Bibliometric Insights into Car Wash Wastewater Treatment Research: Trends and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Search Strategy
2.2. Data Extraction and Filtering
2.3. Data Analysis
3. Results and Discussion
3.1. Publications Output
3.2. Top Journals for Research on the CWW Treatment
3.3. Country Collaboration Network for CWW Treatment
3.4. Authors’ Co-Citation Networks in CWW Treatment Research
3.5. Most Important Conferences and Publications in CWW Research
3.6. Primary Research Areas of the CWW Treatment Research
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sarmadi, M.; Foroughi, M.; Najafi Saleh, H.; Sanaei, D.; Zarei, A.A.; Ghahrchi, M.; Bazrafshan, E. Efficient technologies for carwash wastewater treatment: A systematic review. Environ. Sci. Pollut. Res. 2020, 27, 34823–34839. [Google Scholar] [CrossRef] [PubMed]
- Tagliabue, M.; Reverberi, A.P.; Bagatin, R. Boron removal from water: Needs, challenges and perspectives. J. Clean. Prod. 2014, 77, 56–64. [Google Scholar] [CrossRef]
- Cuput, E.L.; Mensah, L.; Bentil, E.; Amponsah, V.; Agbekey, B.K. Heavy metal contamination from fuel station run-off and carwash wastewater: An assessment of ecological risk and experimental treatment. Heliyon 2024, 10, e29167. [Google Scholar] [CrossRef] [PubMed]
- Jamrah, A.; AL-Zghoul, T.M.; Al-Qodah, Z. An Extensive Analysis of Combined Processes for Landfill Leachate Treatment. Water 2024, 16, 1640. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Zhang, S.; Pan, B. Application potential of carbon nanotubes in water treatment: A review. J. Environ. Sci. 2013, 25, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Boluarte, I.A.R.; Andersen, M.; Pramanik, B.K.; Chang, C.Y.; Bagshaw, S.; Farago, L.; Jegatheesan, V.; Shu, L. Reuse of car wash wastewater by chemical coagulation and membrane bioreactor treatment processes. Int. Biodeterior. Biodegrad. 2016, 113, 44–48. [Google Scholar] [CrossRef]
- Buthiyappan, A.; Raman, A.A.A. Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. J. Clean. Prod. 2019, 206, 1025–1040. [Google Scholar] [CrossRef]
- Faraj, H.; Jamrah, A.; Al-Omari, S.; Al-Zghoul, T.M. Optimization of an electrocoagulation-assisted adsorption treatment system for dairy wastewater. Case Stud. Chem. Environ. Eng. 2024, 9, 100574. [Google Scholar] [CrossRef]
- Han, N.; Zhang, J.; Hoang, M.; Gray, S.; Xie, Z. A review of process and wastewater reuse in the recycled paper industry. Environ. Technol. Innov. 2021, 24, 101860. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Zghoul, T.M.; Jamrah, A. The performance of pharmaceutical wastewater treatment system of electrocoagulation assisted adsorption using perforated electrodes to reduce passivation. Environ. Sci. Pollut. Res. 2024, 31, 20434–20448. [Google Scholar] [CrossRef]
- Al-Zghoul, T.M.; Al-Qodah, Z.; Al-Jamrah, A. Performance, Modeling, and Cost Analysis of Chemical Coagulation-Assisted Solar Powered Electrocoagulation Treatment System for Pharmaceutical Wastewater. Water 2023, 15, 980. [Google Scholar] [CrossRef]
- Karthikeyan, K.T.; Nithya, A.; Jothivenkatachalam, K. Photocatalytic and antimicrobial activities of chitosan-TiO2 nanocomposite. Int. J. Biol. Macromol. 2017, 104, 1762–1773. [Google Scholar] [CrossRef] [PubMed]
- Mallick, S.K.; Chakraborty, S. Bioremediation of wastewater from automobile service station in anoxic-aerobic sequential reactors and microbial analysis. Chem. Eng. J. 2019, 361, 982–989. [Google Scholar] [CrossRef]
- Awad, E.S.; Abdulla, S.M.; Sabirova, T.M.; Alsalhy, Q.F. Membrane techniques for removal detergents and petroleum products from carwash effluents: A review. Chim. Technol. Acta 2023, 10, 202310107. [Google Scholar] [CrossRef]
- Kuan, W.H.; Hu, C.Y.; Ke, L.W.; Wu, J.M. A review of on-site carwash wastewater treatment. Sustainability 2022, 14, 5764. [Google Scholar] [CrossRef]
- Gönder, Z.B.; Balcıoğlu, G.; Vergili, I.; Kaya, Y. Electrochemical treatment of carwash wastewater using Fe and Al electrode: Techno-economic analysis and sludge characterization. J. Environ. Manag. 2017, 200, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.C.S.; de Barros Grossi, L.; de Melo, R.A.C.; de Assis, T.M.; Ribeiro, V.M.; Amaral, M.C.S.; de Souza Figueiredo, K.C. Carwash wastewater treatment by micro and ultrafiltration membranes: Effects of geometry, pore size, pressure difference and feed flow rate in transport properties. J. Water Process Eng. 2017, 17, 143–148. [Google Scholar] [CrossRef]
- Tony, M.A.; Lin, L.S. Performance of acid mine drainage sludge as an innovative catalytic oxidation source for treating vehicle-washing wastewater. J. Dispers. Sci. Technol. 2021, 43, 50–60. [Google Scholar] [CrossRef]
- Davarnejad, R.; Sarvmeili, K.; Sabzehei, M. Car wash wastewater treatment using an advanced oxidation process: A rapid technique for the COD reduction of water pollutant sources. J. Mex. Chem. Soc. 2019, 63, 164–175. [Google Scholar] [CrossRef]
- Talebzadeh, F.; Valeo, C.; Gupta, R.; Constabel, C.P. Exploring the Potential in LID Technologies for remediating heavy metals in carwash wastewater. Sustainability 2021, 13, 8727. [Google Scholar] [CrossRef]
- Zaneti, R.N.; Etchepare, R.; Rubio, J. Car wash wastewater treatment and water reuse–a case study. Water Sci. Technol. 2013, 67, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Moazzem, S. Application of Ceramic Ultrafiltration/Reverse Osmosis Membranes and Enhanced Membrane Bioreactor for the Reuse of Car Wash Wastewater. Master’s Thesis, RMIT University, Melbourne, Australia, 2017. [Google Scholar]
- Al-Gheethi, A.A.; Mohamed, R.M.S.R.; Rahman, M.A.A.; Johari, M.R.; Kassim, A.H.M. Treatment of wastewater from car washes using natural coagulation and filtration system. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2016; Volume 136, p. 012046. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Mahmoud, N.S.; Ibrahim, M.M.; Mostafa, E.A.; Abdelrahman, E.N.; Emam, R.H.; Kassem, M.A.; Hatem, M.H. Carwash Wastewater Treatment and Reclamation Technologies for Water Conservation and Pollution Load Reduction: A Review. Int. J. Biopro. Biotechnol. Adv. 2021, 7, 274–310. [Google Scholar]
- Vaccari, M.; Gialdini, F.; Collivignarelli, C. Study of the reuse of treated wastewater on waste container washing vehicles. Waste Manag. 2013, 33, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Gönder, Z.B.; Balcıoğlu, G.; Kaya, Y.; Vergili, I. Treatment of carwash wastewater by electrocoagulation using Ti electrode: Optimization of the operating parameters. Int. J. Environ. Sci. Technol. 2019, 16, 8041–8052. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Dos Santos, E.V.; de Araújo Costa, E.C.T.; Martínez-Huitle, C.A. Electrochemical advanced oxidation processes (EAOPs) as alternative treatment techniques for carwash wastewater reclamation. Chemosphere 2018, 211, 998–1006. [Google Scholar] [CrossRef]
- Enoh, B.S.; Christopher, W. Adsorption of metal ions from carwash wastewater by phosphoric acid modified clay: Kinetics and thermodynamic studies. Adsorption 2015, 7, 1–8. [Google Scholar]
- Boussu, K.; Kindts, C.; Vandecasteele, C.; Van der Bruggen, B. Applicability of nanofiltration in the carwash industry. Sep. Purif. Technol. 2007, 54, 139–146. [Google Scholar] [CrossRef]
- Bakacs, M.E.; Yergeau, S.E.; Obropta, C.C. Assessment of car wash runoff treatment using bioretention mesocosms. J. Environ. Eng. 2013, 139, 1132–1136. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Applicability of electrochemical methods to carwash wastewaters for reuse. Part 2: Electrocoagulation and anodic oxidation integrated process. J. Electroanal. Chem. 2010, 638, 236–240. [Google Scholar] [CrossRef]
- Gönder, Z.B.; Balcıoğlu, G.; Vergili, I.; Kaya, Y. An integrated electrocoagulation–nanofiltration process for carwash wastewater reuse. Chemosphere 2020, 253, 126713. [Google Scholar] [CrossRef]
- Ahmad, J.; Khan, N.A.; Shafiq, M.A.; Khan, N. A low-cost wastewater treatment unit for reducing the usage of fresh water at car wash stations in Pakistan. Pak. J. Sci. Ind. Res. Ser. A Phys. Sci. 2019, 62, 57–66. [Google Scholar]
- Jamrah, A.; Al-Zghoul, T.M.; Darwish, M.M. A comprehensive review of combined processes for olive mill wastewater treatments. Case Stud. Chem. Environ. Eng. 2023, 8, 100493. [Google Scholar] [CrossRef]
- Durna, E.; Nevim, G.E.N.Ç. Application of a multiple criteria analysis for the selection of appropriate radical based processes in treatment of car wash wastewater. Environ. Eng. Res. 2021, 26, 200115. [Google Scholar] [CrossRef]
- Dadebo, D.; Ibrahim, M.G.; Fujii, M.; Nasr, M. Transition towards sustainable carwash wastewater management: Trends and enabling technologies at global scale. Sustainability 2022, 14, 5652. [Google Scholar] [CrossRef]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environ. Pollut. 2021, 275, 115785. [Google Scholar] [CrossRef] [PubMed]
- Baarimah, A.O.; Alaloul, W.S.; Liew, M.S.; Baarimah, S.O.; Musarat, M.A.; Bin Mokaizh, A.A. A Bibliometric Review of Research Trends on Kenaf Fiber Reinforced Concrete. Constr. Technol. Archit. 2023, 4, 57–65. [Google Scholar] [CrossRef]
- Jamrah, A.; Al-Zghoul, T.; Baarimah, A.O.; Al-Karablieh, E. A bibliometric analysis of olive mill wastewater treatment methods from 1988 to 2023. Case Stud. Chem. Environ. Eng. 2024, 9, 100736. [Google Scholar] [CrossRef]
- De Battisti, F.; Salini, S. Robust analysis of bibliometric data. Stat. Methods Appl. 2013, 22, 269–283. [Google Scholar] [CrossRef]
- Vasseghian, Y.; Sezgin, D.; Nguyen, D.C.; Hoang, H.Y.; Yilmaz, M.S. A hybrid nanocomposite based on CuFe layered double hydroxide coated graphene oxide for photocatalytic degradation of trimethoprim. Chemosphere 2023, 322, 138243. [Google Scholar] [CrossRef]
- Baarimah, A.O.; Alaloul, W.S.; Liew, M.S.; Alawag, A.M.; Musarat, M.A.; Alzubi, K.M. Current State of Post-Disaster Reconstruction Projects: A Bibliometric Analysis. In Proceedings of the 2021 International Conference on Decision Aid Sciences and Application (DASA), Sakheer, Bahrain, 7–8 December 2021; pp. 108–113. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Firdaus, A.; Razak, M.F.A.; Feizollah, A.; Hashem, I.A.T.; Hazim, M.; Anuar, N.B. The rise of “blockchain”: Bibliometric analysis of blockchain study. Scientometrics 2019, 120, 1289–1331. [Google Scholar] [CrossRef]
- Moakizh, A.A.B.; Nour, A.H.; Alara, O.R.; Baarimah, A.O. Bioactive Components of Commiphora Gileadensis Plant for Various Medicinal Applications: A Bibliometric Analysis. In Proceedings of the 2022 International Conference on Data Analytics for Business and Industry (ICDABI), Sakhir, Bahrain, 25–26 October 2022; pp. 21–27. [Google Scholar] [CrossRef]
- Hallinger, P.; Suriyankietkaew, S. Science mapping of the knowledge base on sustainable leadership, 1990–2018. Sustainability 2018, 10, 4846. [Google Scholar] [CrossRef]
- Müßigmann, B.; von der Gracht, H.; Hartmann, E. Blockchain technology in logistics and supply chain management—A bibliometric literature review from 2016 to January 2020. IEEE Trans. Eng. Manag. 2020, 67, 988–1007. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A comparison between two main academic literature collections: Web of Science and Scopus databases. arXiv 2013, arXiv:1305.0377. [Google Scholar] [CrossRef]
- Mesdaghinia, A.; Mahvi, A.H.; Nasseri, S.; Nodehi, R.N.; Hadi, M. A bibliometric analysis on the solid waste-related research from 1982 to 2013 in Iran. Int. J. Recycl. Org. Waste Agric. 2015, 4, 185–195. [Google Scholar] [CrossRef]
- Bazel, M.A.; Mohammed, F.; Ahmad, M.; Baarimah, A.O.; Ibrahim, M.A. Blockchain-Based Healthcare: Trend Mapping through Bibliometric Analysis. In Proceedings of the 2023 3rd International Conference on Emerging Smart Technologies and Applications (eSmarTA), Taiz, Yemen, 10–11 October 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Zahoor, A.; Mao, G.; Jia, X.; Xiao, X.; Chen, J.L. Global research progress on mining wastewater treatment: A bibliometric analysis. Environ. Sci. Adv. 2022, 1, 92–109. [Google Scholar] [CrossRef]
- Kasavan, S.; Yusoff, S.; Guan, N.C.; Zaman, N.S.K.; Fakri, M.F.R. Global trends of textile waste research from 2005 to 2020 using bibliometric analysis. Environ. Sci. Pollut. Res. 2021, 28, 44780–44794. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual; Univeristeit Leiden: Leiden, The Netherlands, 2013. [Google Scholar]
- Usmani, M.S.; Wang, J.; Ahmad, N.; Iqbal, M.; Ahmed, R.I. Mapping green technologies literature published between 1995 and 2019: A scientometric review from the perspective of the manufacturing industry. Environ. Sci. Pollut. Res. 2021, 28, 28848–28864. [Google Scholar] [CrossRef]
- Rai, R.; Sharma, S.; Gurung, D.B.; Sitaula, B.K.; Shah, R.D.T. Assessing the impacts of vehicle wash wastewater on surface water quality through physico-chemical and benthic macroinvertebrates analyses. Water Sci. 2020, 34, 39–49. [Google Scholar] [CrossRef]
- Ross-Hellauer, T.; Tennant, J.P.; Banelytė, V.; Gorogh, E.; Luzi, D.; Kraker, P.; Pisacane, L.; Ruggieri, R.; Sifacaki, E.; Vignoli, M. Ten simple rules for innovative dissemination of research. PLoS Comput. Biol. 2020, 16, e1007704. [Google Scholar] [CrossRef]
- Han, P.; Shi, J.; Li, X.; Wang, D.; Shen, S.; Su, X. International collaboration in LIS: Global trends and networks at the country and institution level. Scientometrics 2014, 98, 53–72. [Google Scholar] [CrossRef]
- Van Eck, N.; and Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Eriksen, M.L.; Ellegaard, O.; Wallin, J.A. The Matthew effect in environmental science publication: A bibliometric analysis of chemical substances in journal articles. Environ. Health 2011, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bang, N.P.; Ray, S.; Kumar, S. Women in family business research—What we know and what we should know? J. Bus. Res. 2023, 164, 113990. [Google Scholar] [CrossRef]
- Lau, W.J.; Ismail, A.F.; Firdaus, S. Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes. Sep. Purif. Technol. 2013, 104, 26–31. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Applicability of electrochemical methods to carwash wastewaters for reuse. Part 1: Anodic oxidation with diamond and lead dioxide anodes. J. Electroanal. Chem. 2010, 638, 28–32. [Google Scholar] [CrossRef]
- Zaneti, R.; Etchepare, R.; Rubio, J. Car wash wastewater reclamation. Full-scale application and upcoming features. Resour. Conserv. Recycl. 2011, 55, 953–959. [Google Scholar] [CrossRef]
- Priya, M.; Jeyanthi, J. Removal of COD, oil and grease from automobile wash water effluent using electrocoagulation technique. Microchem. J. 2019, 150, 104070. [Google Scholar] [CrossRef]
- Bhatti, Z.A.; Mahmood, Q.; Raja, I.A.; Malik, A.H.; Khan, M.S.; Wu, D. Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution. Phys. Chem. Earth 2011, 36, 465–469. [Google Scholar] [CrossRef]
- Moazzem, S.; Wills, J.; Fan, L.; Roddick, F.; Jegatheesan, V. Performance of ceramic ultrafiltration and reverse osmosis membranes in treating car wash wastewater for reuse. Environ. Sci. Pollut. Res. 2018, 25, 8654–8668. [Google Scholar] [CrossRef]
- Mohammadi, M.J.; Salari, J.; Takdastan, A.; Farhadi, M.; Javanmardi, P.; Yari, A.R.; Dobaradarang, S.; Almasi, H.; Rahim, S. Removal of turbidity and organic matter from car wash wastewater by electrocoagulation process. Desalin. Water Treat. 2017, 68, 122–128. [Google Scholar] [CrossRef]
- Bazrafshan, E.; KordMostafapoor, F.; Soori, M.M.; Mahvi, A.H. Application of combined chemical coagulation and electrocoagulation process to carwash wastewater treatment. Fresenius Environ. Bull. 2012, 21, 2694–2701. [Google Scholar]
- Kiran, S.A.; Arthanareeswaran, G.; Thuyavan, Y.L.; Ismail, A.F. Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem. Ecotoxicol. Environ. Saf. 2015, 121, 186–192. [Google Scholar] [CrossRef]
- Uçar, D. Membrane processes for the reuse of car washing wastewater. J. Water Reuse Desalin. 2018, 8, 169–175. [Google Scholar] [CrossRef]
- Etchepare, R.; Zaneti, R.; Azevedo, A.; Rubio, J. Application of flocculation–flotation followed by ozonation in vehicle wash wastewater treatment/disinfection and water reclamation. Desalin. Water Treat. 2015, 56, 1728–1736. [Google Scholar] [CrossRef]
- Emamjomeh, M.M.; Jamali, H.A.; Naghdali, Z.; Mousazadeh, M. Carwash wastewater treatment by the application of an environmentally friendly hybrid system: An experimental design approach. Desalin. Water Treat. 2019, 160, 171–177. [Google Scholar] [CrossRef]
- Dadebo, D.; Nasr, M.; Fujii, M.; Ibrahim, M.G. Bio-coagulation using Cicer arietinum combined with pyrolyzed residual sludge-based adsorption for carwash wastewater treatment: A techno-economic and sustainable approach. J. Water Process Eng. 2022, 49, 103063. [Google Scholar] [CrossRef]
- Hashim, N.H.; Zayadi, N. Pollutants characterization of car wash wastewater. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 47, p. 05008. [Google Scholar] [CrossRef]
- Veréb, G.; Gayır, V.E.; Santos, E.N.; Fazekas, Á.; Kertész, S.; Hodúr, C.; László, Z. Purification of real car wash wastewater with complex coagulation/flocculation methods using polyaluminum chloride, polyelectrolyte, clay mineral and cationic surfactant. Water Sci. Technol. 2019, 80, 1902–1909. [Google Scholar] [CrossRef]
- Istirokhatun, T.; Destianti, P.; Hargianintya, A.; Oktiawan, W.; Susanto, H. Treatment of car wash wastewater by UF membranes. In AIP Conference Proceedings; AIP Publishing: Semarang, Indonesia, 2015; Volume 1699. [Google Scholar] [CrossRef]
- Moazzem, S.; Ravishankar, H.; Fan, L.; Roddick, F.; Jegatheesan, V. Application of enhanced membrane bioreactor (eMBR) for the reuse of carwash wastewater. J. Environ. Manag. 2020, 254, 109780. [Google Scholar] [CrossRef]
- Tajuddin, M.F.; Al-Gheethi, A.; Mohamed, R.; Noman, E.; Talip, B.A.; Bakar, A. Optimizing of heavy metals removal from car wash wastewater by chitosan-ceramic beads using response surface methodology. Mater. Today Proc. 2020, 31, 43–47. [Google Scholar] [CrossRef]
- García-Ávila, F.; Avilés-Añazco, A.; Cabello-Torres, R.; Guanuchi-Quito, A.; Cadme-Galabay, M.; Gutiérrez-Ortega, H.; Alvarez-Ochoa, R.; Zhindón-Arévalo, C. Application of ornamental plants in constructed wetlands for wastewater treatment: A scientometric analysis. Case Stud. Chem. Environ. Eng. 2023, 7, 100307. [Google Scholar] [CrossRef]
- Fu, H.Z.; Wang, M.H.; Ho, Y.S. Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Sci. Total Environ. 2013, 443, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Lim, W.M.; Jha, S.; Kumar, S.; Ciasullo, M.V. The state of the art of strategic leadership. J. Bus. Res. 2023, 158, 113676. [Google Scholar] [CrossRef]
- Rubi-Juarez, H.; Barrera-Diaz, C.E.; Ureña-Nuñez, F. Adsorption-assisted electrocoagulation of real car wash wastewater with equilibrium and kinetic studies. Pollut. Res. 2017, 36, 175–184. [Google Scholar]
Source Journal | TLS | Total Number of Published Documents | Total Citations | H-Index | SJR |
---|---|---|---|---|---|
Desalination and Water Treatment | 61 | 9 | 123 | 75 | 0.267 |
Water Science and Technology | 44 | 9 | 125 | 153 | 0.548 |
Chemosphere | 96 | 8 | 277 | 311 | 1.806 |
Environmental Science and Pollution Research | 40 | 8 | 142 | 154 | 0.944 |
Sustainability (Switzerland) | 51 | 7 | 20 | 169 | 0.672 |
Bioresource Technology | 22 | 5 | 281 | 364 | 2.576 |
Journal of Environmental Management | 59 | 5 | 129 | 218 | 1.678 |
Journal of Water Process Engineering | 67 | 5 | 81 | 89 | 1.278 |
Case Studies in Chemical and Environmental Engineering | 5 | 4 | 21 | 35 | 1.283 |
Environmental Technology (United Kingdom) | 8 | 4 | 23 | 84 | 0.546 |
Journal of Hazardous Materials | 46 | 4 | 96 | 329 | 2.57 |
Chemical Engineering Journal | 39 | 3 | 126 | 280 | 2.803 |
Physics and Chemistry of the Earth | 4 | 3 | 117 | 110 | 0.729 |
Science of the Total Environment | 11 | 3 | 42 | 353 | 1.998 |
Separation and Purification Technology | 44 | 3 | 117 | 191 | 1.339 |
Water Research | 36 | 3 | 85 | 354 | 3.338 |
Water, Air, and Soil Pollution | 3 | 3 | 26 | 42 | 0.237 |
Country | TLS | Number of Publications | Total Citations | Avg. Pub. Year |
---|---|---|---|---|
China | 667 | 37 | 710 | 2020 |
India | 148 | 22 | 331 | 2019 |
Brazil | 166 | 17 | 348 | 2018 |
Spain | 475 | 14 | 417 | 2016 |
United States | 314 | 14 | 135 | 2020 |
Iran | 277 | 12 | 183 | 2019 |
Egypt | 348 | 8 | 131 | 2020 |
Malaysia | 127 | 8 | 178 | 2017 |
Turkey | 64 | 8 | 233 | 2018 |
Australia | 278 | 7 | 248 | 2020 |
Portugal | 332 | 7 | 124 | 2017 |
Japan | 352 | 6 | 92 | 2020 |
Estonia | 393 | 5 | 53 | 2022 |
Italy | 4 | 5 | 352 | 2012 |
Mexico | 145 | 5 | 63 | 2022 |
Author | Number of Publications |
---|---|
Wei, C. | 9 |
Carvalho, F. | 7 |
Prazeres, A.R. | 6 |
Qiu, G. | 6 |
Rivas, J. | 6 |
Zhu, S. | 6 |
Dadebo, D. | 5 |
Preis, S. | 5 |
Wu, H. | 5 |
Chaudhari, P.K. | 4 |
Fujii, M. | 4 |
Ibrahim, M.G. | 4 |
Mkilima, T. | 4 |
Nasr, M. | 4 |
Patanita, M. | 4 |
Verma, V. | 4 |
First Author | Year | Document Title | Journal | Citations | Ref. |
---|---|---|---|---|---|
Panizza, M., | 2010 | Applicability of Electrochemical Methods to Carwash Wastewaters for Reuse. Part 2: ElectroCoagulation and Anodic Oxidation Integrated Process. | Journal of Electroanalytical Chemistry | 102 | [31] |
Lau, W. J., | 2013 | Car Wash Industry in Malaysia: Treatment of Car Wash Effluent Using Ultrafiltration and Nanofiltration Membranes. | Separation and Purification Technology | 81 | [61] |
Panizza, M., | 2010 | Applicability of Electrochemical Methods to Carwash Wastewaters for Reuse. Part 1: Anodic Oxidation with Diamond and Lead Dioxide Anodes. | Journal of Electroanalytical Chemistry | 78 | [62] |
Ganiyu, S. O., | 2018 | Electrochemical Advanced Oxidation Processes (EAOPs) as Alternative Treatment Techniques for Carwash Wastewater Reclamation. | Chemosphere | 76 | [27] |
Gönder, Z. B., | 2017 | Electrochemical Treatment of Carwash Wastewater Using Fe and Al Electrodes: Techno-Economic Analysis and Sludge Characterization. | Journal of Environmental Management | 75 | [16] |
Zaneti, R., | 2011 | Car Wash Wastewater Reclamation. Full-Scale Application and Upcoming Features. | Resources, Conservation, and Recycling | 70 | [63] |
Priya, M., | 2019 | Removal of COD, Oil and Grease from Automobile Wash Water Effluent Using Electrocoagulation Technique. | Microchemical Journal | 69 | [64] |
Boluarte, I. A. R., | 2016 | Reuse of Car Wash Wastewater by Chemical Coagulation and Membrane Bioreactor Treatment Processes. | International Biodeterioration & Biodegradation | 68 | [6] |
Bhatti, Z. A., | 2011 | Chemical Oxidation of Carwash Industry Wastewater as an Effort to Decrease Water Pollution. | Physics and Chemistry of the Earth | 62 | [65] |
Moazzem, S., | 2018 | Performance of Ceramic Ultrafiltration and Reverse Osmosis Membranes in Treating Car Wash Wastewater for Reuse. | Environmental Science and Pollution Research | 40 | [66] |
Pinto, A. C. S., | 2017 | Carwash Wastewater Treatment by Micro- and Ultrafiltration Membranes: Effects of Geometry, Pore Size, Pressure Difference and Feed Flow Rate in Transport Properties. | Journal of Water Process Engineering | 40 | [17] |
Mohammadi, M. J., | 2017 | Removal of Turbidity and Organic Matter from Car Wash Wastewater by Electrocoagulation Process. | Desalination and Water Treatment | 38 | [67] |
Bazrafshan, E., | 2012 | Application of Combined Chemical Coagulation and Electrocoagulation Process to Carwash Wastewater Treatment. | Fresenius Environmental Bulletin | 38 | [68] |
Gönder, Z. B., | 2020 | An Integrated Electrocoagulation–Nanofiltration Process for Carwash Wastewater Reuse. | Chemosphere | 33 | [32] |
Kiran, S. A., | 2015 | Influence of Bentonite in Polymer Membranes for Effective Treatment of Car Wash Effluent to Protect the Ecosystem. | Ecotoxicology and Environmental Safety | 32 | [69] |
Al-Gheethi, A. A., | 2016 | Treatment of Wastewater from Car Washes Using Natural Coagulation and Filtration System. | In IOP Conference Series: Materials Science and Engineering | 31 | [23] |
Tony, M. A., | 2021 | Performance of Acid Mine Drainage Sludge as an Innovative Catalytic Oxidation Source for Treating Vehicle-Washing Wastewater. | Journal of Dispersion Science and Technology | 29 | [18] |
Gönder, Z. B., | 2019 | Treatment of Carwash Wastewater by Electrocoagulation Using Ti Electrode: Optimization of the Operating parameters. | International Journal of Environmental Science and Technology | 29 | [26] |
Uçar, D. | 2018 | Membrane Processes for the Reuse of Car Washing Wastewater. | Journal of Water Reuse and Desalination | 26 | [70] |
Etchepare, R., | 2015 | Application of Flocculation–Flotation Followed by Ozonation in Vehicle Wash Wastewater Treatment/Disinfection and Water Reclamation. | Desalination and water Treatment | 26 | [71] |
Emamjomeh, M. M., | 2019 | Carwash Wastewater Treatment by the Application of an Environmentally Friendly Hybrid System: An Experimental Design Approach. | Desalination and Water Treatment | 26 | [72] |
Dadebo, D., | 2022 | Bio-Coagulation Using Cicer arietinum Combined with Pyrolyzed Residual Sludge-Based Adsorption for Carwash Wastewater Treatment: A Techno-Economic and Sustainable Approach. | Journal of Water Process Engineering | 19 | [73] |
Hashim, N. H., | 2016 | Pollutants Characterization of Car Wash Wastewater. | In MATEC Web of Conferences | 15 | [74] |
Veréb, G., | 2019 | Purification of Real Car Wash Wastewater with Complex Coagulation/Flocculation Methods Using Polyaluminum Chloride, Polyelectrolyte, Clay Mineral and Cationic Surfactant. | Water Science and Technology | 14 | [75] |
Istirokhatun, T., | 2015 | Treatment of Car Wash Wastewater by UF Membranes. | In AIP Conference Proceedings | 14 | [76] |
Moazzem, S., | 2020 | Application of Enhanced Membrane Bioreactor (eMBR) for the Reuse of Carwash Wastewater. | Journal of Environmental Management | 14 | [77] |
Tajuddin, M. F., | 2020 | Optimizing of Heavy Metals Removal from Car Wash Wastewater by Chitosan-Ceramic Beads Using Response Surface Methodology. | Materials Today: Proceedings | 11 | [78] |
Keyword | Cluster | TLS | Occurrence | % Occurrence | Avg. Citations |
---|---|---|---|---|---|
Carwash Wastewater | 2 | 33 | 23 | 9.1 | 24.39 |
Electrocoagulation | 2 | 24 | 15 | 5.91 | 33.60 |
Wastewater Treatment | 2 | 23 | 15 | 5.91 | 6.53 |
Water Reuse | 3 | 25 | 13 | 5.12 | 24.38 |
Car Wash Wastewater | 7 | 24 | 12 | 4.72 | 23.67 |
Coagulation | 4 | 25 | 12 | 4.72 | 24.00 |
Wastewater | 6 | 14 | 11 | 4.33 | 14.55 |
Adsorption | 1 | 12 | 9 | 3.54 | 6.67 |
Car Wash | 3 | 17 | 8 | 3.15 | 19.50 |
COD | 1 | 20 | 8 | 3.15 | 11.50 |
Anaerobic Digestion | 3 | 1 | 7 | 2.76 | 11.00 |
Heavy Metals | 6 | 9 | 7 | 2.76 | 13.43 |
Phenol | 1 | 12 | 7 | 2.76 | 22.00 |
TDS | 1 | 11 | 6 | 2.36 | 24.50 |
Activated Sludge | 1 | 3 | 5 | 1.97 | 38.40 |
Carwash effluents | 5 | 6 | 5 | 1.97 | 41.00 |
Reuse | 1 | 7 | 5 | 1.97 | 15.60 |
Turbidity | 5 | 13 | 5 | 1.97 | 36.80 |
Ultrafiltration | 5 | 13 | 5 | 1.97 | 35.80 |
Activated Carbon | 6 | 7 | 4 | 1.57 | 14.75 |
Biodegradation | 1 | 3 | 4 | 1.57 | 13.50 |
Carwash | 6 | 7 | 4 | 1.57 | 1.75 |
Chemical Oxygen Demand | 5 | 3 | 4 | 1.57 | 26.75 |
Electrooxidation | 2 | 5 | 4 | 1.57 | 31.00 |
Flocculation | 4 | 10 | 4 | 1.57 | 21.25 |
Ozonation | 3 | 9 | 4 | 1.57 | 25.00 |
Anionic Surfactants | 2 | 7 | 3 | 1.18 | 35.00 |
Carwash Wastewater Treatment | 4 | 2 | 3 | 1.18 | 15.00 |
Disinfection | 3 | 8 | 3 | 1.18 | 36.00 |
Electrochemical Oxidation | 2 | 3 | 3 | 1.18 | 65.00 |
Filtration | 4 | 6 | 3 | 1.18 | 24.00 |
Flotation | 3 | 8 | 3 | 1.18 | 42.67 |
Kinetics | 1 | 5 | 3 | 1.18 | 10.67 |
CWW | 1 | 1 | 3 | 1.18 | 35.67 |
Microfiltration | 3 | 6 | 3 | 1.18 | 18.00 |
Nanofiltration | 5 | 10 | 3 | 1.18 | 46.67 |
Oil and Grease | 2 | 6 | 3 | 1.18 | 7.00 |
Optimization | 7 | 7 | 3 | 1.18 | 14.33 |
Sedimentation | 4 | 7 | 3 | 1.18 | 20.67 |
Sludge Characterization | 7 | 5 | 3 | 1.18 | 44.00 |
Sustainability | 1 | 2 | 3 | 1.18 | 2.67 |
Water Quality | 7 | 5 | 3 | 1.18 | 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazaiza, M.Y.D.; Alzghoul, T.M.; Amr, S.A.; Bangalore Ramu, M.; Nassani, D.E. Bibliometric Insights into Car Wash Wastewater Treatment Research: Trends and Perspectives. Water 2024, 16, 2034. https://doi.org/10.3390/w16142034
Alazaiza MYD, Alzghoul TM, Amr SA, Bangalore Ramu M, Nassani DE. Bibliometric Insights into Car Wash Wastewater Treatment Research: Trends and Perspectives. Water. 2024; 16(14):2034. https://doi.org/10.3390/w16142034
Chicago/Turabian StyleAlazaiza, Motasem Y. D., Tharaa Mahmoud Alzghoul, Salem Abu Amr, Madhusudhan Bangalore Ramu, and Dia Eddin Nassani. 2024. "Bibliometric Insights into Car Wash Wastewater Treatment Research: Trends and Perspectives" Water 16, no. 14: 2034. https://doi.org/10.3390/w16142034
APA StyleAlazaiza, M. Y. D., Alzghoul, T. M., Amr, S. A., Bangalore Ramu, M., & Nassani, D. E. (2024). Bibliometric Insights into Car Wash Wastewater Treatment Research: Trends and Perspectives. Water, 16(14), 2034. https://doi.org/10.3390/w16142034