Comparative Study on Phytoplankton Treatment Effectiveness of the Ballast Water Management System with Four Different Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Test-Water Preparation
2.3. Sample Collection and Detection
2.3.1. Sample Collection
2.3.2. Sample Detection
2.4. Data Analysis
3. Results
3.1. Change in Phytoplankton Density
3.2. Change in Phytoplankton Species Richness and Composition
3.3. Phytoplankton Taxa Remaining in the Discharged Water
4. Discussion
4.1. Comparative Analysis of the Effect of BWMS Treatment on Phytoplankton
4.2. Analysis of Residual Phytoplankton Taxa in Treated Discharge Water
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carney, K.J.; Minton, M.S.; Holzer, K.K.; Miller, A.W.; McCann, L.D.; Ruiz, G.M. Evaluating the combined effects of ballast water management and trade dynamics on transfers of marine organisms by ships. PLoS ONE 2017, 12, e0172468. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.P.; Geist, J.; Jeschke, J.M.; Kühn, I. Invasive species in Europe: Ecology, status, and policy. Sci. Eur. 2011, 23, 23. [Google Scholar] [CrossRef]
- David, M.; Gollasch, S.; Cabrini, M.; Perkovic, M.; Bosnjak, D.; Virgilio, D. Results from the first ballast water sampling study in the Mediterranean Sea—The Port of Koper study. Mar. Pollut. Bull. 2007, 54, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Gollasch, S. The importance of ship hull fouling as a vector of species introductions into the North Sea. Biofouling 2002, 18, 105–121. [Google Scholar] [CrossRef]
- Briski, E.; Drake, D.A.R.; Chan, F.T.; Bailey, S.A.; MacIsaac, H.J. Variation in propagule and colonization pressures following rapid human-mediated transport: Implications for a universal assemblage-based management model. Limnol. Oceanogr. 2014, 59, 2068–2076. [Google Scholar] [CrossRef]
- Davidson, I.C.; Scianni, C.; Minton, M.S.; Ruiz, G.M. A history of ship specialization and consequences for marine invasions, management and policy. J. Appl. Ecol. 2018, 55, 1799–1811. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Tempera, F.; Teixeira, H. Mapping the impact of alien species on marine ecosystems: The Mediterranean Sea case study. Divers. Distrib. 2016, 22, 694–707. [Google Scholar] [CrossRef]
- Seebens, H.; Gastner, M.T.; Blasius, B. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 2013, 16, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Cariton, J.T.; Geller, J.B. Ecological roulette: The global transport of nonindigenous marine organisms. Science 1993, 261, 78–82. [Google Scholar] [CrossRef]
- Carlton, J.T. Transoceanic and interoceanic dispersal of coastal marine organisms: The biology of ballast water. Mar. Biol. Ann. Rev. 1985, 23, 313–374. [Google Scholar] [CrossRef]
- Ruiz, G.M.; Carlton, J.T.; Grosholz, E.D.; Hines, A.H. Global invasions of marine and estuarine habitats by non-indigenous species: Mechanisms, extent, and consequences. Am. Zool. 1997, 37, 621–632. [Google Scholar] [CrossRef]
- David, M.; Gollasch, S.; Pavliha, M. Global ballast water management and the “same location” concept: A clear term or a clear issue? Ecol. Appl. 2013, 23, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, B.; Clavero, M.; Sánchez, M.I.; Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Chang. Biol. 2016, 22, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.R.; Sliwa, C. Identifying potential marine pests—A deductive approach applied to Australia. Mar. Pollut. Bull. 2003, 46, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Katsanevakis, S.; Wallentinus, I.; Zenetos, A.; Leppakoski, E.; Cinar, M.E.; Ozturk, B.; Grabowski, M.; Golani, D.; Cardoso, A.C. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 2014, 9, 391–423. [Google Scholar] [CrossRef]
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- IMO. International Convention for the Control and Management of Ships’ Ballast Water and Sediments; IMO: London, UK, 2004. [Google Scholar]
- Bailey, S.A. An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. Aquat. Ecosyst. Health Manag. 2015, 18, 261–268. [Google Scholar] [CrossRef]
- Campara, L.; Francic, V.; Maglic, L.; Hasanspahic, N. Overview and Comparison of the IMO and the US Maritime Administration Ballast Water Management Regulations. J. Mar. Sci. Eng. 2019, 7, 283. [Google Scholar] [CrossRef]
- Bailey, S.A.; Brydges, T.; Casas-Monroy, O.; Kydd, J.; Linley, R.D.; Rozon, R.M.; Darling, J.A. First evaluation of ballast water management systems on operational ships for minimizing introductions of nonindigenous zooplankton. Mar. Pollut. Bull. 2022, 182, 113947. [Google Scholar] [CrossRef]
- Casas-Monroy, O.; Linley, R.D.; Adams, J.K.; Chan, F.T.; Drake, D.A.R.; Bailey, S.A. Relative Invasion Risk for Plankton across Marine and Freshwater Systems: Examining Efficacy of Proposed International Ballast Water Discharge Standards. PLoS ONE 2015, 10, 0118267. [Google Scholar] [CrossRef]
- David, M.; Gollasch, S. How to approach ballast water management in European seas. Estuar. Coast. Shelf Sci. 2018, 201, 248–255. [Google Scholar] [CrossRef]
- Gerhard, W.A.; Lundgreen, K.; Drillet, G.; Baumler, R.; Holbech, H.; Gunsch, C.K. Installation and use of ballast water treatment systems—Implications for compliance and enforcement. Ocean Coast. Manag. 2019, 181, 104907. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Cordell, J.R. Relative contributions of domestic and foreign sourced ballast water to propagule pressure in Puget Sound, Washington, USA. Biol. Conserv. 2010, 143, 700–709. [Google Scholar] [CrossRef]
- Gollasch, S.; Hewitt, C.L.; Bailey, S.; David, M. Introductions and transfers of species by ballast water in the Adriatic Sea. Mar. Pollut. Bull. 2019, 147, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Khandeparker, L.; Kuchi, N.; Desai, D.V.; Anil, A.C. Changes in the ballast water tank bacterial community during a trans-sea voyage: Elucidation through next generation DNA sequencing. J. Environ 2020, 273, 111018. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Gollasch, S. Ballast Water Management System for Adriatic Sea Protection; Institute for Water of the Republic of Slovenia: Ljubljana, Slovenia, 2016. [Google Scholar]
- Cheniti, R.; Rochon, A.; Frihi, H. Ship traffic and the introduction of diatoms and dinoflagellates via ballast water in the port of Annaba, Algeria. J. Sea Res. 2018, 133, 154–165. [Google Scholar] [CrossRef]
- Mitchell, A.A.; Webber, M.K.; Buddo, D.; Webber, D. Development of a protocol for sampling and analysis of ballast water in Jamaica. Rev. Biol. Trop. 2014, 62, 249–257. [Google Scholar] [CrossRef]
- Park, C.; Cha, H.-G.; Lee, J.-H.; Choi, T.S.; Lee, J.; Kim, Y.-H.; Bae, M.; Shin, K.; Choi, K.-H. The effects of chemical additives on the production of disinfection byproducts and ecotoxicity in simulated ballast water. J. Sea Res. 2017, 129, 80–88. [Google Scholar] [CrossRef]
- Trottet, A.; George, C.; Drillet, G.; Lauro, F.M. Aquaculture in coastal urbanized areas: A comparative review of the challenges posed by Harmful Algal Blooms. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2888–2929. [Google Scholar] [CrossRef]
- Bailey, S.A.; Brown, L.; Campbell, M.L.; Canning-Clode, J.; Carlton, J.T.; Castro, N.; Chainho, P.; Chan, F.T.; Creed, J.C.; Curd, A.; et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 2020, 26, 1780–1797. [Google Scholar] [CrossRef]
- Molina, V.; Drake, L.A. Efficacy of open-ocean ballast water exchange: A review. Manag. Biol. Invasions 2016, 7, 375–388. [Google Scholar] [CrossRef]
- McCollin, T.; Shanks, A.M.; Dunn, J. The efficiency of regional ballast water exchange: Changes in phytoplankton abundance and diversity. Harmful Algae 2007, 6, 531–546. [Google Scholar] [CrossRef]
- Carver, C.E.A.; Mallet, A.; Balaban, M. An Assessment of the Risk of Ballast Water-Mediated Introduction of Non-Indigenous Phytoplankton and Zooplankton into Atlantic Canadian Waters; Mallet Research Services Limited: Dartmouth, NS, Canada, 2002. [Google Scholar]
- Burkholder, J.M.; Hallegraeff, G.M.; Melia, G.; Cohen, A.; Bowers, H.A.; Oldach, D.W.; Parrow, M.W.; Sullivan, M.J.; Zimba, P.V.; Allen, E.H.; et al. Phytoplankton and bacterial assemblages in ballast water of US military ships as a function of port of origin, voyage time, and ocean exchange practices. Harmful Algae 2007, 6, 486–518. [Google Scholar] [CrossRef]
- Chan, F.T.; Briski, E.; Bailey, S.A.; MacIsaac, H.J. Richness-abundance relationships for zooplankton in ballast water: Temperate versus Arctic comparisons. J. Mar. Sci. 2014, 71, 1876–1884. [Google Scholar] [CrossRef]
- Cordell, J.R.; Lawrence, D.J.; Ferm, N.C.; Tear, L.M.; Smith, S.S.; Herwig, R.P. Factors influencing densities of non-indigenous species in the ballast water of ships arriving at ports in Puget Sound, Washington, United States. Aquat. Conserv. 2009, 19, 322–343. [Google Scholar] [CrossRef]
- Wonham, M.J.; Walton, W.C.; Ruiz, G.M.; Frese, A.M.; Galil, B.S. Going to the source: Role of the invasion pathway in determining potential invaders. Mar. Ecol.-Prog. Ser. 2001, 215, 1–12. [Google Scholar] [CrossRef]
- Gollasch, S.; Lenz, J.; Dammer, M.; Andres, H.G. Survival of tropical ballast water organisms during a cruise from the Indian Ocean to the North Sea. J. Plankton Res. 2000, 22, 923–937. [Google Scholar] [CrossRef]
- Klein, G.; MacIntosh, K.; Kaczmarska, I.; Ehrman, J.M. Diatom survivorship in ballast water during trans-Pacific crossings. Biol. Invasions 2010, 12, 1031–1044. [Google Scholar] [CrossRef]
- Verna, D.E.; Harris, B.P.; Holzer, K.K.; Minton, M.S. Ballast-borne marine invasive species: Exploring the risk to coastal Alaska, USA. Manag. Biol. Invasions 2016, 7, 199–211. [Google Scholar] [CrossRef]
- Briski, E.; Chan, F.T.; MacIsaac, H.J.; Bailey, S.A. A conceptual model of community dynamics during the transport stage of the invasion process: A case study of ships’ ballast. Divers. Distrib. 2014, 20, 236–244. [Google Scholar] [CrossRef]
- Wu, H.; Shen, C.; Wang, Q.; Aronson, R.B.; Chen, C.; Xue, J. Survivorship characteristics and adaptive mechanisms of phytoplankton assemblages in ballast water. J. Oceanol. Limnol. 2019, 37, 580–588. [Google Scholar] [CrossRef]
- Ardura, A.; Martinez, J.L.; Zaiko, A.; Garcia-Vazquez, E. Poorer diversity but tougher species in old ballast water: Biosecurity challenges explored from visual and molecular techniques. Mar. Pollut. Bull. 2021, 168, 112465. [Google Scholar] [CrossRef] [PubMed]
- Batista, W.R.; Fernandes, F.C.; Lopes, C.C.; Lopes, R.S.; Miller, W.; Ruiz, G. Which ballast water management system will you put aboard? Remnant anxieties: A mini-review. Environments 2017, 4, 54. [Google Scholar] [CrossRef]
- Sayinli, B.; Dong, Y.; Park, Y.; Bhatnagar, A.; Mika, S. Recent progress and challenges facing ballast water treatment—A review. Chemosphere 2022, 291, 132776. [Google Scholar] [CrossRef] [PubMed]
- Casas-Monroy, O.; Bailey, S.A. Do Ballast Water Management Systems Reduce Phytoplankton Introductions to Canadian Waters? Front. Mar. Sci. 2021, 8, 691723. [Google Scholar] [CrossRef]
- Paolucci, E.M.; Ron, L.; MacIsaac, H.J. Combining ballast water treatment and ballast water exchange: Reducing colonization pressure and propagule pressure of phytoplankton organisms. Aquat. Ecosyst. Health Manag. 2017, 20, 369–377. [Google Scholar] [CrossRef]
- Stehouwer, P.P.; Buma, A.; Peperzak, L. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide. Environ. Technol. 2015, 36, 2094–2104. [Google Scholar] [CrossRef]
- Boldor, D.; Balasubramanian, S.; Purohit, S.; Rusch, K.A. Design and implementation of a continuous microwave heating system for ballast water treatment. Environ. Sci. Technol. 2008, 42, 4121–4127. [Google Scholar] [CrossRef] [PubMed]
- Gollasch, S.; David, M. Abiotic and biological differences in ballast water uptake and discharge samples. Mar. Pollut. Bull. 2021, 164, 112046. [Google Scholar] [CrossRef]
- Wright, D.A.; Dawson, R.; Orano-Dawson, C.E.; Moesel, S.M. A test of the efficacy of a ballast water treatment system aboard the vessel Coral Princess. Mar. Technol. Sname 2007, 44, 57–67. [Google Scholar] [CrossRef]
- Feng, W.; Chen, Y.; Zhang, T.; Xue, J.; Wu, H. Evaluate the compliance of ballast water management system on various types of operational vessels based on the D-2 standard. Mar. Pollut. Bull. 2023, 194, 115381. [Google Scholar] [CrossRef] [PubMed]
- Gregg, M.; Rigby, G.; Hallegraeff, G. Review of two decades of progress in the development of management options for reducing or eradicating phytoplankton, zooplankton and bacteria in ship’s ballast water. Aquat. Invasions 2009, 4, 521–565. [Google Scholar] [CrossRef]
- Lin, L.; Wang, Q.; Wu, H. Study on the dinoflagellate cysts in ballast tank sediments of international vessels in Chinese shipyards. Mar. Environ. Res. 2021, 169, 105348. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Yoon, Y.; Pyo, T.S.; Lee, S.T.; Shin, K.; Kang, J.W. Evaluation of disinfection efficacy and chemical formation using MPUV ballast water treatment system (GloEn-Patrol™). Environ. Technol. 2012, 33, 1953–1961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, Z.; Bai, M.; Chen, C.; Meng, X.; Tian, Y. Evaluation of the ecotoxicity and biological efficacy of ship’s ballast water treatment based on hydroxyl radicals technique. Mar. Pollut. Bull. 2012, 64, 2742–2748. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Wu, W.; Chen, J.; Xiang, J.; Jin, X.; Wu, H. A study on treatment efficacy of ballast water treatment system applying filtration plus membrane separation plus deoxygenation technology during shipboard testing. Mar. Pollut. Bull. 2023, 188, 114620. [Google Scholar] [CrossRef] [PubMed]
- Willemen, R.; Luyckx, D.; Meskens, R.; Lenaerts, S.; De Baere, K. A STUDY INTO THE COATING THICKNESS OF SHIP BALLAST TANKS. Int. J. Marit. Eng. 2020, 162, 277–287. [Google Scholar] [CrossRef]
- NSF International. Generic Protocol for the Verification of Ballast Water Treatment Technology; U.S. Environmental Protection Agency (EPA): Ann Arbor, MI, USA, 2010. [Google Scholar]
- Apetroaei, M.; Atodiresei, D.; Rău, I.; Apetroaei, G.; Lilios, G.; Schroder, V. Overview on the practical methods of ballast water treatment. J. Phys. Conf. Ser. 2018, 1122, 012035. [Google Scholar] [CrossRef]
- Hill, D.W.; Herwig, R.P.; Cordell, J.R.; Nielsen, B.C.; Ferm, N.C.; Lawrence, D.J.; Perrins, J.C.; Matousek, R.C. Electrolytic sodium hypochlorite system for treatment of ballast water. J. Ship Prod. Des. 2006, 22, 160–171. [Google Scholar] [CrossRef]
- McCollin, T.; Quilez-Badia, G.; Josefsen, K.D.; Gill, M.E.; Mesbahi, E.; Frid, C.L. Ship board testing of a deoxygenation ballast water treatment. Mar. Pollut. Bull. 2007, 54, 1170–1178. [Google Scholar] [CrossRef]
- Guilbaud, J.; Massé, A.; Wolff, F.C.; Jaouen, P. Seawater pretreatment by dead-end micro and ultrafiltration in pressure-driven inside feed. Desalin. Water Treat. 2013, 51, 416–422. [Google Scholar] [CrossRef]
- Guilbaud, J.; Massé, A.; Wolff, F.C.; Jaouen, P. Porous membranes for ballast water treatment from microalgae-rich seawater. Mar. Pollut. Bull. 2015, 101, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, E.; Diamadopoulos, E. Technologies for ballast water treatment: A review. J. Chem. Technol. Biotechnol. 2010, 85, 19–32. [Google Scholar] [CrossRef]
- Li, G.; Zhu, M.; Chen, J.; Li, Y.; Zhang, X. Production and contribution of hydroxyl radicals between the DSA anode and water interface. J. Environ. Sci. 2011, 23, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, L.; Jellali, S.; Akrout, H. Recent advances on advanced oxidation process for sustainable water management. Environ. Sci. Pollut. 2019, 26, 18939–18941. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Yang, L. Research progress of water treatment by advanced oxidation technology. Adv. Mater. Res. 2014, 864, 2096–2099. [Google Scholar] [CrossRef]
- Golubkov, M.; Nikulina, V.; Golubkov, S. Effects of environmental variables on midsummer dinoflagellate community in the Neva Estuary (Baltic Sea). Adv. Mater. Res. 2019, 61, 197–207. [Google Scholar] [CrossRef]
- Smayda, T.J.; Trainer, V.L. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog. Oceanogr. 2010, 85, 92–107. [Google Scholar] [CrossRef]
- Not, F.; Siano, R.; Kooistra, W.H.; Simon, N.; Vaulot, D.; Probert, I. Diversity and ecology of eukaryotic marine phytoplankton. Adv. Bot. Res. 2012, 64, 1–53. [Google Scholar] [CrossRef]
- Celiavillac, M.; Kaczmarska, I.; Ehrman, J.M. The diversity of diatom assemblages in ships ballast sediments: Colonization and propagule pressure on Canadian ports. J. Plankton Res. 2013, 35, 1267–1282. [Google Scholar] [CrossRef]
- Dickman, M.; Zhang, F.Z. Mid-ocean exchange of container vessel ballast water. 2: Effects of vessel type in the transport of diatoms and dinoflagellates from Manzanillo, Mexico, to Hong Kong, China. Mar. Ecol.-Prog. Ser. 1999, 176, 253–262. [Google Scholar] [CrossRef]
- Hallegraeff, G.M. Transport of harmful marine microalgae via ship’s ballast water: Management and mitigation with special reference to the Arabian Gulf region. Aquat. Ecosyst. Health Manag. 2015, 18, 290–298. [Google Scholar] [CrossRef]
- Mal, N.; Srivastava, K.; Sharma, Y.; Singh, M.; Rao, K.M.; Enamala, M.K.; Chandrasekhar, K.; Chavali, M. Facets of diatom biology and their potential applications. Biomass Convers. Biorefin. 2022, 12, 1959–1975. [Google Scholar] [CrossRef]
- Jafar, S.A. Calcareous Nannoplankton from the Miocene of Rotti, Indonesia; Johann Wolfgang Goethe-Universitaet Frankfurt am Main: Frankfurt, Germany, 1975. [Google Scholar]
- Lampe, R.H. Distinct Strategies by Bloom-Forming Diatoms to Frequently-Encountered Shifts in Their Environment; The University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 2018. [Google Scholar]
- Muhseen, Z.T.; Xiong, Q.; Chen, Z.; Ge, F. Proteomics studies on stress responses in diatoms. Proteomics 2015, 15, 3943–3953. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Karawita, R.; Affan, A.; Lee, J.B.; Lee, B.J.; Jeon, Y.J. Potential antioxidant activites of enzymatic digests from benthic diatoms Achnanthes longipes, Amphora coffeaeformis, and Navicula sp. (Bacillariophyceae). Prev. Nutr. Food Sci. 2008, 13, 166–175. [Google Scholar] [CrossRef]
- Hess-Erga, O.K.; Moreno-Andrés, J.; Enger, Ø.; Vadstein, O. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. Sci. Total Environ. 2019, 657, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, E.; Priya, M.; Achari, V.S. An overview on the treatment of ballast water in ships. Ocean. Coast. Manag. 2021, 199, 105296. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Dong, K.; Chen, J.; Wu, H. Assessing the effectiveness of filtration plus UV-C radiation for the treatment of simulated ballast water at various holding times. Water Sci. Technol. 2023, 87, 2564–2576. [Google Scholar] [CrossRef]
Organism Type | The D-2 Standard of IMO |
---|---|
≥50 µm living organisms | <10 ind./m3 |
≥10~50 µm living organisms | <10 cells/mL |
<10 µm living organisms | - |
Vibrio cholerae | <1 CFU/100 mL |
(O1 and O139) | |
Escherichia coli | <250 CFU/100 mL |
Intestinal Enterococci | <100 CFU/100 mL |
Parameters | FEN | FEO | FMD | FUV | ||||
---|---|---|---|---|---|---|---|---|
Marine | Brackish | Marine | Brackish | Marine | Brackish | Marine | Brackish | |
TSS (mg/L) | 61.83 | 56.90 | 59.12 | 54.08 | 46.00 | 37.80 | 54.24 | 52.31 |
POC (mg/L) | 6.69 | 5.39 | 8.46 | 6.65 | 4.00 | 4.40 | 5.36 | 5.77 |
DOC (mg/L) | 6.20 | 6.61 | 13.26 | 7.29 | 14.14 | 6.54 | 6.52 | 6.44 |
Temperature (°C) | 22.25 | 22.38 | 27.77 | 18.70 | 25.64 | 22.16 | 18.57 | 12.23 |
Salinity (PSU) | 30.30 | 19.00 | 30.03 | 17.31 | 30.42 | 19.26 | 29.53 | 18.59 |
PH | 8.02 | 8.41 | 7.84 | 8.15 | 8.22 | 8.12 | 7.82 | 7.49 |
DO (mg/L) | 7.36 | 8.07 | 7.85 | 9.83 | 8.44 | 9.14 | 9.91 | 11.26 |
Turbidity (NTU) | 28.87 | 25.79 | 36.49 | 56.83 | 8.38 | 11.18 | 22.15 | 33.44 |
The density of ≥10~50 µm living organisms (cells/mL) | 1014.67 | 1136.08 | 1000.75 | 1116.53 | 1179.20 | 1129.90 | 1191.62 | 1138.00 |
The density of ≥50 µm living organisms (cells/m3) | 114,685.17 | 227,908.33 | 135,643.28 | 127,793.78 | 120,707.28 | 120,042.60 | 111,894.18 | 112,391.55 |
Number of trials | 2 | 2 | 2 | 6 | 5 | 5 | 7 | 7 |
Phylum | Taxa | Uptake Water | Discharge Water |
---|---|---|---|
Dinophlagellata | |||
Lingulaulax polyedra (F.Stein) M.J.Head, K.N.Mertens & R.A.Fensome | + | + | |
Peridinium sp. | + | + | |
Cucumeridinium coeruleum (Dogiel) F.Gomez, P.López-García, H,Takayama & D.Moreira | + | + | |
Cucumeridinium sp. | + | + | |
Prorocentrum micans Ehrenberg | + | + | |
Prorocentrum sp. | + | + | |
Protoperidinium leonis (Pavillard) Balech | + | ||
Heterokontophyta | |||
Chaetoceros sp. | + | + | |
Skeletonema costatum (Greville) Cleve | + | + | |
Pleurosigma sp. | + | + | |
Navicula sp. | + | + | |
Discostella sp. | + | + | |
Discostella stelligera (Cleve & Grunow) Houk & Klee | + | + | |
Nitzschia sp. | + | + | |
Fragilariopsis kerguelensis (O’Meara) Hustedt | + | ||
Charophyta | |||
Cosmarium sp. | + | ||
Chlorophyta | |||
Chlorella vulgaris Beijerinck | + | ||
Tetraselmis sp. | + | ||
Cyanobacteria | |||
Oscillatoria sp. | + | + |
Phytoplankton Genus | FEN | FEO | FMD | FUV | ||||
---|---|---|---|---|---|---|---|---|
Untreated | Treated | Untreated | Treated | Untreated | Treated | Untreated | Treated | |
Lingulaulax | - | - | 0.0463 | 0.0483 | - | - | - | - |
Peridinium | 0.0316 | - | 0.0731 | 0.0371 | 0.0418 | 0.0028 | - | - |
Cucumeridinium | 0.4170 | 0.4375 | 0.0959 | 0.0347 | 0.0166 | 0.0135 | 0.4037 | 0.6454 |
Prorocentrum | 0.0122 | - | 0.0452 | 0.0928 | 0.7150 | 0.5512 | - | - |
Protoperidinium | 0.0244 | - | - | - | - | - | - | - |
Chaetoceros | - | - | 0.2094 | 0.0928 | 0.0341 | 0.1682 | - | - |
Skeletonema | 0.0350 | - | 0.0447 | 0.0223 | 0.0334 | 0.0031 | 0.1475 | 0.0096 |
Pleurosigma | 0.0203 | - | 0.1286 | 0.0223 | 0.0059 | - | 0.0092 | - |
Navicula | 0.0865 | 0.0156 | 0.0049 | 0.0842 | 0.0234 | 0.0021 | 0.0683 | - |
Discostella | 0.0159 | - | 0.0026 | 0.0012 | 0.0340 | 0.0540 | 0.1493 | 0.0730 |
Nitzschia | 0.0880 | - | 0.0023 | 0.0012 | 0.0523 | - | 0.0667 | - |
Fragilariopsis | 0.0014 | - | - | - | - | - | - | - |
Cosmarium | - | - | 0.0001 | - | - | - | - | - |
Chlorella | 0.0635 | - | - | - | 0.0003 | - | 0.0366 | - |
Tetraselmis | - | - | 0.0009 | - | - | - | - | - |
Oscillatoria | - | - | 0.0104 | 0.0087 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Feng, W.; Chen, Y.; Xue, J.; Wu, H. Comparative Study on Phytoplankton Treatment Effectiveness of the Ballast Water Management System with Four Different Processes. Water 2024, 16, 2098. https://doi.org/10.3390/w16152098
Zhang Y, Feng W, Chen Y, Xue J, Wu H. Comparative Study on Phytoplankton Treatment Effectiveness of the Ballast Water Management System with Four Different Processes. Water. 2024; 16(15):2098. https://doi.org/10.3390/w16152098
Chicago/Turabian StyleZhang, Yan, Wei Feng, Yating Chen, Junzeng Xue, and Huixian Wu. 2024. "Comparative Study on Phytoplankton Treatment Effectiveness of the Ballast Water Management System with Four Different Processes" Water 16, no. 15: 2098. https://doi.org/10.3390/w16152098
APA StyleZhang, Y., Feng, W., Chen, Y., Xue, J., & Wu, H. (2024). Comparative Study on Phytoplankton Treatment Effectiveness of the Ballast Water Management System with Four Different Processes. Water, 16(15), 2098. https://doi.org/10.3390/w16152098