Effect of Rotation Speed and Fulvic Acid Concentration on Biogenic Secondary High-Iron Mineral Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Experimental Setup
2.3. Measurement Method
3. Result and Analysis
3.1. Effect of Fulvic Acid on pH with Different Rotation Speeds
- ➀
- Oxidation of Fe2+ to Fe3+ involves the consumption of H+.
- ➁
- Hydrolysis of Fe3+ to schwertmannite or jarosite and release of H+.
3.2. Effect of Fulvic Acid on the Oxidation Rate of Fe2+ at Different Rotation Speeds
3.3. The Effect of Fulvic Acid on the TFe Precipitation Rate at Different Rotation Speeds
3.4. The Effect of Fulvic Acid on the Morphology of Secondary High-Iron Minerals at Different Rotation Speeds
3.5. The Effect of Fulvic Acid on the Mineral Phase of Secondary High-Iron Minerals at Different Rotation Speeds
3.6. The Effect of Fulvic Acid on the Functional Groups of Secondary High-Iron Minerals at Different Rotation Speeds
4. Discussion
4.1. Effects of Rotation Speed and Fulvic Acid Concentration on Fe2+ Oxidation by A. ferrooxidans
4.2. The Effects of Rotation Speed and Fulvic Acid Concentration on the Formation of Secondary High-Iron Minerals
5. Conclusions
6. Further Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rambabu, K.; Banat, F.; Pham, Q.M.; Ho, S.-H.; Ren, N.-Q.; Show, P.L. Biological remediation of acid mine drainage: Review of past trends and current outlook. Environ. Sci. Ecotechnol. 2020, 2, 100024. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, C.; Su, P.; Tang, Y.; Huang, Z.; Ma, T. A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilisation. Process Saf. Environ. Prot. 2023, 170, 1240–1260. [Google Scholar] [CrossRef]
- Zhang, S.H.; Zhang, R.X.; Wu, P.; Wang, Y.; Wang, N.; Yang, X. Research progress on interactions between carbonate and acid mine drainage and its passive treatment technology. Environ. Eng. 2021, 39, 52–61. [Google Scholar] [CrossRef]
- Huang, J.; Qin, M.; Ma, W.; Yu, J.; Peng, X.; Yang, L. Characteristics analysis and ecological risk assessment of heavy metals contamination in suspended solids in a river affected by acid mine drainage. Environ. Chem. 2016, 35, 2315–2326. [Google Scholar] [CrossRef]
- Xu, X.Y.; Wu, Y.G.; Rao, Y.L.; Fu, T.L.; Wu, X.Y. Influence of root exudates to metal forms of iron and manganese of AMD sediment in rhizosphere environment. Environ. Eng. 2017, 35, 39–43. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, P.; Zhang, R.X.; Zhu, J.; Wang, Y.Z.; Song, C.X.; Li, L. Effects of acid mine drainage on the erosion of carbonatite in carbonate rocks. Chin. J. Ecol. 2018, 37, 1702–1707. [Google Scholar] [CrossRef]
- Kaur, G.; Couperthwaite, S.J.; Hatton-Jones, B.W.; Millar, G.J. Alternative neutralisation materials for acid mine drainage treatment. J. Water Process Eng. 2018, 22, 46–58. [Google Scholar] [CrossRef]
- Lauren, B.; Bethany, K. Calcium carbonate in waste flooring for neutralisation of acid rock drainage. Mine Water Environ. 2023, 42, 70–77. [Google Scholar]
- Liu, Y.; Gu, C.; Liu, H.; Zhou, Y.; Nie, Z.; Wang, Y.; Chen, L.; Xia, J. Fe/S Redox-Coupled Mercury Transformation Mediated by Acidithiobacillus ferrooxidans ATCC 23270 under Aerobic and/or Anaerobic Conditions. Microorganisms 2023, 11, 1028. [Google Scholar] [CrossRef]
- Meruane, G.; Vargas, T. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5–7.0. Hydrometallurgy 2003, 71, 149–158. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, L.X. The removal of soluble ferrous iron in acid mine drainage (AMD) through the formation of biogenic iron oxyhydrosulfate precipitates facilitated by diatomite, quartz sand and potassium. Acta Petrol. Mineral. 2011, 30, 1031–1038. [Google Scholar] [CrossRef]
- Skousen, J.G.; Ziemkiewicz, P.F.; Mcdonald, L.M. Acid mine drainage formation, control and treatment: Approaches and strategies. Extr. Ind. Soc. 2018, 6, 241–249. [Google Scholar] [CrossRef]
- Samuel, B.; Jia, Z.; Appiah, O.P.; Duncan, A.E.; Adenutsi, C.D.; Xu, L.; Chen, H. Mechanism and multi-step kinetic modelling of Cr(VI) adsorption, reduction and complexation by humic acid, humin and kerogen from different sources. Environ. Sci. Pollut. Res. Int. 2021, 28, 38985–39000. [Google Scholar]
- Yao, Z.; Qi, F.; Junwen, L.; Fu, Y.; Zhu, J.; Peng, G.; Li, M.; Wu, X.; Wang, H.; Chen, Z. Source control on the acid mine drainage produced by the oxidation of pyrite and sulfur-containing uranium tailings based on the microbially induced carbonate precipitation technology. J. Clean. Prod. 2023, 428, 139444. [Google Scholar]
- Deng, Q.; Ma, J.J.; Sun, X.H.; Zheng, L.J.; Wu, H.X.; Li, X.F.; An, J.L. Effects of Biochar on Soil Humus in Farmland: A Meta Analysis. Soils 2024, 56, 42–48. [Google Scholar] [CrossRef]
- Minh, D.P.; Hiroshi, O.; Shinya, Y.; Ogawa, S.; Katayama, A. Sulfur in humin as a redox-active element for extracellular electron transfer. Geoderma 2022, 408, 115580. [Google Scholar]
- Yi, C.; Yan, Y.P.; Wang, X.M.; Hu, Z.; Xiong, J.; Liu, F.; Feng, X.H.; Tan, W.F. Co-sorption of natural organic matter and metal ions on minerals. J. Agro-Environ. Sci. 2018, 37, 1574–1583. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Zheng, J.; He, J.; Lü, C. Reductive dissolution of As-bearing iron oxides: Mediating mechanism of fulvic acid and dissimilated iron reducing bacteria. Sci. Total Environ. 2024, 935, 173443. [Google Scholar] [CrossRef]
- Liu, Y.S.; Li, S.Y.; Hou, Y.X.; Song, X.Y.; Xu, S.; Wei, J.B.; Zhao, X.X. Effects of fulvic acid on degradation of DnBP and Microbial activity in soil. J. Agro-Environ. Sci. 2020, 39, 313–320. [Google Scholar] [CrossRef]
- Huang, H.; Geng, K.; Wang, C.; Wu, X.; Wei, C. Impact of Fulvic Acid and Acidithiobacillus ferrooxidan Inoculum Amount on the Formation of Secondary Iron Minerals. Int. J. Environ. Res. Public Health 2023, 20, 4736. [Google Scholar] [CrossRef]
- Zhang, L.J.; Yu, H.Y.; Fan, Y.; Shi, Z.; Wu, P.; Wang, Z.; Wang, H.; Ding, K.; Zhou, H. Enhancement in growth and iron oxidation of Acidithiobacillus ferrooxidans under extreme environment via applied electric potential. Environ. Eng. 2023. Available online: https://link.cnki.net/urlid/11.2097.X.20231116.1522.006 (accessed on 11 November 2023).
- Zhang, N.N.; Hu, B.; Bao, T.L. The distribution characteristics and source analysis of chromophoric dissolved organic matter in Hongze Lake water during autumn. Environ. Pollut. Control. 2024, 46, 870–875. [Google Scholar] [CrossRef]
- Song, Y.W.; Wang, H.R.; Liang, J.R.; Zhou, L.X. Effects of temperature and pH on the formation of biogenic Fe(Ⅲ) hydroxysulfateprecipitates. Environ. Sci. 2016, 36, 3683–3690. [Google Scholar] [CrossRef]
- Wang, H.R.; Yang, L.L.; Wang, R.; Song, Y.W.; Yang, J.; Cao, Y. Fe2+ oxidation and mineralisation properties of A. ferrooxidans biofilm immobilised on three fillers. Acta Sci. Circumstantiae 2022, 42, 160–168. [Google Scholar] [CrossRef]
- Song, Y.W.; Chen, T.; Wang, H.R.; Yang, J.; Cao, Y.X.; Zhou, L.X. Effect of anions on the oxidation activity of Acidithiobacillus ferrooxidans and the formation of secondary iron minerals. China Environ. Sci. 2018, 38, 574–580. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, J.; Liu, C.; Wang, L.; Zhang, P.; Zhao, Q.; Xiong, Z.; Zhang, G.; Zhang, W. Remediation of arsenic-contaminated soil using nanoscale schwertmannite synthesised by persulfate oxidation with carboxymethyl cellulose stabilisation. Environ. Res. 2024, 244, 117937. [Google Scholar] [CrossRef]
- Jiang, F.; Lu, X.; Zeng, L.; Xue, C.; Yi, X.; Dang, Z. The purification of acid mine drainage through the formation of schwertmannite with Fe(0) reduction and alkali-regulated biomineralisation prior to lime neutralisation. Sci. Total Environ. 2024, 908, 168291. [Google Scholar] [CrossRef]
- Chen, H.R.; Zhang, D.R.; Nie, Z.Y.; Xia, J.-L.; Li, Q.; Zhang, R.-Y.; Yin, H.-H.; Pakostova, E. Reductive dissolution of jarosite by inorganic sulfur compounds catalysed by Acidithiobacillus thiooxidans. Hydrometallurgy 2022, 212, 105908. [Google Scholar] [CrossRef]
- Lazaroff, N.; Melanson, L.; Lewis, E.; Santoro, N.; Pueschel, C. Scanning electron microscopy and infrared spectroscopy of iron sediments formed by Thiobacillus ferrooxidans. Geomicrobiol. J. 1985, 4, 231–268. [Google Scholar] [CrossRef]
- Pedro, B.F.P.; Bruno, R.C.A.; Yana, B.B.; Converti, A.; Benachour, M.; Sarubbo, L.A. Determination of the limiting step in the biomineralisation of calcium carbonate by Bacillus cereus. Constr. Build. Mater. 2023, 409, 134057. [Google Scholar]
- Gramp, J.P.; Jones, F.S.; Bigham, J.M.; Tuovinen, O.H. Monovalent cation concentrations determine the types of Fe(III) hydroxysulfate precipitates formed in bioleach solutions. Hydrometallurgy 2008, 94, 29–33. [Google Scholar]
- Carlo, B.; Maria, D.N.; Alberto, G.; Martin-Neto, L.; Nascimento, O.R.; Toniolo, R. Kinetics of electron transfer reactions by humic substances: Implications for their biogeochemical roles and determination of their electron donating capacity. Chemosphere 2022, 286, 131755. [Google Scholar]
- Song, Y.W.; Wang, H.R.; Cao, Y.X.; Li, F.; Cui, C.H.; Zhou, L. Inhibition of low molecular organic acids on the activity of acidithiobacillus species and its effect on the removal of heavy metals from contaminated soil. Environ. Sci. 2016, 37, 1960–1967. [Google Scholar] [CrossRef]
- Wang, H.R.; Yang, L.L.; Wang, R.; Song, Y.W.; Yang, J.; Cao, Y. Fe2+ oxidation and mineralisation properties of Acidithiobacillus ferrooxidans immobilised on three secondary iron minerals. China Environ. Sci. 2020, 40, 2073–2080. [Google Scholar] [CrossRef]
- Dong, Y.; Cao, Z.Y.; Bi, W.L.; Zhou, L.X.; Xu, J.M.; Zhang, J.; Liu, F.W. Ferrous ions biooxidation ability of schwertmannite-adsorbed Acidithiobacilus ferrooxidans in iron-rich acidic sulfate environment. Acta Sci. Circumstantiae 2018, 38, 2327–2333. [Google Scholar] [CrossRef]
- Zhang, C.J.; Zhang, S.; Liu, T.; Zhao, D.; Yan, L. Condition optimisation and identification of secondary minerals produced by Leptospirillum ferrodiazotrophum. Microbiol. China 2024. [Google Scholar] [CrossRef]
- Nasim, E.; Mohammad, K.; Rokhbakhsh, F.Z.; Rastakhiz, N.; Manafi, Z. Bioremoval of iron ions from copper raffinate solution using biosynthetic jarosite seed promoted by Acidithiobacillus ferrooxidans. Rev. De Metal. 2020, 56, e182. [Google Scholar]
- Xuan, Z.; Long, J.; Meigui, L.; Zhai, H.; Li, K.; He, Q.; Yan, S. Bioinspired controllable CaCO3 synthesis from solid waste by an “all in one” amino acid-in strategy: Implication for CO2 mineralisation. Chem. Eng. J. 2024, 480, 148037. [Google Scholar]
- Liu, F.W.; Wang, M.; Bu, Y.S.; Cui, C.H.; Liang, J.R.; Zhou, L.X. Effect of A. ferrooxidans inoculation density on the formation of secondary iron minerals in sulfate-rich acidic environment. Acta Sci. Circumstantiae 2013, 33, 3025–3031. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Ji, Y.; Wang, C.; Geng, K.; Wu, X.; Wei, C. Effect of Rotation Speed and Fulvic Acid Concentration on Biogenic Secondary High-Iron Mineral Synthesis. Water 2024, 16, 2092. https://doi.org/10.3390/w16152092
Huang H, Ji Y, Wang C, Geng K, Wu X, Wei C. Effect of Rotation Speed and Fulvic Acid Concentration on Biogenic Secondary High-Iron Mineral Synthesis. Water. 2024; 16(15):2092. https://doi.org/10.3390/w16152092
Chicago/Turabian StyleHuang, Haitao, Yichao Ji, Chong Wang, Kanghui Geng, Xianhui Wu, and Caichun Wei. 2024. "Effect of Rotation Speed and Fulvic Acid Concentration on Biogenic Secondary High-Iron Mineral Synthesis" Water 16, no. 15: 2092. https://doi.org/10.3390/w16152092
APA StyleHuang, H., Ji, Y., Wang, C., Geng, K., Wu, X., & Wei, C. (2024). Effect of Rotation Speed and Fulvic Acid Concentration on Biogenic Secondary High-Iron Mineral Synthesis. Water, 16(15), 2092. https://doi.org/10.3390/w16152092