Bibliometric Analysis of Trends and Research Progress in Acid Mine Drainage Remediation from 1990 to 2023
Abstract
:1. Introduction
- (1)
- The present study provides a succinct synthesis of prevailing AMD remediation technologies (active and passive treatment), evaluates the progress achieved in their application, and presents the advantages and challenges intrinsic to each therapeutic modality.
- (2)
- Through the application of HistoCite Pro 2.1, VOSviewer 1.6.18, and CiteSpace software 6.1.R3, a publication trajectory of the literature related to AMD remediation is constructed and visualized from an array of perspectives, encompassing annual publications, journals, authors, research institutions, countries, the highly cited literature, and keywords.
- (3)
- Based on keyword co-occurrence and burst analysis, the present study scrutinizes and proposes a research focus and development status in the field of AMD remediation from 1990 to 2023 while highlighting the current study limitations and future perspectives related to AMD remediation.
2. Data Acquisition and Methods
2.1. Data Source
2.2. Methods for the Scientometric Analysis
3. Results
3.1. Number of Publications during 1990–2023
3.2. Characteristics of Journals
3.3. Characteristics of Authors
3.4. Major Institutions and International Cooperation
3.5. Highly Cited Publications
3.6. Keyword Analysis
3.6.1. Keyword Co-Occurrence Analysis
3.6.2. Keyword Burst Analysis
4. Other Highly Investigated Remediation Technologies
4.1. Active Treatment
4.1.1. Neutralization
4.1.2. Membrane Separation
4.1.3. Ion Exchange
4.2. Passive Treatment
4.2.1. Constructed Wetlands
4.2.2. Permeable Reactive Barriers
5. Discussion
5.1. Current AMD Remediation Technologies and Research Directions
5.2. Avenues for Future Research
6. Conclusions
- (1)
- This analysis showed that research on AMD remediation has increased worldwide. The USA, China, and South Africa have the most publications in this field. Among the most prolific authors in the field, Ayora C, Nieto JM, and Dang Z were the most influential. The top three research institutions concerning publication number were the Univ Huelva, the Chinese Acad Sci, and the CSIC. Publications in this field were mainly published in Mine Water and the Environment, Applied Geochemistry, and Minerals Engineering.
- (2)
- The highly co-cited literature, keyword co-occurrence, and keyword burst analysis revealed that “ecological risks of AMD”, “environmental geochemical cycling of AMD”, “sulfate-reducing bacteria remediation”, and “adsorption technology” were dominant research topics in the field of AMD remediation. Source control technology and the recycling of resources in AMD, especially the recovery of REEs, will be among the main focuses of research for AMD remediation in the future. Future AMD remediation technology should shift from end-of-pipe treatment to source control, with the simultaneous adoption of a combination of technologies and continued investment in the development of low-cost and efficient AMD remediation methods.
- (3)
- In this study, the current state and trajectory of AMD remediation research were meticulously evaluated through the application of quantitative bibliometric techniques. Notwithstanding, the present study solely utilized the WOSCC database, leaving room for future expansion through incorporating additional databases such as Scopus, Google Scholar, Dimensions, and PubMed for article databases or Derwent Innovations Index for patent databases. This integrated approach would consequently offer a more all-encompassing dataset and furnish robust theoretical underpinnings for the continued advancement of AMD remediation technologies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Rakotonimaro, T.V.; Neculita, C.M.; Bussière, B.; Benzaazoua, M.; Zagury, G.J. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: A review. Environ. Sci. Pollut. Res. 2017, 24, 73–91. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.; Gao, K.; Lu, G.; Ye, H.; Wen, Z.; Yi, X.; Dang, Z. Spatial and temporal variations of Cu and Cd mobility and their controlling factors in pore water of contaminated paddy soil under acid mine drainage: A laboratory column study. Sci. Total Environ. 2021, 792, 148523. [Google Scholar] [CrossRef]
- Miguel, M.G.; Barreto, R.P.; Pereira, S.Y. Study of a tropical soil in order to use it to retain aluminum, iron, manganese and fluoride from acid mine drainage. J. Environ. Manag. 2017, 204, 563–570. [Google Scholar] [CrossRef]
- Muszyńska, E.; Labudda, M. Dual role of metallic trace elements in stress biology—From negative to beneficial impact on plants. Int. J. Mol. Sci. 2019, 20, 3117. [Google Scholar] [CrossRef]
- Pereira, T.C.B.; Dos Santos, K.B.; Lautert-Dutra, W.; de Souza Teodoro, L.; de Almeida, V.O.; Weiler, J.; Schneider, I.A.H.; Bogo, M.R. Acid mine drainage (AMD) treatment by neutralization: Evaluation of physical-chemical performance and ecotoxicological effects on zebrafish (Danio rerio) development. Chemosphere 2020, 253, 126665. [Google Scholar] [CrossRef]
- Pat-Espadas, A.M.; Loredo Portales, R.; Amabilis-Sosa, L.E.; Gómez, G.; Vidal, G. Review of constructed wetlands for acid mine drainage treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef]
- Sheridan, C.; Akcil, A.; Kappelmeyer, U.; Moodley, I. A review on the use of constructed wetlands for the treatment of acid mine drainage. In Constructed Wetlands for Industrial Wastewater Treatment; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 249–262. [Google Scholar]
- Das, P.K. Phytoremediation and nanoremediation: Emerging techniques for treatment of acid mine drainage water. Def. Life Sci. J. 2018, 3, 190–196. [Google Scholar] [CrossRef]
- Agboola, O. The role of membrane technology in acid mine water treatment: A review. Korean J. Chem. Eng. 2019, 36, 1389–1400. [Google Scholar] [CrossRef]
- Ho, Y.S.; Kahn, M. A bibliometric study of highly cited reviews in the Science Citation Index expanded™. J. Assoc. Inf. Sci. Technol. 2014, 65, 372–385. [Google Scholar] [CrossRef]
- Cao, Y.; Qi, F.; Cui, H. Toward carbon neutrality: A bibliometric analysis of technological innovation and global emission reductions. Environ. Sci. Pollut. Res. 2023, 30, 73989–74005. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Zhuang, D. Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere 2022, 297, 133932. [Google Scholar] [CrossRef]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environ. Pollut. 2021, 275, 115785. [Google Scholar] [CrossRef]
- Shi, H.; Ni, J.; Zheng, T.; Wang, X.; Wu, C.; Wang, Q. Remediation of wastewater contaminated by antibiotics. A review. Environ. Chem. Lett. 2020, 18, 345–360. [Google Scholar] [CrossRef]
- Ilmasari, D.; Sahabudin, E.; Riyadi, F.A.; Abdullah, N.; Yuzir, A. Future trends and patterns in leachate biological treatment research from a bibliometric perspective. J. Environ. Manag. 2022, 318, 115594. [Google Scholar] [CrossRef]
- Umeokafor, N.; Umar, T.; Evangelinos, K. Bibliometric and scientometric analysis-based review of construction safety and health research in developing countries from 1990 to 2021. Saf. Sci. 2022, 156, 105897. [Google Scholar] [CrossRef]
- Garfield, E. From the science of science to scientometrics visualizing the history of science with HistCite software. J. Informetr. 2009, 3, 173–179. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Qian, F.; He, M.; Song, Y.; Tysklind, M.; Wu, J. A bibliometric analysis of global research progress on pharmaceutical wastewater treatment during 1994–2013. Environ. Earth Sci. 2015, 73, 4995–5005. [Google Scholar] [CrossRef]
- Zhang, Y.; Ni, X.; Wang, H. Visual analysis of greenhouse gas emissions from sewage treatment plants based on CiteSpace: From the perspective of bibliometrics. Environ. Sci. Pollut. Res. 2023, 30, 45555–45569. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Zeng, T. Global industrial park research trends: A bibliometric analysis from 1987 to 2016. Environ. Monit. Assess. 2020, 192, 1–13. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Torrentó, C.; Nieto, J.M. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim. Cosmochim. Acta 2006, 70, 4130–4139. [Google Scholar] [CrossRef]
- Webster, J.G.; Swedlund, P.J.; Webster, K.S. Trace metal adsorption onto an acid mine drainage iron (III) oxy hydroxy sulfate. Environ. Sci. Technol. 1998, 32, 1361–1368. [Google Scholar] [CrossRef]
- Chang, I.S.; Shin, P.K.; Kim, B.H. Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Res. 2000, 34, 1269–1277. [Google Scholar] [CrossRef]
- Zagury, G.J.; Kulnieks, V.I.; Neculita, C.M. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment. Chemosphere 2006, 64, 944–954. [Google Scholar] [CrossRef]
- Jönsson, J.; Persson, P.; Sjöberg, S.; Lövgren, L. Schwertmannite precipitated from acid mine drainage:: Phase transformation, sulphate release and surface properties. Appl. Geochem. 2005, 20, 179–191. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Jong, T.; Parry, D.L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res. 2003, 37, 3379–3389. [Google Scholar] [CrossRef]
- Kalin, M.; Fyson, A.; Wheeler, W.N. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage. Sci. Total Environ. 2006, 366, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Gray, N.F. Environmental impact and remediation of acid mine drainage: A management problem. Environ. Geol. 1997, 30, 62–71. [Google Scholar] [CrossRef]
- Xu, C.; Yang, T.; Wang, K.; Guo, L.; Li, X. Knowledge domain and hotspot trends in coal and gas outburst: A scientometric review based on CiteSpace analysis. Environ. Sci. Pollut. Res. 2023, 30, 29086–29099. [Google Scholar] [CrossRef] [PubMed]
- Manceau, A.; Merkulova, M.; Murdzek, M.; Batanova, V.; Baran, R.; Glatzel, P.; Saikia, B.K.; Paktunc, D.; Lefticariu, L. Chemical forms of mercury in pyrite: Implications for predicting mercury releases in acid mine drainage settings. Environ. Sci. Technol. 2018, 52, 10286–10296. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Bogush, A.; Mašek, O.; Purton, S.; Campos, L.C. Algae, biochar and bacteria for acid mine drainage (AMD) remediation: A review. Chemosphere 2022, 304, 135284. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, G.; Wu, J.; Sun, J.; Yang, C.; Xie, Y.; Wang, K.; Deng, F.; Yi, X.; Dang, Z. Acidity and metallic elements release from AMD-affected river sediments: Effect of AMD standstill and dilution. Environ. Res. 2020, 186, 109490. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cao, X.; Wu, P.; Bu, C.; Ren, Y.; Li, K. Spatio-temporal characterization of dissolved organic matter in karst rivers disturbed by acid mine drainage and its correlation with metal ions. Sci. Total Environ. 2023, 897, 165434. [Google Scholar] [CrossRef] [PubMed]
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.-H.; Ren, N.-Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef] [PubMed]
- Egorova, K.S.; Ananikov, V.P. Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem. Int. Ed. 2016, 55, 12150–12162. [Google Scholar] [CrossRef]
- Chopard, A.; Plante, B.; Benzaazoua, M.; Bouzahzah, H.; Marion, P. Geochemical investigation of the galvanic effects during oxidation of pyrite and base-metals sulfides. Chemosphere 2017, 166, 281–291. [Google Scholar] [CrossRef]
- Ci, M.; Yang, W.; Jin, H.; Hu, L.; Fang, C.; Shen, D.; Long, Y. Evolution of sulfate reduction behavior in leachate saturated zones in landfills. Waste Manag. 2022, 141, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Magowo, W.E.; Sheridan, C.; Rumbold, K. Global co-occurrence of acid mine drainage and organic rich industrial and domestic effluent: Biological sulfate reduction as a co-treatment-option. J. Water Process Eng. 2020, 38, 101650. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H. Organic wastes as carbon sources to promote sulfate reducing bacterial activity for biological remediation of acid mine drainage. Miner. Eng. 2014, 69, 81–90. [Google Scholar] [CrossRef]
- Bai, H.; Kang, Y.; Quan, H.; Han, Y.; Sun, J.; Feng, Y. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresour. Technol. 2013, 128, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhu, S.; Ma, J.; Wang, F.; Xu, H.; Xia, M. The facile synthesis of zoledronate functionalized hydroxyapatite amorphous hybrid nanobiomaterial and its excellent removal performance on Pb2+ and Cu2+. J. Hazard. Mater. 2020, 392, 122291. [Google Scholar] [CrossRef] [PubMed]
- Madzivire, G.; Maleka, P.P.; Vadapalli, V.R.; Gitari, W.M.; Lindsay, R.; Petrik, L.F. Fate of the naturally occurring radioactive materials during treatment of acid mine drainage with coal fly ash and aluminium hydroxide. J. Environ. Manag. 2014, 133, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R.; Coyte, R.; Wang, Z.; Das, D.; Vengosh, A. Water quality implications of the neutralization of acid mine drainage with coal fly ash from India and the United States. Fuel 2022, 330, 125675. [Google Scholar] [CrossRef]
- Cardoso, A.M.; Paprocki, A.; Ferret, L.S.; Azevedo, C.M.; Pires, M. Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment. Fuel 2015, 139, 59–67. [Google Scholar] [CrossRef]
- Mo, Z.; Fu, H.-Z.; Ho, Y.-S. Global development and trend of wind tunnel research from 1991 to 2014: A bibliometric analysis. Environ. Sci. Pollut. Res. 2018, 25, 30257–30270. [Google Scholar] [CrossRef]
- Tong, L.; Fan, R.; Yang, S.; Li, C. Development and status of the treatment technology for acid mine drainage. Min. Metall. Explor. 2021, 38, 315–327. [Google Scholar] [CrossRef]
- Yang, L.; Wei, T.; Li, S.; Lv, Y.; Miki, T.; Yang, L.; Nagasaka, T. Immobilization persistence of Cu, Cr, Pb, Zn ions by the addition of steel slag in acidic contaminated mine soil. J. Hazard. Mater. 2021, 412, 125176. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Li, Y.; Lin, N.; Ou, C.; Wang, X.; Zhang, L.; Jiang, F. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. Environ. Int. 2020, 136, 105457. [Google Scholar] [CrossRef]
- Iizuka, A.; Ho, H.-J.; Sasaki, T.; Yoshida, H.; Hayakawa, Y.; Yamasaki, A. Comparative study of acid mine drainage neutralization by calcium hydroxide and concrete sludge–derived material. Miner. Eng. 2022, 188, 107819. [Google Scholar] [CrossRef]
- Kavitha, E.; Poonguzhali, E.; Nanditha, D.; Kapoor, A.; Arthanareeswaran, G.; Prabhakar, S. Current status and future prospects of membrane separation processes for value recovery from wastewater. Chemosphere 2022, 291, 132690. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Gibert, O.; Cortina, J. Recovery of sulphuric acid and added value metals (Zn, Cu and rare earths) from acidic mine waters using nanofiltration membranes. Sep. Purif. Technol. 2019, 212, 180–190. [Google Scholar] [CrossRef]
- Finish, N.; Ramos, P.; Borojovich, E.J.; Zeiri, O.; Amar, Y.; Gottlieb, M. Zeolite performance in removal of multicomponent heavy metal contamination from wastewater. J. Hazard. Mater. 2023, 457, 131784. [Google Scholar] [CrossRef]
- Fu, W.; Ji, G.; Chen, H.; Yang, S.; Guo, B.; Yang, H.; Huang, Z. Molybdenum sulphide modified chelating resin for toxic metal adsorption from acid mine wastewater. Sep. Purif. Technol. 2020, 251, 117407. [Google Scholar] [CrossRef]
- Cheng, Y.; He, P.; Dong, F.; Nie, X.; Ding, C.; Wang, S.; Zhang, Y.; Liu, H.; Zhou, S. Polyamine and amidoxime groups modified bifunctional polyacrylonitrile-based ion exchange fibers for highly efficient extraction of U (VI) from real uranium mine water. Chem. Eng. J. 2019, 367, 198–207. [Google Scholar] [CrossRef]
- Aguinaga, O.E.; White, K.N.; Dean, A.P.; Pittman, J.K. Addition of organic acids to acid mine drainage polluted wetland sediment leads to microbial community structure and functional changes and improved water quality. Environ. Pollut. 2021, 290, 118064. [Google Scholar] [CrossRef]
- Singh, S.; Chakraborty, S. Performance of organic substrate amended constructed wetland treating acid mine drainage (AMD) of North-Eastern India. J. Hazard. Mater. 2020, 397, 122719. [Google Scholar] [CrossRef]
- Shabalala, A.; Masindi, V. Insights into mechanisms governing the passive removal of inorganic contaminants from acid mine drainage using permeable reactive barrier. J. Environ. Manag. 2022, 321, 115866. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Ramos, D.; Garrido, F.L.-B.; Hernández, I.A.; Romero, L.R.; Camacho, J.V.; Fernández-Morales, F. Sustainable use of wastes as reactive material in permeable reactive barrier for remediation of acid mine drainage: Batch and continuous studies. J. Environ. Manag. 2023, 345, 118765. [Google Scholar] [CrossRef]
- Tigue, A.A.S.; Malenab, R.A.J.; Promentilla, M.A.B. A systematic mapping and scoping review on geopolymer and permeable reactive barrier for acid mine drainage treatment research. Process Integr. Optim. Sustain. 2020, 4, 15–35. [Google Scholar] [CrossRef]
- Tu, Z.; Wu, Q.; He, H.; Zhou, S.; Liu, J.; He, H.; Liu, C.; Dang, Z.; Reinfelder, J.R. Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Sci. Total Environ. 2022, 832, 155116. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Li, X.; Xi, Y.; Xie, T.; Liu, Y.; Liu, B.; Liu, H.; Xu, W.; Zhang, C. Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance. Sci. Total Environ. 2022, 825, 153767. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, C.; Yang, Q.; Dang, Z.; Zhang, L. Performance and mechanisms of PropS-SH/Ce (dbp) 3 coatings in the inhibition of pyrite oxidationtion for acid mine drainage control. Environ. Pollut. 2023, 322, 121162. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Guo, Z.; Wang, R.; Yang, L.; Cao, Y.; Wang, H. A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization. Water Res. 2022, 221, 118748. [Google Scholar] [CrossRef] [PubMed]
- Naidu, G.; Ryu, S.; Thiruvenkatachari, R.; Choi, Y.; Jeong, S.; Vigneswaran, S. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environ. Pollut. 2019, 247, 1110–1124. [Google Scholar] [CrossRef]
- Saraci, F.; Quezada-Novoa, V.; Donnarumma, P.R.; Howarth, A.J. Rare-earth metal–organic frameworks: From structure to applications. Chem. Soc. Rev. 2020, 49, 7949–7977. [Google Scholar] [CrossRef]
- Mwewa, B.; Tadie, M.; Ndlovu, S.; Simate, G.S.; Matinde, E. Recovery of rare earth elements from acid mine drainage: A review of the extraction methods. J. Environ. Chem. Eng. 2022, 10, 107704. [Google Scholar] [CrossRef]
Journal | Publications | % of 2783 | IF2023 | TLCS | TGCS | Average Citation Frequency |
---|---|---|---|---|---|---|
Mine Water and the Environment | 109 | 3.92 | 2.1 | 346 | 1364 | 12.51 |
Applied Geochemistry | 107 | 3.84 | 3.1 | 1019 | 4538 | 42.41 |
Minerals Engineering | 101 | 3.63 | 4.9 | 714 | 3217 | 31.85 |
Journal of Hazardous Materials | 100 | 3.59 | 12.2 | 716 | 4804 | 48.04 |
Science of the Total Environment | 93 | 3.34 | 8.2 | 1087 | 4336 | 46.62 |
Chemosphere | 79 | 2.84 | 8.1 | 458 | 2361 | 29.89 |
Water Research | 68 | 2.44 | 11.4 | 863 | 4933 | 72.54 |
Journal of Environmental Management | 65 | 2.34 | 8.0 | 182 | 1140 | 17.54 |
Water, Air, & Soil Pollution | 62 | 2.23 | 3.8 | 159 | 1193 | 19.24 |
Environmental Earth Sciences | 57 | 2.05 | 2.8 | 166 | 840 | 14.74 |
Labs | Institution/Country | Publications | TLCS | TGCS | Average Citation Frequency |
---|---|---|---|---|---|
Ayora C | CSIC/Spain | 42 | 715 | 2207 | 52.55 |
Nieto JM | Univ Huelva/Spain | 40 | 547 | 1925 | 48.13 |
Dang Z | South China Univ Technol/China | 37 | 142 | 719 | 19.43 |
Grande JA | Univ Huelva/Spain | 37 | 208 | 653 | 17.65 |
Neculita CM | UQAT/Canada | 33 | 376 | 919 | 27.85 |
Benzaazoua M | UQAT/Canada | 30 | 161 | 750 | 25 |
De La Torre ML | Univ Huelva/Spain | 28 | 198 | 606 | 21.64 |
Lu GN | South China Univ Technol/China | 28 | 135 | 600 | 21.43 |
Masindi V | Univ South Africa/South Africa | 28 | 160 | 547 | 19.54 |
Casiot C | Univ Montpellier/France | 27 | 233 | 1239 | 45.89 |
Institution | Publications | % of 2783 | TLCS | TGCS | Average Citation Frequency |
---|---|---|---|---|---|
Univ Huelva | 113 | 4.06 | 928 | 3396 | 30.05 |
Chinese Acad Sci | 69 | 2.48 | 113 | 1317 | 19.09 |
CSIC | 54 | 1.94 | 674 | 2471 | 45.76 |
US Geol Survey | 54 | 1.94 | 430 | 2201 | 40.76 |
Univ Witwatersrand | 52 | 1.87 | 206 | 1125 | 21.63 |
Penn State Univ | 46 | 1.65 | 290 | 1624 | 35.30 |
South China Univ Technol | 39 | 1.40 | 108 | 680 | 17.44 |
Univ Johannesburg | 37 | 1.33 | 114 | 523 | 14.14 |
CSIR | 33 | 1.19 | 230 | 633 | 19.18 |
Cent South Univ | 30 | 1.08 | 4 | 288 | 9.60 |
Country | Publications | % of 2783 | TLCS | TGCS | Average Citation Frequency |
---|---|---|---|---|---|
USA, North America | 526 | 18.90 | 3004 | 16,985 | 32.29 |
China, Asia | 502 | 18.04 | 1147 | 10,203 | 20.32 |
South Africa, Africa | 264 | 9.49 | 1009 | 4562 | 17.28 |
Spain, Europe | 231 | 8.30 | 1485 | 6910 | 29.91 |
Canada, North America | 226 | 8.12 | 1552 | 7800 | 34.51 |
Australia, Oceania | 151 | 5.43 | 656 | 4278 | 28.33 |
Brazil, South America | 151 | 5.43 | 406 | 2856 | 18.91 |
UK, Europe | 141 | 5.07 | 1276 | 5621 | 39.87 |
South Korea, Asia | 108 | 3.88 | 408 | 1835 | 16.99 |
France, Europe | 99 | 3.56 | 511 | 3888 | 39.27 |
Title | Fist Author | Journal | Year | TLCS | Reference |
---|---|---|---|---|---|
Acid mine drainage remediation options: a review | Johnson DB | Science of the total environment | 2005 | 518 | [24] |
The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite | Acero P | Geochimica et Cosmochimica Acta | 2006 | 103 | [25] |
Trace metal adsorption onto an acid mine drainage iron (III) oxy hydroxy sulfate | Webster JG | Environmental Science & Technology | 1998 | 100 | [26] |
Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate | Chang IS | Water Research | 2000 | 91 | [27] |
Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment | Zagury GJ | Chemosphere | 2006 | 84 | [28] |
Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties | Jönsson J | Applied Geochemistry | 2005 | 83 | [29] |
Hydrogeochemistry and microbiology of mine drainage: An update | Nordstrom D K | Applied Geochemistry | 2015 | 83 | [30] |
Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs | Jong T | Water Research | 2003 | 77 | [31] |
The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage | Kalin M | Science of the total environment | 2006 | 74 | [32] |
Environmental impact and remediation of acid mine drainage: a management problem | Gray N F | Environmental Geology | 1997 | 66 | [33] |
Clusters | Keywords |
---|---|
Red cluster | Acid mine drainage; pollution; sediments; geochemistry; transport; tailings; river |
Yellow cluster | Iron; oxidation; schwertmannite; kinetics; pyrite; mechanisms |
Blue cluster | Sulfate-reducing bacteria; sulfate reduction; reduction; performance; reducing bacteria |
Green cluster | Removal; adsorption; resource recovery; biosorption; recovery; fly ash |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Sun, F.; Jiang, W.; Li, X.; Jiang, J.; Jin, F.; Lu, J.; Yang, F. Bibliometric Analysis of Trends and Research Progress in Acid Mine Drainage Remediation from 1990 to 2023. Water 2024, 16, 1826. https://doi.org/10.3390/w16131826
Li Z, Sun F, Jiang W, Li X, Jiang J, Jin F, Lu J, Yang F. Bibliometric Analysis of Trends and Research Progress in Acid Mine Drainage Remediation from 1990 to 2023. Water. 2024; 16(13):1826. https://doi.org/10.3390/w16131826
Chicago/Turabian StyleLi, Zhonghong, Fei Sun, Weilong Jiang, Xiaoguang Li, Jingqiu Jiang, Fangyuan Jin, Jinxia Lu, and Fang Yang. 2024. "Bibliometric Analysis of Trends and Research Progress in Acid Mine Drainage Remediation from 1990 to 2023" Water 16, no. 13: 1826. https://doi.org/10.3390/w16131826
APA StyleLi, Z., Sun, F., Jiang, W., Li, X., Jiang, J., Jin, F., Lu, J., & Yang, F. (2024). Bibliometric Analysis of Trends and Research Progress in Acid Mine Drainage Remediation from 1990 to 2023. Water, 16(13), 1826. https://doi.org/10.3390/w16131826