Impacts of Climate and Land Use/Land Cover Change on Water Yield Services in Heilongjiang Province
Abstract
:1. Introduction
2. Materials Data and Methods
2.1. Overview of the Research Area
2.2. Research Methodology
2.2.1. Water Yield Model
2.2.2. Climate and Land Use Scenarios
2.3. Data Sources
2.4. Model Validation
3. Results and Analysis
3.1. Changes in Climatic Factors
3.2. Land Use/Land Cover Change
3.3. Changes in the Permanent Population and Urbanization Rate
3.4. Water Yield Changes
3.5. Impact of Climate Change on Water Yield
3.6. Impact of Land Use/Land Cover Change on Water Yield
3.7. The Relationship between Water Yield, Land Use/Land Cover Type, and Climate
4. Discussion
4.1. Impact of Land Use/Cover on Water Yield Services
4.2. Impact of Climate Change on Water Yield
4.3. The Impact of Population and Urbanization Rate on Water Yield
4.4. Limitations and Uncertainties
5. Conclusions
- In 2000, 2010, and 2020, the water yield in Heilongjiang Province was 105.03 mm, 162.46 mm, and 269.34 mm, respectively. Compared to the year 2000, the water yield in 2020 increased by 164.31 mm (156.44%). From 2000 to 2020, the water yield showed an increasing trend, and the spatial distribution shows more in the east and less in the west. This distribution is highly consistent with the spatial distribution of precipitation. The water yield is highest in Jixi City and lowest in the Greater Khingan region area in Heilongjiang Province.
- From 2000 to 2020, the share of woodland was the highest, followed by farmland, while the share of built-up land was the lowest. The changes in farmland and unused land are significant. The increase in farmland was mainly due to the transfer of unused land and woodland, while the increase in unused land was mainly due to the transfer of waterbody. There has been a slight decrease in woodland and waterbody, with relatively small changes in grassland and built-up land areas.
- The order of water yield of land use/land cover types, from the greatest to the least, is as follows: built-up land, unused land, farmland, grassland, woodland, and waterbody. Therefore, policies such as urbanization and wetland protection will increase water yield, while policies to expand forest or grassland areas will decrease water yield.
- The climatic conditions are of paramount importance with regard to the yield of water. Specifically, from 2000 to 2020, climate change contributed as much as 99.58% to water yield, while changes in land use types contributed only 0.42%.
- Despite a decline in the overall population of Heilongjiang since 2010, the urban population continues to grow. This ultimately results in an indirect increase in water yield.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.D. Millenium ecosystem assessment: Background, objectives and suggestions for ITS implementation in China. Quat. Sci. 2001, 21, 330–336. [Google Scholar]
- Lang, Y.Q.; Song, W.; Zhang, Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Phys. Chem. Earth 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Zhang, F.P.; Li, X.J.; Feng, Q.; Wang, H.W.; Wei, Y.F.; Bai, H. Spatial and temporal variation of water conservation in the upper reaches of Heihe River Basin based on InVEST model. J. Desert. Res. 2018, 38, 1321. [Google Scholar]
- Dai, E.F.; Wang, X.L.; Zhu, J.J.; Gao, J.B. Progress and Perspective on Ecosystem Services Trade-offs. Adv. Earth Sci. 2015, 30, 1250–1259. [Google Scholar]
- Sun, X.Y.; Guo, H.W.; Lian, L.S.; Liu, F.; Li, F.G. The spatial pattern of water yield and lts driving factors in Nansi Lake basin. J. Nat. Resour. 2017, 32, 669–679. [Google Scholar]
- Hess, L.; Meir, P.; Bingham, I.J. Comparative assessment of the sensitivity of oilseed rape and wheat to limited water supply. Ann. Appl. Biol. 2015, 167, 102–115. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; Groot, D.R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Shahid, N.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Deng, X.Z.; Zhao, C.X. Identification of water scarcity and providing solutions for adapting to climate changes in the Heihe River Basin of China. Adv. Meterorol. 2015, 2015, 279173. [Google Scholar] [CrossRef]
- Pan, T.; Wu, S.H.; Dai, E.F.; Liu, Y.J. Spatiotemporal variation of water source supply service in Three Rivers Source Area of china based on inVEST model. Chin. J. Appl. Ecol. 2013, 24, 183–189. [Google Scholar]
- Pons, V.L.; Aragón, I.E.R.; Robles, J.S.; Lima, T.P. Evaluación del servicio ecosistémico de rendimiento hídrico entre los años de 1994 y 2016 en el municipio de Valle de Bravo, estado de México. Papeles Geogr. 2018, 64, 93–113. [Google Scholar]
- Hao, R.F.; Yu, D.Y.; Liu, Y.P.; Liu, Y.; Qiao, J.M.; Wang, X.; Du, J.S. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Pessacg, N.; Flaherty, S.; Brandizi, L.; Solman, S.; Pascual, M. Getting water right: A case study in water yield modelling based on precipitation data. Sci. Total Environ. 2015, 537, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Jorda-Capdevila, D.; Gampe, D.; García, V.H.; Ludwig, R.; Sabater, S.; Vergoñós, L.; Acuña, V. Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe. Sci. Total Environ. 2019, 651, 895–908. [Google Scholar] [CrossRef]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Stanford University; University of Minnesota; Chinese Academy of Sciences; The Nature Conservancy; World Wildlife Fund; Stockholm Resilience Centre. InVEST 3.14.1 User’s Guide; Natural Capital Project; Stanford University: Stanford, CA, USA, 2022. [Google Scholar]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.B.; Zhang, X.L. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, F.C.; Jia, Y.; Wan, H.L.; Niu, T.H.Y.; Du, Y.S. Land use evolution and water yield response in Zhangcheng Water Source Conservation Area. China Rural. Water Hydropower 2022, 5, 138–146. [Google Scholar]
- Ran, C.; Wang, S.J.; Bai, X.Y.; Tan, Q. Trade-offs and synergies of ecosystem services in southwestern China. Environ. Eng. Sci. 2020, 37, 669–678. [Google Scholar] [CrossRef]
- Cheng, L.; Xie, G.D.; Zhang, C.S.; Pei, S. Modelling ecosystem water supply services across the Lancang River Basin. J. Resour. Ecol. 2011, 2, 322–327. [Google Scholar]
- Dou, P.F.; Zuo, S.Z.; Ren, Y.; Dai, S.Q.; Yun, G.L. The impacts of climate and land use/land cover changes on water yield service in Ningbo region. Acta Sci. Circumstantiae 2019, 39, 2398–2409. [Google Scholar]
- Zhao, Y.R.; Zhou, J.J.; Lei, L.; Xiang, J.; Huang, M.H.; Feng, W.; Zhu, G.F.; Wei, W.; Wang, J.A. Identification of drivers for water yield in the upstream of Shiyang River based on InVEST model. Chin. J. Ecol. 2019, 38, 3789–3799. [Google Scholar]
- Wu, J.; Li, Y.H.; Huang, L.Y.; Lu, Z.M.; Yu, D.P.; Zhou, L.; Dai, L.M. Spatiotemporal variation of water yield and its driving factors in Northeast China. Chin. J. Ecol. 2017, 36, 3216–3223. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.R.; Chiew, F.H.S.; Western, A.W.; Briggs, P.R. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, 89–97. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Zhou, W.Z.; Liu, G.H.; Pan, J.J.; Feng, X.F. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Remote Sensing Monitoring Dataset of Land Use in China across Multiple Periods (CNLUCC). 2023. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIid=54 (accessed on 1 June 2024).
- Harmonized World Soil Database v2.0. 2023. Available online: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v20/en/ (accessed on 1 June 2024).
- Yan, F.; Wei, S.H.; Zhang, J.; Hu, B.F. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Sci. Data 2020, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Chen, J.; Fang, Z.; Chen, J. Assessment of coordinative relationship between comprehensive ecosystem service and urbanization: A case study of Yangtze River Delta urban Agglomerations, China. Ecol. Indic. 2021, 133, 108454. [Google Scholar] [CrossRef]
- Nie, W.; Yuan, Y.; Kepner, W.; Nash, M.S.; Jackson, M.; Erickson, C. Assessing impacts of land use and land cover changes on hydrology for the upper San Pedro watershed. J. Hydrol. 2011, 407, 105–114. [Google Scholar] [CrossRef]
- Weltzin, J.F.; Loik, M.E.; Schwinning, S.; Williams, D.G.; Fay, P.A.; Haddad, B.M.; Harte, J.; Huxman, T.E. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 2003, 53, 941–952. [Google Scholar] [CrossRef]
- Zhu, K.; Cheng, Y.F.; Zhou, Q.; Kápolnai, Z.; Dávid, D.D. The contributions of climate and land use/cover changes to water yield services considering geographic scale. Heliyon 2023, 9, e20115. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Dai, C.; Gao, Y.; Wang, C.; Yu, M.; Tu, W.; Jia, M.; Li, R. Spatial–Temporal Characteristics of Freezing/Thawing Index and Permafrost Distribution in Heilongjiang Province, China. Sustainability 2022, 14, 16899. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, H.; Ren, C.; Sun, D.; Yang, J. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agric. Water Manag. 2020, 239, 106264. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Shoemaker, W.B.; Wu, Q.; Holmes, M.A.; Paech, S.J.; Sumner, D.M. High-resolution GOES insolation–evapotranspiration data set for water resource management in Florida: 1995–2015. J. Irrig Drain Eng. 2018, 144, 04018025. [Google Scholar] [CrossRef]
- Wang, T.; Gong, Z. Evaluation and analysis of water conservation function of ecosystem in Shaanxi Province in China based on “Grain for Green” Projects. Environ. Sci. Pollut. 2022, 29, 83878–83896. [Google Scholar] [CrossRef]
Actual Scenarios | Climate Change Scenarios | Land Use Type Changes Scenarios | |||||||
---|---|---|---|---|---|---|---|---|---|
Scenario | 2000 | 2010 | 2020 | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 |
Climate Elements | 2000 | 2010 | 2020 | 2020 | 2010 | 2020 | 2000 | 2000 | 2010 |
Land use types | 2000 | 2010 | 2020 | 2000 | 2000 | 2010 | 2020 | 2010 | 2020 |
Grassland | Built-Up Land | Farmland | Woodland | Waterbody | Unused | Total | ||
---|---|---|---|---|---|---|---|---|
2020 | ||||||||
2000 | Grassland | 27,524 | 132 | 1546 | 1075 | 184 | 1516 | 31,977 |
Built-up land | 27 | 8037 | 616 | 46 | 23 | 25 | 8774 | |
Farmland | 781 | 1092 | 155,125 | 1488 | 331 | 1265 | 160,082 | |
Woodland | 3235 | 131 | 2835 | 199,238 | 746 | 1480 | 207,665 | |
Waterbody | 211 | 43 | 521 | 324 | 7909 | 5750 | 14,758 | |
Unused | 682 | 82 | 2680 | 301 | 241 | 25,189 | 29,175 | |
Total | 32,460 | 9517 | 163,323 | 202,472 | 9434 | 35,225 | 452,431 | |
2010 | ||||||||
2000 | Grassland | 12,708 | 194 | 4158 | 7335 | 504 | 7080 | 31,979 |
Built-up land | 145 | 6130 | 2223 | 130 | 58 | 88 | 8774 | |
Farmland | 5266 | 2911 | 140,117 | 6124 | 1623 | 4042 | 160,083 | |
Woodland | 12,543 | 232 | 9477 | 178,237 | 861 | 6315 | 207,665 | |
Waterbody | 1212 | 84 | 1002 | 362 | 8913 | 3185 | 14,758 | |
Unused | 3722 | 120 | 5859 | 2392 | 1609 | 15,475 | 29,177 | |
Total | 35,596 | 9671 | 162,836 | 194,580 | 13,568 | 36,185 | 452,436 | |
2020 | ||||||||
2010 | Grassland | 14,058 | 211 | 5527 | 10,866 | 519 | 4414 | 35,595 |
Built-up land | 163 | 6221 | 2876 | 198 | 63 | 148 | 9669 | |
Farmland | 3469 | 2674 | 142,646 | 8439 | 463 | 5146 | 162,837 | |
Woodland | 7997 | 182 | 6207 | 176,787 | 582 | 2824 | 194,579 | |
Waterbody | 323 | 81 | 1303 | 524 | 6720 | 4618 | 13,569 | |
Unused | 6450 | 147 | 4765 | 5658 | 1089 | 18,075 | 36,184 | |
Total | 32,460 | 9516 | 163,324 | 202,472 | 9436 | 35,225 | 452,433 |
Year | Factors of Influence | Contribution Rate |
---|---|---|
2000–2010 | climate change | 93.75% |
land use type change | 6.25% | |
2010–2020 | climate change | 79.43% |
land use type change | 20.57% | |
2000–2020 | climate change | 99.52% |
land use type change | 0.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, Y.; Yu, M.; Dai, C. Impacts of Climate and Land Use/Land Cover Change on Water Yield Services in Heilongjiang Province. Water 2024, 16, 2113. https://doi.org/10.3390/w16152113
Liu Y, Zhang Y, Yu M, Dai C. Impacts of Climate and Land Use/Land Cover Change on Water Yield Services in Heilongjiang Province. Water. 2024; 16(15):2113. https://doi.org/10.3390/w16152113
Chicago/Turabian StyleLiu, Yang, Yiding Zhang, Miao Yu, and Changlei Dai. 2024. "Impacts of Climate and Land Use/Land Cover Change on Water Yield Services in Heilongjiang Province" Water 16, no. 15: 2113. https://doi.org/10.3390/w16152113
APA StyleLiu, Y., Zhang, Y., Yu, M., & Dai, C. (2024). Impacts of Climate and Land Use/Land Cover Change on Water Yield Services in Heilongjiang Province. Water, 16(15), 2113. https://doi.org/10.3390/w16152113