive analysis of grey infrastructure and the green-grey approach. Int. J. Disaster Risk Reduct. 2021, 54, 102045. [Google Scholar] [CrossRef]
- Muttil, N.; Nasrin, T.; Sharma, A.K. Impacts of Extreme Rainfalls on Sewer Overflows and WSUD-Based Mitigation Strategies: A Review. Water 2023, 15, 429. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M. A review on implementing infiltration-based green infrastructure in shallow groundwater environments: Challenges, approaches, and progress. J. Hydrol. 2019, 579, 124089. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.Q.; Zhang, Y.; Su, J.; Zhou, S.Q.; Bakhshipour, A.E.; Tan, S.K. Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustain. Cities Soc. 2023, 91, 104436. [Google Scholar] [CrossRef]
- Junqueira, J.R.; Serrao-Neumann, S.; White, I. Using green infrastructure as a social equity approach to reduce flood risks and address climate change impacts: A comparison of performance between cities and towns. Cities 2022, 131, 104051. [Google Scholar] [CrossRef]
- Pecharroman, L.C.; Williams, C.; Nylen, N.G.; Kiparsky, M. How can we govern large-scale green infrastructure for multiple water security benefits? Blue-Green Syst. 2021, 3, 62–80. [Google Scholar] [CrossRef]
- Gashu, K.; Gebre-Egziabher, T. Public assessment of green infrastructure benefits and associated influencing factors in two Ethiopian cities: Bahir Dar and Hawassa. BMC Ecol. 2019, 19, 16. [Google Scholar] [CrossRef]
- Joshi, P.; Leitão, J.P.; Maurer, M.; Bach, P.M. Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Res. 2021, 191, 116780. [Google Scholar] [CrossRef]
- Bakhshipour, A.E.; Bakhshizadeh, M.; Dittmer, U.; Haghighi, A.; Nowak, W. Hanging Gardens Algorithm to Generate Decentralized Layouts for the Optimization of Urban Drainage Systems. J. Water Resour. Plan. Manag. 2019, 145, 04019034. [Google Scholar] [CrossRef]
- Zahediasl, A.; Bakhshipour, A.E.; Dittmer, U.; Haghighi, A. Toward Decentralised Sanitary Sewage Collection Systems: A Multiobjective Approach for Cost-Effective and Resilient Designs. Water 2021, 13, 1886. [Google Scholar] [CrossRef]
- Dierkes, C.; Lucke, T.; Helmreich, B. General Technical Approvals for Decentralised Sustainable Urban Drainage Systems (SUDS)-The Current Situation in Germany. Sustainability 2015, 7, 3031–3051. [Google Scholar] [CrossRef]
- Liu, Z.J.; Han, Z.X.; Shi, X.Y.; Liao, X.Y.; Leng, L.Y.; Jia, H.F. Multi-objective optimization methodology for green-gray coupled runoff control infrastructure adapting spatial heterogeneity of natural endowment and urban development. Water Res. 2023, 233, 119759. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.J.; Xu, C.Q.; Xu, T.; Jia, H.F.; Zhang, X.; Chen, Z.X.; Yin, D.K. Integrating socioecological indexes in multiobjective intelligent optimization of green-grey coupled infrastructures. Resour. Conserv. Recycl. 2021, 174, 105801. [Google Scholar] [CrossRef]
- Shaamala, A.; Yigitcanlar, T.; Nili, A.; Nyandega, D. Algorithmic green infrastructure optimisation: Review of artificial intelligence driven approaches for tackling climate change. Sustain. Cities Soc. 2024, 101, 105182. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Mehmood, R.; Corchado, J.M. Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures. Sustainability 2021, 13, 8952. [Google Scholar] [CrossRef]
- Ghodsi, S.H.; Zhu, Z.D.; Matott, L.S.; Rabideau, A.J.; Torres, M.N. Optimal siting of rainwater harvesting systems for reducing combined sewer overflows at city scale. Water Res. 2023, 230, 119533. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Y.; Yi, W.X.; Yuan, P.; Song, Y.H. Optimization and trade-off framework for coupled green-grey infrastructure considering environmental performance. J. Environ. Manag. 2023, 329, 117041. [Google Scholar] [CrossRef]
- Chen, W.J.; Wang, W.Q.; Mei, C.; Chen, Y.S.; Zhang, P.P.; Cong, P.T. Multi-objective decision-making for green infrastructure planning: Impacts of rainfall characteristics and infrastructure configuration. J. Hydrol. 2024, 628, 130572. [Google Scholar] [CrossRef]
- Tansar, H.; Duan, H.F.; Mark, O. A multi-objective decision-making framework for implementing green-grey infrastructures to enhance urban drainage system resilience. J. Hydrol. 2023, 620, 129381. [Google Scholar] [CrossRef]
- Ballarin, A.S.; Anache, J.A.A.; Wendland, E. Trends and abrupt changes in extreme rainfall events and their influence on design quantiles: A case study in Sao Paulo, Brazil. Theor. Appl. Climatol. 2022, 149, 1753–1767. [Google Scholar] [CrossRef]
- Jiao, Z.C.; Alam, M.A.; Yuan, J.H.; Farnham, C.; Emura, K. Prediction of extreme rainfall events in 21st century—The results based on Bayesian Markov Chain Monte Carlo. Urban Clim. 2024, 53, 101822. [Google Scholar] [CrossRef]
- Ballarin, A.S.; Wendland, E.; Zaerpour, M.; Hatami, S.; Neto, A.A.M.; Papalexiou, S.M. Frequency Rather Than Intensity Drives Projected Changes of Rainfall Events in Brazil. Earths Future 2024, 12, e2023EF004053. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, H.P.; Huang, J.P.; Peng, M.; Zhou, J. The Projected Response of the Water Cycle to Global Warming Over Drylands in East Asia. Earths Future 2024, 12, e2023EF004008. [Google Scholar] [CrossRef]
- Gu, X.H.; Zhang, Q.; Singh, V.P.; Song, C.Q.; Sun, P.; Li, J.F. Potential contributions of climate change and urbanization to precipitation trends across China at national, regional and local scales. Int. J. Climatol. 2019, 39, 2998–3012. [Google Scholar] [CrossRef]
- Ye, C.; Dang, T.D.; Xu, X.F.; Stewart, C.J.; Arias, M.E.; Zhang, Y.; Zhang, Q. Coupled effects of future rainfall and land use on urban stormwater drainage system in Tampa, Florida (USA). Ecol. Indic. 2023, 153, 110402. [Google Scholar] [CrossRef]
- Saurav, K.C.; Shrestha, S.; Ninsawat, S.; Chonwattana, S. Predicting flood events in Kathmandu Metropolitan City under climate change and urbanisation. J. Environ. Manag. 2021, 281, 111894. [Google Scholar] [CrossRef]
- Asamoah, Y.; Ansah-Mensah, K. Temporal Description of Annual Temperature and Rainfall in the Bawku Area of Ghana. Adv. Meteorol. 2020, 2020, 3402178. [Google Scholar] [CrossRef]
- Rao, Y.H.; Zhang, J.J.; Wang, K.; Jepsen, M.R. Understanding land use volatility and agglomeration in northern Southeast Asia. J. Environ. Manag. 2021, 278, 111536. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, P.A.; Chen, J.; Bing, J.P.; Xu, D.H.; Wang, M.L. Impacts of Climate Change and Human Activities on the Three Gorges Reservoir Inflow. Water 2017, 9, 957. [Google Scholar] [CrossRef]
- Xu, T.; Li, K.; Engel, B.A.; Jia, H.F.; Leng, L.Y.; Sun, Z.X.; Yu, S.L. Optimal adaptation pathway for sustainable low impact development planning under deep uncertainty of climate change: A greedy strategy. J. Environ. Manag. 2019, 248, 109280. [Google Scholar] [CrossRef]
- de Macedo, M.B.; Mendiondo, E.M.; Razzolini, M.T.P.; Goel, N.K.; Arya, D.S.; Kurian, M.; Nardocci, A.C. Multi-stage resilience analysis of the nexus flood-sanitation-public health in urban environments: A theoretical framework. Urban Water J. 2023, 20, 1713–1730. [Google Scholar] [CrossRef]
- Park, J.; Lu, F.C.; Hedgcock, W.M. Relative Effects of Forward and Backward Planning on Goal Pursuit. Psychol. Sci. 2017, 28, 1620–1630. [Google Scholar] [CrossRef]
- Wiese, J.L. Backward Planning: Examining Consequences of Planning Direction for Motivation; Wilfrid Laurier University: Waterloo, ON, Canada, 2011. [Google Scholar]
- Wiese, J.; Buehler, R.; Griffin, D. Backward planning: Effects of planning direction on predictions of task completion time. Judgm. Decis. Mak. 2016, 11, 147–167. [Google Scholar] [CrossRef]
- Ott, F.; Markovic, D.; Strobel, A.; Kiebel, S.J. Dynamic integration of forward planning and heuristic preferences during multiple goal pursuit. PLoS Comput. Biol. 2020, 16, 1007685. [Google Scholar] [CrossRef]
- Sun, L.X.; Xia, J.; She, D.X. Integrating Model Predictive Control with Stormwater System Design: A Cost-Effective Method of Urban Flood Risk Mitigation During Heavy Rainfall. Water Resour. Res. 2024, 60, e2023WR036495. [Google Scholar] [CrossRef]
- Zamani, Y.; Monfared, S.A.H.; Moghaddam, M.A.; Hamidianpour, M. A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: The case of Northeastern Iran. Theor. Appl. Climatol. 2020, 142, 1613–1623. [Google Scholar] [CrossRef]
- Kushwaha, P.; Pandey, V.K.; Kumar, P.; Sardana, D. CMIP6 Model Evaluation for Mean and Extreme Precipitation Over India. Pure Appl. Geophys. 2024, 181, 655–678. [Google Scholar] [CrossRef]
- Huang, W.R.; Chang, Y.H.; Deng, L.P.; Liu, P.Y. Simulation and Projection of Summer Convective Afternoon Rainfall Activities over Southeast Asia in CMIP6 Models. J. Clim. 2021, 34, 5001–5016. [Google Scholar] [CrossRef]
- Pu, Y.; Liu, H.B.; Yan, R.J.; Yang, H.; Xia, K.; Li, Y.Y.; Dong, L.; Li, L.J.; Wang, H.; Nie, Y.; et al. CAS FGOALS-g3 Model Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP). Adv. Atmos. Sci. 2020, 37, 1081–1092. [Google Scholar] [CrossRef]
- Shenzhen Meteorological Bureau; Shenzhen Municipal Planning and Land Resources Commission. Shenzhen Rainstorm Intensity Formula and Calculation Chart; Shenzhen Meteorological Bureau: Shenzhen, China, 2015.
- Wang, J.; Liu, J.; Mei, C.; Wang, H.; Lu, J. A multi-objective optimization model for synergistic effect analysis of integrated green-gray-blue drainage system in urban inundation control. J. Hydrol. 2022, 609, 127725. [Google Scholar] [CrossRef]
- Houle, J.; Roseen, R.; Ballestero, T.; Puls, T.; Sherrard, J. Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef]
- Dong, Y. Performance assessment and design of ultra-high performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts. Constr. Build. Mater. 2018, 167, 414–425. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.H.; Zhang, D.Q. Opportunities and challenges in green stormwater infrastructure (GSI): A comprehensive and bibliometric review of ecosystem services from 2000 to 2021. Environ. Res. 2023, 236, 116701. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.V.; Fold, N.; Olesen, R.S.; Shackleton, S. Socio-economic outcomes of ecological infrastructure investments. Ecosyst. Serv. 2020, 47, 101242. [Google Scholar] [CrossRef]
- Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Nowak, W. Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework. J. Environ. Manag. 2019, 249, 109364. [Google Scholar] [CrossRef]
- Liu, X.W.; Yang, Y.Y.; Jiang, J. The Behavioral Topsis Based on Prospect Theory and Regret Theory. Int. J. Inf. Technol. Decis. Mak. 2023, 22, 1591–1615. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Li, J.P.; Wu, D.S.; Wang, H.Y.; Liang, C.Z. Balancing accuracy, complexity and interpretability in consumer credit decision making: A C-TOPSIS classification approach. Knowl. Based Syst. 2013, 52, 258–267. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, S.Y.; Wen, X.H.; Ji, Z.M.; Lin, L.; Wei, Z.G.; Zheng, Z.Y.; Xu, D.Y.; Dong, W.J. Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6. Clim. Dyn. 2021, 57, 1187–1205. [Google Scholar] [CrossRef]
- Hesarkazzazi, S.; Hajibabaei, M.; Bakhshipour, A.E.; Dittmer, U.; Haghighi, A.; Sitzenfrei, R. Generation of optimal (de)centralized layouts for urban drainage systems: A graph-theory-based combinatorial multi-objective optimization framework. Sustain. Cities Soc. 2022, 81, 103827. [Google Scholar] [CrossRef]
- Tao, T.; Wang, J.; Xin, K.; Li, S. Multi-objective optimal layout of distributed storm-water detention. Int. J. Environ. Sci. Technol. 2014, 11, 1473–1480. [Google Scholar] [CrossRef]
- Scott, C.A.; Shrestha, P.P.; Lutz-Ley, A.N. The re-adaptation challenge: Limits and opportunities of existing infrastructure and institutions in adaptive water governance. Curr. Opin. Environ. Sustain. 2020, 44, 104–112. [Google Scholar] [CrossRef]
- Manocha, N.; Babovic, V. Development and valuation of adaptation pathways for storm water management infrastructure. Environ. Sci. Policy 2017, 77, 86–97. [Google Scholar] [CrossRef]
- Buurman, J.; Babovic, V. Adaptation Pathways and Real Options Analysis: An approach to deep uncertainty in climate change adaptation policies. Policy Soc. 2016, 35, 137–150. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, D.Q.; Lu, Z.M.; Bakhshipour, A.E.; Liu, M.; Jiang, Z.Y.; Li, J.J.; Tan, S.K. Multi-stage planning of LID-GREI urban drainage systems in response to land-use changes. Sci. Total Environ. 2023, 859, 160214. [Google Scholar] [CrossRef]
- Casal-Campos, A.; Sadr, S.M.K.; Fu, G.T.; Butler, D. Reliable, Resilient and Sustainable Urban Drainage Systems: An Analysis of Robustness under Deep Uncertainty. Environ. Sci. Technol. 2018, 52, 9008–9021. [Google Scholar] [CrossRef]
Feature | Rainfall Scenarios | ||||||||
---|---|---|---|---|---|---|---|---|---|
10 y RI | 50 y RI | 100 y RI | |||||||
6 h | 12 h | 18 h | 6 h | 12 h | 18 h | 6 h | 12 h | 18 h | |
Rainfall depth (mm) | 187.2 | 256.7 | 308.3 | 235.9 | 323.6 | 388.6 | 256.9 | 352.4 | 423.2 |
Maximum intensity (mm/min) | 3.6 | 3.6 | 3.6 | 4.6 | 4.6 | 4.6 | 5.0 | 5.0 | 5.0 |
Climate Change Scenario | SSP5-8.5 | ||
---|---|---|---|
Stage 1 (0–10 Years) | Stage 2 (10–30 Years) | ||
Average number of rainfall events per year | 37.6 | 35.8 | |
ADD | Mean (days) | 5.3 | 5.1 |
Max (days) | 57.0 | 74.0 | |
Precipitation | Mean (mm) | 57.9 | 66.5 |
Max (mm) | 382.6 | 487.6 |
Planning Stage | Cost (USD K) | Optimized Layout | |||||
---|---|---|---|---|---|---|---|
DCL = 90.9% | DCL = 72.7% | DCL = 54.5% | DCL = 36.4% | DCL = 18.2% | DCL = 0 | ||
Stage 1 (0–10 years) | CapitalGREI | 25,248.7 | 23,939.0 | 22,057.9 | 17,747.4 | 16,555.4 | 16,037.1 |
PVCO&M-GREI | 22,679.9 | 21,503.4 | 19,813.7 | 15,941.8 | 14,871.1 | 14,405.5 | |
CapitalPP | 5058.1 | 4913.4 | 4208.9 | 5016.8 | 5253.2 | 4949.1 | |
PVCO&M-PP | 1817.4 | 1765.4 | 1512.3 | 1802.6 | 1887.5 | 1778.2 | |
CapitalBC | 410.0 | 228.2 | 45.7 | 30.5 | 197.6 | 76.1 | |
PVCO&M-BC | 294.7 | 164.0 | 32.9 | 21.9 | 142.0 | 54.7 | |
Total cost (stage 1) | 55,508.8 | 52,513.4 | 47,671.4 | 40,561.0 | 38,906.8 | 37,300.7 | |
Stage 2 (10–30 years) | PVCO&M-GREI | 33,868.4 | 32,111.5 | 29,588.1 | 23,806.2 | 22,207.2 | 21,512.0 |
CapitalPP | 3094.2 | 3439.7 | 3156.4 | 2899.3 | 3087.9 | 2600.1 | |
PVCO&M-PP | 4374.1 | 4481.9 | 3951.9 | 4247.4 | 4475.5 | 4050.6 | |
CapitalBC | 957.0 | 744.7 | 1078.6 | 699.2 | 836.0 | 425.8 | |
PVCO&M-BC | 1467.0 | 1044.0 | 1206.5 | 783.1 | 1109.2 | 538.6 | |
Total cost (stage 2) | 43,760.7 | 41,821.8 | 38,981.5 | 32,435.2 | 31,715.8 | 29,127.1 | |
LCC (0–30 years) | 99,269.5 | 94,335.2 | 86,652.9 | 72,996.2 | 70,622.6 | 66,427.8 |
Normalized Evaluation Factor | Optimized Layout | |||||||
---|---|---|---|---|---|---|---|---|
DCL | Weight (%) | |||||||
90.9% | 72.7% | 54.5% | 36.4% | 18.2% | 0 | |||
LCC | 0 | 0.15 | 0.38 | 0.80 | 0.87 | 1 | 50.0 | |
Stage 1 (0–10 years) | Tech-R (10 y RI 6 h) | 0.34 | 0.35 | 0 | 0.73 | 0.86 | 1 | 1.9 |
Tech-R (10 y RI 12 h) | 0 | 0.17 | 0.12 | 0.65 | 0.52 | 1 | 1.9 | |
Tech-R (10 y RI 18 h) | 0 | 0.19 | 0.23 | 0.68 | 0.51 | 1 | 1.9 | |
Tech-R (50 y RI 6 h) | 0 | 0.25 | 0.35 | 0.67 | 0.51 | 1 | 1.9 | |
Tech-R (50 y RI 12 h) | 0 | 0.29 | 0.41 | 0.73 | 0.50 | 1 | 1.9 | |
Tech-R (50 y RI 18 h) | 0 | 0.31 | 0.42 | 0.74 | 0.51 | 1 | 1.9 | |
Tech-R (100 y RI 6 h) | 0 | 0.31 | 0.41 | 0.73 | 0.50 | 1 | 1.9 | |
Tech-R (100 y RI 12 h) | 0 | 0.34 | 0.43 | 0.75 | 0.51 | 1 | 1.9 | |
Tech-R (100 y RI 18 h) | 0 | 0.33 | 0.45 | 0.77 | 0.50 | 1 | 1.9 | |
Stage 2 (10–30 years) | Tech-R (10 y RI 6 h) | 0 | 0.58 | 0.58 | 0.66 | 0.37 | 1 | 3.7 |
Tech-R (10 y RI 12 h) | 0 | 0.38 | 0.52 | 0.71 | 0.55 | 1 | 3.7 | |
Tech-R (10 y RI 18 h) | 0 | 0.40 | 0.54 | 0.69 | 0.60 | 1 | 3.7 | |
Tech-R (50 y RI 6 h) | 0 | 0.51 | 0.61 | 0.70 | 0.60 | 1 | 3.7 | |
Tech-R (50 y RI 12 h) | 0 | 0.50 | 0.58 | 0.72 | 0.63 | 1 | 3.7 | |
Tech-R (50 y RI 18 h) | 0 | 0.50 | 0.57 | 0.74 | 0.65 | 1 | 3.7 | |
Tech-R (100 y RI 6 h) | 0 | 0.53 | 0.61 | 0.74 | 0.64 | 1 | 3.7 | |
Tech-R (100 y RI 12 h) | 0 | 0.51 | 0.57 | 0.74 | 0.66 | 1 | 3.7 | |
Tech-R (100 y RI 18 h) | 0 | 0.53 | 0.57 | 0.75 | 0.65 | 1 | 3.7 | |
Closeness coefficient | 0 | 0.29 | 0.43 | 0.75 | 0.72 | 1 | - | |
Ranking order | 6 | 5 | 4 | 2 | 3 | 1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Rao, Q.; Wang, M.; Liu, Y.; Xiong, Z.; Zhao, J.; Fan, C.; Rana, M.A.I.; Li, J.; Zhang, M. Multi-Stage Optimization of Drainage Systems for Integrated Grey–Green Infrastructure under Backward Planning. Water 2024, 16, 1825. https://doi.org/10.3390/w16131825
Sun C, Rao Q, Wang M, Liu Y, Xiong Z, Zhao J, Fan C, Rana MAI, Li J, Zhang M. Multi-Stage Optimization of Drainage Systems for Integrated Grey–Green Infrastructure under Backward Planning. Water. 2024; 16(13):1825. https://doi.org/10.3390/w16131825
Chicago/Turabian StyleSun, Chuanhao, Qiuyi Rao, Mo Wang, Yulu Liu, Ziheng Xiong, Jiayu Zhao, Chengliang Fan, Muhammad Adnan Ikram Rana, Jianjun Li, and Menghan Zhang. 2024. "Multi-Stage Optimization of Drainage Systems for Integrated Grey–Green Infrastructure under Backward Planning" Water 16, no. 13: 1825. https://doi.org/10.3390/w16131825
APA StyleSun, C., Rao, Q., Wang, M., Liu, Y., Xiong, Z., Zhao, J., Fan, C., Rana, M. A. I., Li, J., & Zhang, M. (2024). Multi-Stage Optimization of Drainage Systems for Integrated Grey–Green Infrastructure under Backward Planning. Water, 16(13), 1825. https://doi.org/10.3390/w16131825