Bacterial and Parasitic Characterization of the Rivers in Cuenca, Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of the Monitoring Stations
Sub-Basin | Code | Reference | Monitoring Station (Figure 2 and Figure 3) | Sub-Basin | Code | Reference | Monitoring Station (Figure 2 and Figure 3) |
---|---|---|---|---|---|---|---|
Río Tarqui | TA1 | “Portete” | 1 | Río Tomebamba | TO1 | “Llaviuco” | 1 |
TA2 | After the Cumbe River confluence | 2 | TO2 | Sayausí | 2 | ||
TA3 | “Tarqui” | 3 | TO3 | “Puente del Vado” | 3 | ||
TA4 | “Zona Franca” | 4 | TO4 | “Empresa Eléctrica” | 4 | ||
TA5 | After the Zhucay River confluence | 5 | TO5 | Before the Milchichig Stream confluence | 5 | ||
TA6 | “Parque Inclusivo” | 6 | TO6 | Before the discharge in the Cuenca WWTP ** | 6 | ||
TA7 | Before the Yanuncay River confluence | 7 | TO7 | “Challuabamba” | 7 | ||
Río Yanuncay | Y1 | “Dispensario Barabón” | 1 | ||||
Y2 | “Inmaculada de Barabón” | 2 | Río Machángara | M1 | “Chiquintad” | 1 | |
Y3 | “San Joaquín” | 3 | M2 | “Ochoa León” | 2 | ||
Y4 | “Avenida Loja” | 4 | M3 | “Feria de Ganado” | 3 | ||
Y5 | “Tres Puentes” | 5 | M4 | “Parque Industrial” | 4 | ||
Y6 | “Redondel de la UDA *” | 6 | M5 | Before the Tomebamba River confluence | 5 | ||
Y7 | “Parque el Paraíso” | 7 |
2.3. Methodology for Determination of Total Streptococci and Fecal Enterococci: Membrane Filtration Technique
2.4. Methodology for Determination of Crystosporidium and Giardia Oocysts
2.5. Statistical Analysis
3. Results
3.1. Bacterial Indicators
3.2. Parasitic Indicators
4. Discussion
4.1. Regarding Bacterial Indicators
4.2. Regarding Parasites
5. Conclusions
6. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Certad, G.; Viscogliosi, E.; Chabé, M.; Cacciò, S.M. Pathogenic Mechanisms of Cryptosporidium and Giardia. Trends Parasitol. 2017, 33, 561–576. [Google Scholar] [CrossRef] [PubMed]
- Vogt, R.D.; Porcal, P.; Hejzlar, J.; Paule-Mercado, M.C.; Haaland, S.; Gundersen, C.B.; Orderud, G.I.; Eikebrokk, B. Distinguishing between Sources of Natural Dissolved Organic Matter (DOM) Based on Its Characteristics. Water 2023, 15, 3006. [Google Scholar] [CrossRef]
- Xie, Z.; Ye, C.; Li, C.; Shi, X.; Shao, Y.; Qi, W. The Global Progress on the Non-Point Source Pollution Research from 2012 to 2021: A Bibliometric Analysis. Environ. Sci. Eur. 2022, 34, 121. [Google Scholar] [CrossRef]
- Molina, C.A.; Quiroz-Moreno, C.; Jarrín, V.P.; Díaz, M.; Yugsi, E.; Pérez-Galarza, J.; Baldeón-Rojas, L. Bacterial Community Assessment of Drinking Water and Downstream Distribution Systems in Highland Localities of Ecuador. J. Water Health 2024, 22, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, J.; Chang, Y.; Yu, F.; Zhang, S.; Wang, R.; Zhang, L. Prevalence and Molecular Characterization of Cryptosporidium Spp. and Giardia duodenalis in Dairy Cattle in Gansu, Northwest China. Parasite 2020, 27, 62. [Google Scholar] [CrossRef]
- Wen, X.; Chen, F.; Lin, Y.; Zhu, H.; Yuan, F.; Kuang, D.; Jia, Z.; Yuan, Z. Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review. Sustainability 2020, 12, 2249. [Google Scholar] [CrossRef]
- Gensberger, E.T.; Polt, M.; Konrad-Köszler, M.; Kinner, P.; Sessitsch, A.; Kostić, T. Evaluation of Quantitative PCR Combined with PMA Treatment for Molecular Assessment of Microbial Water Quality. Water Res. 2014, 67, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Pauta, G.; Velasco, M.; Gutiérrez, D.; Vázquez, G.; Rivera, S.; Morales, Ó.; Abril, A. Evaluación de La Calidad Del Agua de Los Ríos de La Ciudad de Cuenca, Ecuador. Maskana 2019, 10, 76–88. [Google Scholar] [CrossRef]
- Wong, K.; Fong, T.-T.; Bibby, K.; Molina, M. Application of Enteric Viruses for Fecal Pollution Source Tracking in Environmental Waters. Environ. Int. 2012, 45, 151–164. [Google Scholar] [CrossRef]
- Saleem, F.; Schellhorn, H.E.; Simhon, A.; Edge, T.A. Same-Day Enterococcus qPCR Results of Recreational Water Quality at Two Toronto Beaches Provide Added Public Health Protection and Reduced Beach Days Lost. Can. J. Public Health 2023, 114, 676–687. [Google Scholar] [CrossRef]
- Jalliffier-Verne, I.; Leconte, R.; Huaringa-Alvarez, U.; Heniche, M.; Madoux-Humery, A.-S.; Autixier, L.; Galarneau, M.; Servais, P.; Prévost, M.; Dorner, S. Modelling the Impacts of Global Change on Concentrations of Escherichia coli in an Urban River. Adv. Water Res. 2017, 108, 450–460. [Google Scholar] [CrossRef]
- Waideman, M.A.; Teixeira, V.P.; Uemura, E.H.; Stamford, T.M.; Leal, D.A.G.; Stangarlin-Fiori, L.; Ferreira, S.M.R.; Taconeli, C.A.; Beux, M.R. Enterococci Used as Complementary Indicator of Fecal Contamination to Assess Water Quality from Public Schools in the City of Curitiba, Paraná, Brazil. Braz. J. Food Technol. 2020, 23, e2019155. [Google Scholar] [CrossRef]
- Sidhu, J.P.S.; Hodgers, L.; Ahmed, W.; Chong, M.N.; Toze, S. Prevalence of Human Pathogens and Indicators in Stormwater Runoff in Brisbane, Australia. Water Res. 2012, 46, 6652–6660. [Google Scholar] [CrossRef] [PubMed]
- Pauta, G.; Vázquez, G.; Abril, A.; Torres, C.; Loja, M.; Palta, A. Indicadores Bacteriológicos de Contaminación Fecal En Los Ríos de Cuenca, Ecuador. Maskana 2020, 11, 46–57. [Google Scholar] [CrossRef]
- Batra, A.R.; Cottam, D.; Lepesteur, M.; Dexter, C.; Zuccala, K.; Martino, C.; Khudur, L.; Daniel, V.; Ball, A.S.; Soni, S.K. Development of A Rapid, Low-Cost Portable Detection Assay for Enterococci in Wastewater and Environmental Waters. Microorganisms 2023, 11, 381. [Google Scholar] [CrossRef] [PubMed]
- Byappanahalli, M.N.; Yan, T.; Hamilton, M.J.; Ishii, S.; Fujioka, R.S.; Whitman, R.L.; Sadowsky, M.J. The Population Structure of Escherichia coli Isolated from Subtropical and Temperate Soils. Sci. Total Environ. 2012, 417–418, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Badgley, B.; Hagedorn, C. Microbial Source Tracking: Advances in Research and a Guide to Application. In Advances in Watershed Science and Assessment; Younos, T., Parece, T.E., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2015; Volume 33, pp. 267–288. ISBN 978-3-319-14211-1. [Google Scholar]
- Bourli, P.; Eslahi, A.V.; Tzoraki, O.; Karanis, P. Waterborne Transmission of Protozoan Parasites: A Review of Worldwide Outbreaks—An Update 2017–2022. J. Water Health 2023, 21, 1421–1447. [Google Scholar] [CrossRef]
- Moussa, A.S.; Ashour, A.A.; Soliman, M.I.; Taha, H.A.; Al-Herrawy, A.Z.; Gad, M. Fate of Cryptosporidium and Giardia through Conventional and Compact Drinking Water Treatment Plants. Parasitol. Res. 2023, 122, 2491–2501. [Google Scholar] [CrossRef]
- Efstratiou, A.; Ongerth, J.E.; Karanis, P. Waterborne Transmission of Protozoan Parasites: Review of Worldwide Outbreaks—An Update 2011–2016. Water Res. 2017, 114, 14–22. [Google Scholar] [CrossRef]
- Fradette, M.-S.; Culley, A.I.; Charette, S.J. Detection of Cryptosporidium Spp. and Giardia Spp. in Environmental Water Samples: A Journey into the Past and New Perspectives. Microorganisms 2022, 10, 1175. [Google Scholar] [CrossRef]
- Guillen, A.; González, M.; Gallego, L.; Suárez, B.; Heredia, H.L.; Hernández, T.; Naranjo, M.; Salazar, J. Presencia de Protozoarios Intestinales En Agua de Consumo En La Comunidad 18 de Mayo. Estado Aragua-Venezuela, 2011. Boletín Malariol. Salud Ambient. 2013, 53, 29–36. [Google Scholar]
- Sanchez, C. Detección y Caracterización Molecular de Los Parásitos de Interés En Salud Pública: Giardia Duodenalis, Cryptosporidium Spp., Cyclospora cayetanensis, Toxoplasma gondii y Entamoeba Histolytica, En Agua Cruda y Tratada de Cuatro Plantas Potabilizadoras Del Departamento de Nariño Colombia; Universidad Nacional de Colombia: Bogotá, Colombia, 2017. [Google Scholar]
- García-Sánchez, E.; Valladares-Carranza, B.; Talavera-Rojas, M.; Velázquez-Ordóñez, V. Cryptosporidiosis. Importancia En Salud Pública. Redvet Rev. Electrónica Vet. 2014, 15. [Google Scholar]
- Motlagh, A.M.; Yang, Z. Detection and Occurrence of Indicator Organisms and Pathogens. Water Environ. Res. 2019, 91, 1402–1408. [Google Scholar] [CrossRef]
- Garcia, I. Contribución de Los Animales Domésticos y Silvestres a La Contaminación de Aguas Superficiales Por Cryptosporidium y Giardia. Master’s Thesis, Portal de la Investigación Universidad Complutense Madrid, Universidad Santiago de Compostela, Santiago de Compostela, Spain, 2012. [Google Scholar]
- Hamilton, K.A.; Waso, M.; Reyneke, B.; Saeidi, N.; Levine, A.; Lalancette, C.; Besner, M.; Khan, W.; Ahmed, W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. J. Environ. Qual. 2018, 47, 1006–1023. [Google Scholar] [CrossRef] [PubMed]
- Bartelt, L.A.; Sartor, R.B. Advances in Understanding Giardia: Determinants and Mechanisms of Chronic Sequelae. F1000Prime Rep. 2015, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Pinto Linaza, A.X. Cryptosporidium y Giardia Como Parásitos de Transmisión Hídrica En Las Islas Canarias. Master’s Thesis, Repositorio Institucional ULL, Universidad de la Laguna, La Laguna, Spain, 2020. [Google Scholar]
- Raffo Lecca, E. Tratado Del Agua y La Legislación Peruana. Ind. Data 2016, 16, 106. [Google Scholar] [CrossRef]
- Ríos-Tobón, S.; Agudelo-Cadavid, R.M.; Gutiérrez-Builes, L.A. Patógenos e Indicadores Microbiológicos de Calidad Del Agua Para Consumo Humano. Rev. Fac. Nac. Salud Pública 2017, 35, 236–247. [Google Scholar] [CrossRef]
- Ryan, U.; Hijjawi, N. New Developments in Cryptosporidium Research. Int. J. Parasitol. 2015, 45, 367–373. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2011.
- Chang, Y.; Li, J.; Zhang, L. Genetic Diversity and Molecular Diagnosis of Giardia. Infect. Genet. Evol. 2023, 113, 105482. [Google Scholar] [CrossRef]
- Fernandez, E.; Vasquez, O. Identificar La Presencia de Giardia Spp. y Cryptosporidium Spp. En Agua de Pozo, Distrito de Lambayeque. Master’s Thesis, Repositorio Instituciona—UNPRG, Universidad Pedro Ruiz Gallo, Lambayeque, Peru, 2019. [Google Scholar]
- Pumipuntu, N.; Piratae, S. Cryptosporidiosis: A Zoonotic Disease Concern. Vet. World 2018, 11, 681–686. [Google Scholar] [CrossRef]
- Castro-Hermida, J.A.; García-Presedo, I.; Almeida, A.; González-Warleta, M.; Correia Da Costa, J.M.; Mezo, M. Cryptosporidium Spp. and Giardia Duodenalis in Two Areas of Galicia (NW Spain). Sci. Total Environ. 2011, 409, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Checkley, W.; White, A.C.; Jaganath, D.; Arrowood, M.J.; Chalmers, R.M.; Chen, X.-M.; Fayer, R.; Griffiths, J.K.; Guerrant, R.L.; Hedstrom, L.; et al. A Review of the Global Burden, Novel Diagnostics, Therapeutics, and Vaccine Targets for Cryptosporidium. Lancet Infect. Dis. 2015, 15, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Daraei, H.; Oliveri Conti, G.; Sahlabadi, F.; Thai, V.N.; Gholipour, S.; Turki, H.; Fakhri, Y.; Ferrante, M.; Moradi, A.; Mousavi Khaneghah, A. Prevalence of Cryptosporidium Spp. in Water: A Global Systematic Review and Meta-Analysis. Environ. Sci. Pollut. Res. 2021, 28, 9498–9507. [Google Scholar] [CrossRef]
- Hernández-Gallo, N.; Hernández-Flórez, L.J.; Cortés-Vecino, J.A. Criptosporidiosis y «Una Salud». Rev. Salud Pública 2018, 20, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Omarova, A.; Tussupova, K.; Berndtsson, R.; Kalishev, M.; Sharapatova, K. Protozoan Parasites in Drinking Water: A System Approach for Improved Water, Sanitation and Hygiene in Developing Countries. Int. J. Environ. Res. Public Health 2018, 15, 495. [Google Scholar] [CrossRef] [PubMed]
- Benito, M.; LaPlante, D.; Rubio, E.; Fernández, M.T.; Miguel, N.; Clavel, A.; Ormad, M.P.; Goñi, P. Reutilización de Efluentes y Fangos de EDAR y Presencia de Parásitos y Protozoos Potencialmente Patógenos. 2017. Available online: https://www.aguasresiduales.info/revista/articulos/reutilizacion-de-efluentes-y-fangos-de-edar-y-presencia-de-parasitos-y-protozoos-potencialmente-patogenos (accessed on 1 December 2023).
- Hoyos, L.d.C. Detección de Giardia Spp. en Aguas Residuales de La Ciudad de Ensenada, Baja California, México. Master’s Thesis, Repositorio Institucional UABC, Universidad Autónoma de Baja California, Ciudad de México, México, 2017. [Google Scholar]
- López, A. Giardia, Cryptosporidium y Transmisión, Estudio Sobre Su Presencia y Diversidad Genética En Hospedadores Naturales e Importancia Del Agua Como Vía de Transmisión. Ph.D. Thesis, Repositorio Institucional UZ., Universidad de Zaragoza, Zaragoza, Spain, 2017. [Google Scholar]
- Suarez, P.; Alonso, J.L.; Gómez, G.; Vidal, G. Performance of Sewage Treatment Technologies for the Removal of Cryptosporidium Sp. and Giardia Sp.: Toward Water Circularity. J. Environ. Manag. 2022, 324, 116320. [Google Scholar] [CrossRef] [PubMed]
- Taran-Benshoshan, M.; Ofer, N.; Dalit, V.-O.; Aharoni, A.; Revhun, M.; Nitzan, Y.; Nasser, A.M. Cryptosporidium and Giardia Removal by Secondary and Tertiary Wastewater Treatment. J. Environ. Sci. Health Part A 2015, 50, 1265–1273. [Google Scholar] [CrossRef]
- Yanez Cossío, F. Lagunas de Estabilización: Teoria, Diseño, Evaluación y Mantenimiento; Monsalve: Miami, FL, USA, 1993. [Google Scholar]
- Balderrama-Carmona, A.P.; Gortáres-Moroyoqui, P.; Chaidez-Quiroz, C.; Castro-Espinoza, L.; Mondaca-Fernandez, I.; Baderas-Cortés, J. Evaluación Cuantitativa de Riesgos Por Cryptosporidium Parvum y Giardia Intestinalis en Agua de Pozo. In Proceedings of the IV Congreso Internacional de Ciencias, Artes, Tecnología y Humanidades 2011, Querétaro, Mexico, 3–4 December 2011. [Google Scholar]
- Díaz-Cinco, M.E.; Leyva, M.; Mata-Haro, V.; González-Ríos, H. Incidencia y Viabilidad de Cryptosporidium Parvum En El Agua Potable de Ciudad Obregón, Sonora, México. Rev. Int. Contam. Ambient. 2003, 19, 67–72. [Google Scholar]
- Ghafuri, Y.; Yari, A.R.; Shams, S.; Aali, R. Microbial Exposure Risk Assessment of Urban Wastewater by Irrigation of Agricultural Products. Res. Sq. 2022. preprint. [Google Scholar] [CrossRef]
- Ezzat, S.M. Applying Quantitative Microbial Risk Assessment Model in Developing Appropriate Standards for Irrigation Water. Integr. Environ. Assess. Manag. 2020, 16, 353–361. [Google Scholar] [CrossRef]
- Schijven, J.; Derx, J.; De Roda Husman, A.M.; Blaschke, A.P.; Farnleitner, A.H. QMRAcatch: Microbial Quality Simulation of Water Resources Including Infection Risk Assessment. J. Environ. Qual. 2015, 44, 1491–1502. [Google Scholar] [CrossRef]
- Ma, J.-Y.; Li, M.-Y.; Qi, Z.-Z.; Fu, M.; Sun, T.-F.; Elsheikha, H.M.; Cong, W. Waterborne Protozoan Outbreaks: An Update on the Global, Regional, and National Prevalence from 2017 to 2020 and Sources of Contamination. Sci. Total Environ. 2022, 806, 150562. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.; Molina, F.; Chalarca, D. Calidad Del Agua En Las Américas Riesgos y Oportunidades; IANAS: Ciudad de México, México, 2019. [Google Scholar]
- Sun, J.; Qin, Z.; Fu, Y.; Qin, H.; Sun, M.; Dong, H.; Chao, L.; Zhang, L.; Li, J. Assessment of Potential Zoonotic Transmission of Giardia Duodenalis from Dogs and Cats. One Health 2023, 17, 100651. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.A.; Rovira, D. El Agua Como Factor de Riesgo Para La Transmisión de Protozoarios y Helmintos. Plus Econ. 2020, 8, 47–67. [Google Scholar]
- Agyabeng-Dadzie, F.; Xiao, R.; Kissinger, J.C. Cryptosporidium Genomics — Current Understanding, Advances, and Applications. Curr. Trop. Med. Rep. 2024, 11, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Gururajan, A.; Rajkumari, N.; Devi, U.; Borah, P. Cryptosporidium and Waterborne Outbreaks – A Mini Review. Trop. Parasitol. 2021, 11, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Salcedo Pernett, Á.D.; Roa Sabalza, N.C.; Jinete Guardela, J.I. Prevalencia de Parásitos En Aguas Recreativas de Colombia En Comparación Con Otros Países; Facultad Ciencias Básicas y Biomédicas, Universidad Simón Bolivar: Barranquilla Colombia, 2021. [Google Scholar]
- INEC Ecuador. Available online: https://www.ecuadorencifras.gob.ec/institucional/home/ (accessed on 1 December 2023).
- Pauta-Calle, G.; Velasco, M.; Vázquez, G.; Abril, A.; Torres, S. Analysis and Risk Assessment of Arsenic in the Water Sources of the Cities Cuenca and Azogues, Ecuador. Maskana 2021, 12, 71–79. [Google Scholar] [CrossRef]
- UNE-EN ISO 7899-2; Water Quality—Detection and Enumeration of Intestinal Enterococci—Part 2: Membrane Filtration Method. ISO: Geneva, Switzerland, 2000.
- Díaz, P.; Zhurbenko, R.; Lobaina, R.; Quiñones, P.; Rodríguez, M. Determinación Cuantitativa de Enterococos En Aguas Utilizando Un Método Cromogénico Alternativo. Rev. Cuba. Investig. Biomédicas 2014, 33, 1–11. [Google Scholar]
- Alarcón, M.A.; Beltrán, M.; Cárdenas, M.L.; Campos, M.C. Recuento y Determinación de Viabilidad de Giardia Spp. y Cryptosporidium Spp. En Aguas Potables y Residuales En La Cuenca Alta Del Rio Bogotá. Biomedica 2005, 25, 353. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
- Texto Unificado de Legislacion Secundaria de Medio Ambiente. 2017. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/TULSMA.pdf (accessed on 1 December 2023).
- Health Canada. Guidelines for Canadian Recreational Water Quality, 3rd ed.; Health Canada: Ottawa, ON, Canada, 2012. [Google Scholar]
- USEPA 2012 Guidelines for Water Reuse. 2012. Available online: https://www.epa.gov/sites/default/files/2019-08/documents/2012-guidelines-water-reuse.pdf (accessed on 1 December 2023).
- Campos-Pinilla, C.; Cárdenas-Guzmán, M.; Guerrero-Cañizares, A.A. Comportamiento de Los Indicadores de Contaminación Fecal En Diferente Tipo de Aguas de La Sabana de Bogotá (COLOMBIA). Univ. Sci 2008, 13, 103–108. [Google Scholar]
- INCO-DC: International Cooperation with Developing Countries. Evaluation of the Usefulness of Bacteriophages as Model Microorganisms for the Assessment of Water Treatment Processes and Water Quality; ERB IC18-CT98-0282; Comunidad Europea: Barcelona, España, 2001; 10p. [Google Scholar]
- Balthazard-Accou, K.; Emmanuel, E.; Agnamey, P.; Brasseur, P.; Lilite, O.; Totet, A.; Raccurt, C.P. Presence of Cryptosporidium Oocysts and Giardia Cysts in the Surface Water and Groundwater in the City of Cayes, Haiti. Aqua-LAC 2009, 1, 63–71. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, J.; Santiago-Rivera, L.; Guzmán-Ríos, S.; Ómez-Gómez, F.; Oliveras-Feliciano, M.L. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayagüez, Puerto Rico, 1999–2002; U.S. Geological Survey: Reston, VA, USA, 2004.
- Ding, H.; Niu, X.; Zhang, D.; Lv, M.; Zhang, Y.; Lin, Z.; Fu, M. Spatiotemporal Analysis and Prediction of Water Quality in Pearl River, China, Using Multivariate Statistical Techniques and Data-Driven Model. Environ. Sci. Pollut. Res. 2023, 30, 63036–63051. [Google Scholar] [CrossRef]
- Randazzo, V.; Lucchi, L.; Basabe, N.; La Sala, L.; Visciarelli, E. Análisis Parasitológico En Fuentes de Agua Para Consumo de La Ciudad de Bahía Blanca y Zona de Influencia. Rev. Argent. Parasitol. 2021, 10, 15–18. [Google Scholar]
- Borja-Serrano, P.; Ochoa-Herrera, V.; Maurice, L.; Morales, G.; Quilumbaqui, C.; Tejera, E.; Machado, A. Determination of the Microbial and Chemical Loads in Rivers from the Quito Capital Province of Ecuador (Pichincha)—A Preliminary Analysis of Microbial and Chemical Quality of the Main Rivers. Int. J. Environ. Res. Public Health 2020, 17, 5048. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M. Investigación de Patógenos Humanos y Zoonósicos En Potenciales Fuentes de Agua Para Quito. Master’s Thesis, Universidad San Francisco de Quito, Quito, Ecuador, 2018. [Google Scholar]
- Campos Compean, J.M.; Fernández Presas, A.M.; Monroy Dosta, M.d.C.; Partida, A.H.; Bustos Martínez, J. Métodos Para La Detección de Blastocystis Spp, Entamoeba Histolytica, Giardia Lamblia, y Cryptosporidium Spp. en Muestras de Agua y Materia Fecal. Soc. Rural. Prod. Medio Ambiente 2022, 22, 161–177. [Google Scholar]
- Hao, Y.; Liu, A.; Li, H.; Zhao, Y.; Yao, L.; Yang, B.; Zhang, W.; Yang, F. Molecular Characterization and Zoonotic Potential of Cryptosporidium Spp. and Giardia duodenalis in Humans and Domestic Animals in Heilongjiang Province, China. Parasites Vectors 2024, 17, 155. [Google Scholar] [CrossRef] [PubMed]
- Helmi, K.; Barthod, F.; Méheut, G.; Henry, A.; Poty, F.; Laurent, F.; Charni-Ben-Tabassi, N. Methods for Microbiological Quality Assessment in Drinking Water: A Comparative Study. J. Water Health 2015, 13, 34–41. [Google Scholar] [CrossRef]
- Abdou, N.-E.M.I.; AlAzemi, M.S.; Al-Sayegh, M.T.; Majeed, Q.A.H. Performance of Diagnostic Assays Used to Detect Cryptosporidium Oocysts in Faecal Samples of Cattle in Kuwait and Genotyping of Cryptosporidium Species. BMC Vet. Res. 2022, 18, 336. [Google Scholar] [CrossRef]
- Kunz, J.M.; Lawinger, H.; Miko, S.; Gerdes, M.; Thuneibat, M.; Hannapel, E.; Roberts, V.A. Surveillance of Waterborne Disease Outbreaks Associated with Drinking Water—United States, 2015–2020; Centers for Disease Control and Prevention, U.S. Department of Health and Human Services: Washington, DC, USA, 2024.
- Ashok, A.; Khedikar, I. Overview of Water Disinfection by UV Technology—A Review. Int. J. Sci. Technol. Eng. 2016. [Google Scholar] [CrossRef]
- Craun, G.F.; Calderon, R.L. Waterborne Disease Outbreaks Caused by Distribution System Deficiencies. J. Am. Water Work. Assoc. 2001, 93, 64–75. [Google Scholar] [CrossRef]
- Gomes, J.; Matos, A.; Gmurek, M.; Quinta-Ferreira, R.M.; Martins, R.C. Ozone and Photocatalytic Processes for Pathogens Removal from Water: A Review. Catalysts 2019, 9, 46. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, Z.; Liu, H.; Lu, Y.; Li, K.; Shi, Y.; Mao, Y.; Hu, H.-Y. Efficient Synergistic Disinfection by Ozone, Ultraviolet Irradiation and Chlorine in Secondary Effluents. Sci. Total Environ. 2021, 758, 143641. [Google Scholar] [CrossRef] [PubMed]
Correlation | ||
---|---|---|
River | Dry | Rainy |
Tomebamba | 0.967 * (n = 21) | --- |
Yanuncay | 0.967 * (n = 7) | 0.955 * (n = 14) |
Tarqui | 0.954 * (n = 21) | --- |
Machángara | 0.948 * (n = 10) | 0.60 (n = 5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pauta, G.; Vázquez, G.; Carrillo, V.; Torres, C. Bacterial and Parasitic Characterization of the Rivers in Cuenca, Ecuador. Water 2024, 16, 2016. https://doi.org/10.3390/w16142016
Pauta G, Vázquez G, Carrillo V, Torres C. Bacterial and Parasitic Characterization of the Rivers in Cuenca, Ecuador. Water. 2024; 16(14):2016. https://doi.org/10.3390/w16142016
Chicago/Turabian StylePauta, Guillermina, Gabriela Vázquez, Verónica Carrillo, and Carlos Torres. 2024. "Bacterial and Parasitic Characterization of the Rivers in Cuenca, Ecuador" Water 16, no. 14: 2016. https://doi.org/10.3390/w16142016
APA StylePauta, G., Vázquez, G., Carrillo, V., & Torres, C. (2024). Bacterial and Parasitic Characterization of the Rivers in Cuenca, Ecuador. Water, 16(14), 2016. https://doi.org/10.3390/w16142016