Regulated Inductively Coupled Plasma–Optical Emission Spectrometry Detectible Elements in Utah Lake: Characterization and Discussion
Abstract
:1. Introduction
1.1. Study Overview
1.2. ICP-OES Detectable Elements in Aquatic Systems
1.3. Regulated DE Water Quality Standards Applicable to UL
- Class 2A: “Protected for frequent primary contact recreation where there is a high likelihood of ingestion of water or a high degree of bodily contact with the water” (swimming, kayaking, diving, water skiing, etc.);
- Class 2B: “Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with water” (e.g., boating, wading, etc.) [82];
- Class 3B: “Protected for warm-water species of game fish and other warm water aquatic life, including the necessary aquatic organisms in their food chain”;
- Class 3D: “Protected for waterfowl, shore birds, and other water-oriented wildlife not included in Classes 3A, 3B, or 3C, including the necessary aquatic organisms in their food chain”;
1.4. Study Goals and Objectives
2. Materials and Methods
2.1. Field Study
2.2. Sample Collection
2.3. Analysis Methods
2.3.1. Laboratory Analysis
2.3.2. Filtration
2.4. Data Cleaning
3. Results and Discussion: Regulation Levels
3.1. MDL Analysis
3.2. Specific Element Selection
3.3. Copper (Cu)
3.4. Zinc (Zn)
3.5. Nickel (Ni)
3.6. Aluminum (Al)
3.7. Lead (Pb)
3.8. Phosphorus (P)
3.9. Barium (Ba)
3.10. Arsenic (As)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taggart, J.B.; Ryan, R.L.; Williams, G.P.; Miller, A.W.; Valek, R.A.; Tanner, K.B.; Cardall, A.C. Historical Phosphorus Mass and Concentrations in Utah Lake: A Case Study with Implications for Nutrient Load Management in a Sorption-Dominated Shallow Lake. Water 2024, 16, 933. [Google Scholar] [CrossRef]
- Snow, E. A Preliminary Study of the Algae of Utah Lake. Master’s Thesis, Brigham Young University, Provo, UT, USA, 1931; 84p. [Google Scholar]
- Harding, W.J. The algae of Utah Lake. Part II. Great Basin Nat. 1971, 31, 125–134. [Google Scholar]
- Rushforth, S.R.; Squires, L.E. New records and comprehensive list of the algal taxa of Utah Lake, Utah, USA. Great Basin Nat. 1985, 45, 237–254. [Google Scholar]
- Squires, L.E.; Rushforth, S.R. Winter phytoplankton communities of Utah Lake, Utah, USA. Hydrobiologia 1986, 131, 235–248. [Google Scholar] [CrossRef]
- Whiting, M.C.; Brotherson, J.D.; Rushforth, S.R. Environmental interaction in summer algal communities of Utah Lake. Great Basin Nat. 1978, 38, 31–41. [Google Scholar]
- Harding, W.J. A preliminary report on the algal species presently found in Utah Lake. Great Basin Nat. 1970, 30, 99–105. [Google Scholar]
- Rushforth, S.R.; St. Clair, L.L.; Grimes, J.A.; Whiting, M.C. Phytoplankton of Utah Lake. Great Basin Nat. Mem. 1981, 5, 85–100. [Google Scholar]
- Squires, L.E.; Whiting, M.C.; Brotherson, J.D.; Rushforth, S.R. Competitive displacement as a factor influencing phytoplankton distribution in Utah Lake, Utah. Great Basin Nat. 1979, 39, 245–252. [Google Scholar]
- Carozzi, A.V. Observations on algal biostromes in the Great Salt Lake, Utah. J. Geol. 1962, 70, 246–252. [Google Scholar] [CrossRef]
- Rushforth, S.R.; Merkley, G.S. Comprehensive list by habitat of the algae of Utah, USA. Great Basin Nat. 1988, 48, 154–179. [Google Scholar]
- Davis, R.; Panja, P.; McLennan, J. Integrated workflow for interpretation of satellite imageries using machine learning to assess and monitor algal blooms in Utah Lake, USA. Ecol. Inform. 2023, 75, 102033. [Google Scholar] [CrossRef]
- Tanner, K.B.; Cardall, A.C.; Williams, G.P. A Spatial Long-Term Trend Analysis of Estimated Chlorophyll-a Concentrations in Utah Lake Using Earth Observation Data. Remote Sens. 2022, 14, 3664. [Google Scholar] [CrossRef]
- Hansen, C.H.; Burian, S.J.; Dennison, P.E.; Williams, G.P. Evaluating historical trends and influences of meteorological and seasonal climate conditions on lake chlorophyll a using remote sensing. Lake Reserv. Manag. 2020, 36, 45–63. [Google Scholar] [CrossRef]
- Hansen, C.H.; Williams, G.P.; Adjei, Z.; Barlow, A.; Nelson, E.J.; Miller, A.W. Reservoir water quality monitoring using remote sensing with seasonal models: Case study of five central-Utah reservoirs. Lake Reserv. Manag. 2015, 31, 225–240. [Google Scholar] [CrossRef]
- Barrus, S.M.; Williams, G.P.; Miller, A.W.; Borup, M.B.; Merritt, L.B.; Richards, D.C.; Miller, T.G. Nutrient Atmospheric Deposition on Utah Lake: A Comparison of Sampling and Analytical Methods. Hydrology 2021, 8, 123. [Google Scholar] [CrossRef]
- Telfer, J.T.; Brown, M.M.; Williams, G.P.; Tanner, K.B.; Miller, A.W.; Sowby, R.B.; Miller, T.G. Source Attribution of Atmospheric Dust Deposition to Utah Lake. Hydrology 2023, 10, 210. [Google Scholar] [CrossRef]
- Abu-Hmeidan, H.Y.; Williams, G.P.; Miller, A.W. Characterizing Total Phosphorus in Current and Geologic Utah Lake Sediments: Implications for Water Quality Management Issues. Hydrology 2018, 5, 8. [Google Scholar] [CrossRef]
- Brown, M.M.; Telfer, J.T.; Williams, G.P.; Miller, A.W.; Sowby, R.B.; Hales, R.C.; Tanner, K.B. Nutrient Loadings to Utah Lake from Precipitation-Related Atmospheric Deposition. Hydrology 2023, 10, 200. [Google Scholar] [CrossRef]
- Olsen, J.M.; Williams, G.P.; Miller, A.W.; Merritt, L. Measuring and calculating current atmospheric phosphorous and nitrogen loadings to utah lake using field samples and geostatistical analysis. Hydrology 2018, 5, 45. [Google Scholar] [CrossRef]
- Bradshaw, J.; Sundrud, R.; White, D.; Barton, J.; Fuhriman, D.; Loveridge, E.; Pratt, D. Chemical response of Utah Lake to nutrient inflow. J. Water Pollut. Control Fed. 1973, 45, 880–887. [Google Scholar]
- Zanazzi, A.; Wang, W.; Peterson, H.; Emerman, S.H. Using Stable Isotopes to Determine the Water Balance of Utah Lake (Utah, USA). Hydrology 2020, 7, 88. [Google Scholar] [CrossRef]
- Strong, A.E. Remote sensing of algal blooms by aircraft and satellite in Lake Erie and Utah Lake. Remote Sens. Environ. 1974, 3, 99–107. [Google Scholar] [CrossRef]
- Strong, A. ERTS-1 observes algal blooms in Lake Erie and Utah Lake. In Proceedings of the NASA. Goddard Space Flight Center Symp. on Significant Results obtained from the ERTS-1, New Carrollton, MD, USA, 5–9 March 1973. [Google Scholar]
- Miller, W.; Rango, A. Using heat capacity mapping mission (hcmm) data to assess lake water quality 1. JAWRA J. Am. Water Resour. Assoc. 1984, 20, 493–501. [Google Scholar] [CrossRef]
- Schneider, S.R.; McGinnis, D.F.; Gatlin, J.A. Use of NOAA/AVHRR Visible and Near-Infrared Data for Land Remote Sensing; National Earth Satellite Service, Ed.; US Department of Commerce, National Oceanic and Atmospheric Administration: Washington, DC, USA, 1981; Vol. NOAA Technical Report NESS84.
- Hansen, C.H.; Williams, G.P. Evaluating remote sensing model specification methods for estimating water quality in optically diverse lakes throughout the growing season. Hydrology 2018, 5, 62. [Google Scholar] [CrossRef]
- Hansen, C.H.; Burian, S.J.; Dennison, P.E.; Williams, G.P. Spatiotemporal variability of lake water quality in the context of remote sensing models. Remote Sens. 2017, 9, 409. [Google Scholar] [CrossRef]
- Rivera, S.; Landom, K.; Crowl, T. Monitoring macrophytes cover and taxa in Utah Lake by using 2009-2011 Landsat digital imagery. Rev. Teledetección 2013, 39, 106–115. [Google Scholar]
- Han, Q.; Niu, Z. Construction of the long-term global surface water extent dataset based on water-NDVI spatio-temporal parameter set. Remote Sens. 2020, 12, 2675. [Google Scholar] [CrossRef]
- Seegers, B.N.; Werdell, P.J.; Vandermeulen, R.A.; Salls, W.; Stumpf, R.P.; Schaeffer, B.A.; Owens, T.J.; Bailey, S.W.; Scott, J.P.; Loftin, K.A. Satellites for long-term monitoring of inland US lakes: The MERIS time series and application for chlorophyll-a. Remote Sens. Environ. 2021, 266, 112685. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, Z.; Yang, Z.; Pang, S.; Chen, J.; Cheng, Q. Spectral probability distribution of closed connected water and remote sensing statistical inference for yellow substance. Photogramm. Eng. Remote Sens. 2021, 87, 807–819. [Google Scholar] [CrossRef]
- Hansen, C.H.; Dennison, P.; Burian, S.; Barber, M.; Williams, G. Hindcasting water quality in an optically complex system. WIT Trans. Ecol. Environ. 2016, 209, 35–44. [Google Scholar]
- Page, B.P.; Kumar, A.; Mishra, D.R. A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 69–81. [Google Scholar] [CrossRef]
- Ramsey, R.D.; Falconer, A.; Jensen, J.R. The relationship between NOAA-AVHRR NDVI and ecoregions in Utah. Remote Sens. Environ. 1995, 53, 188–198. [Google Scholar] [CrossRef]
- Hansen, C.; Swain, N.; Munson, K.; Adjei, Z.; Williams, G.P.; Miller, W. Development of sub-seasonal remote sensing chlorophyll-a detection models. Am. J. Plant Sci. 2013, 4, 40802. [Google Scholar] [CrossRef]
- Cardall, A.C.; Hales, R.C.; Tanner, K.B.; Williams, G.P.; Markert, K.N. LASSO (L1) Regularization for Development of Sparse Remote-Sensing Models with Applications in Optically Complex Waters Using GEE Tools. Remote Sens. 2023, 15, 1670. [Google Scholar] [CrossRef]
- Williams, R.; Nelson, S.; Rushforth, S.; Rey, K.; Carling, G.; Bickmore, B.; Heathcote, A.; Miller, T.; Meyers, L. Human-Driven Trophic Changes in a Large, Shallow Urban Lake: Changes in Utah Lake, Utah from Pre-European Settlement to the Present. Water Air Soil Pollut. 2023, 234, 218. [Google Scholar] [CrossRef]
- Nofchissey, S.; Roberts, S.; Hopkinson, J.; McDonald, J.; Emerman, S. Arsenic and other heavy metals in Utah Lake and its tributaries. In Proceedings of the 2014 Spring Runoff Conference, Logan, UT, USA, 1 April 2014. [Google Scholar]
- Zhang, X.; Li, B.; Xu, H.; Wells, M.; Tefsen, B.; Qin, B. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. Water Res. 2019, 151, 500–514. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.A. (Ed.) Algal Culturing Techniques; Elsevier: Boston, MA, USA, 2005. [Google Scholar]
- Downs, T.M.; Schallenberg, M.; Burns, C.W. Responses of lake phytoplankton to micronutrient enrichment: A study in two New Zealand lakes and an analysis of published data. Aquat. Sci. 2008, 70, 347–360. [Google Scholar] [CrossRef]
- Norman, L.; Cabanesa, D.J.E.; Blanco-Ameijeiras, S.; Moisset, S.A.M.; Hassler, C.S. Iron Biogeochemistry in Aquatic Systems: From Source to Bioavailability. CHIMIA 2014, 68, 764. [Google Scholar] [CrossRef] [PubMed]
- Krivokapić, M. Study on the Evaluation of (Heavy) Metals in Water and Sediment of Skadar Lake (Montenegro), with BCF Assessment and Translocation Ability (TA) by Trapa natans and a Review of SDGs. Water 2021, 13, 876. [Google Scholar] [CrossRef]
- Rueter, J.G.; Petersen, R.R. Micronutrient effects on cyanobacterial growth and physiology. N. Z. J. Mar. Freshw. Res. 1987, 21, 435–445. [Google Scholar] [CrossRef]
- Bayer, T.K.; Schallenberg, M.; Martin, C.E. Investigation of nutrient limitation status and nutrient pathways in Lake Hayes, Otago, New Zealand: A case study for integrated lake assessment. N. Z. J. Mar. Freshw. Res. 2008, 42, 285–295. [Google Scholar] [CrossRef]
- Dengg, M.; Stirling, C.H.; Reid, M.R.; Verburg, P.; Armstrong, E.; Kelly, L.T.; Wood, S.A. Growth at the limits: Comparing trace metal limitation of a freshwater cyanobacterium (Dolichospermum lemmermannii) and a freshwater diatom (Fragilaria crotonensis). Sci. Rep. 2022, 12, 467. [Google Scholar] [CrossRef]
- Facey, J.A.; Rogers, T.A.; Apte, S.C.; Mitrovic, S.M. Micronutrients as growth limiting factors in cyanobacterial blooms; a survey of freshwaters in South East Australia. Aquat. Sci. 2021, 83, 28. [Google Scholar] [CrossRef]
- Facey, J.A.; Apte, S.C.; Mitrovic, S.M. A Review of the Effect of Trace Metals on Freshwater Cyanobacterial Growth and Toxin Production. Toxins 2019, 11, 643. [Google Scholar] [CrossRef]
- Shaw-Allen, P.; Sutlerm, G.W. Metals. Available online: https://www.epa.gov/caddis-vol2/metals (accessed on 2 June 2024).
- Schuler, M.S.; Relyea, R.A. A Review of the Combined Threats of Road Salts and Heavy Metals to Freshwater Systems. BioScience 2018, 68, 327–335. [Google Scholar] [CrossRef]
- Monchanin, C.; Devaud, J.-M.; Barron, A.B.; Lihoreau, M. Current permissible levels of metal pollutants harm terrestrial invertebrates. Sci. Total Environ. 2021, 779, 146398. [Google Scholar] [CrossRef] [PubMed]
- Mogren, C.L.; Trumble, J.T. The impacts of metals and metalloids on insect behavior. Entomol. Exp. Et Appl. 2010, 135, 1–17. [Google Scholar] [CrossRef]
- Rainbow, P.S. Trace metal concentrations in aquatic invertebrates: Why and so what? Environ. Pollut. 2002, 120, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Walhtam, MA, USA, 2011. [Google Scholar]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [CrossRef]
- Afshan, S.; Ali, S.; Ameen, U.S.; Farid, M.; Bharwana, S.A.; Hannan, F.; Ahmad, R. Effect of different heavy metal pollution on fish. Res. J. Chem. Environ. Sci 2014, 2, 74–79. [Google Scholar]
- Amundsen, P.A.; Staldvik, F.J.; Lukin, A.A.; Kashulin, N.A.; Popova, O.A.; Reshetnikov, Y.S. Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci. Total Environ. 1997, 201, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Lucia, M.; André, J.-M.; Gontier, K.; Diot, N.; Veiga, J.; Davail, S. Trace element concentrations (mercury, cadmium, copper, zinc, lead, aluminium, nickel, arsenic, and selenium) in some aquatic birds of the Southwest Atlantic Coast of France. Arch. Environ. Contam. Toxicol. 2010, 58, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Gochfeld, M. Behavioral impairments of lead-injected young herring gulls in nature. Toxicol. Sci. 1994, 23, 553–561. [Google Scholar] [CrossRef]
- Scheuhammer, A. The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: A review. Environ. Pollut. 1987, 46, 263–295. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.; Bloom, A.J. Mineral Nutrition of Plants: Principles and Perspectives; Sinauer: Sunderland, MA, USA, 1853. [Google Scholar]
- Cavet, J.S.; Borrelly, G.P.; Robinson, N.J. Zn, Cu and Co in cyanobacteria: Selective control of metal availability. FEMS Microbiol. Rev. 2003, 27, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Babu, P.R.; Acharyya, T.; Bandyopadhyay, D. Stress and toxicity of biologically important transition metals (Co, Ni, Cu and Zn) on phytoplankton in a tropical freshwater system: An investigation with pigment analysis by HPLC. Chemosphere 2010, 80, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Vivián, C.; Cabello, P.n.; Martínez-Luque, M.; Blasco, R.; Castillo, F. Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol. 1999, 181, 6573–6584. [Google Scholar] [CrossRef]
- Axler, R.; Gersberg, R.; Goldman, C. Stimulation of nitrate uptake and photosynthesis by molybdenum in Castle Lake, California. Can. J. Fish. Aquat. Sci. 1980, 37, 707–712. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Whetten, C.L. This Strange Enterprise: Geneva Steel and the American West. Master of Arts Thesis, The University of Utah, Salt Lake City, UT, USA, 2011. [Google Scholar]
- Fuhriman, D.K.; Merritt, L.B.; Miller, A.W.; Stock, H.S. Hydrology and Water Quality of Utah Lake. Great Basin Nat. Mem. 1981, 5, 43–67. [Google Scholar]
- United States. Census Bureau. US Census Bureau Publications-Census of Population and Housing. Available online: https://www.census.gov/prod/www/decennial.html (accessed on 1 October 2021).
- Schoderboeck, L.; Mühlegger, S.; Losert, A.; Gausterer, C.; Hornek, R. Effects assessment: Boron compounds in the aquatic environment. Chemosphere 2011, 82, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Norici, A.; Hell, R.; Giordano, M. Sulfur and primary production in aquatic environments: An ecological perspective. Photosynth. Res. 2005, 86, 409–417. [Google Scholar] [CrossRef]
- Karjalainen, J.; Hu, X.; Mäkinen, M.; Karjalainen, A.; Järvistö, J.; Järvenpää, K.; Sepponen, M.; Leppänen, M.T. Sulfate sensitivity of aquatic organism in soft freshwaters explored by toxicity tests and species sensitivity distribution. Ecotoxicol. Environ. Saf. 2023, 258, 114984. [Google Scholar] [CrossRef] [PubMed]
- Bodzek, M. The removal of boron from the aquatic environment–state of the art. Desalination Water Treat. 2016, 57, 1107–1131. [Google Scholar] [CrossRef]
- Gad, S.C. Barium. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 368–370. [Google Scholar] [CrossRef]
- Casbeer, W.; Williams, G.P.; Borup, M.B. Phosphorus Distribution in Delta Sediments: A Unique Data Set from Deer Creek Reservoir. Hydrology 2018, 5, 58. [Google Scholar] [CrossRef]
- Szklarek, S.; Górecka, A.; Wojtal-Frankiewicz, A. The effects of road salt on freshwater ecosystems and solutions for mitigating chloride pollution—A review. Sci. Total Environ. 2022, 805, 150289. [Google Scholar] [CrossRef]
- Maier, K.J.; Knight, A.W. Ecotoxicology of selenium in freshwater systems. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 1994; Volume 197. [Google Scholar]
- Diaz, X.; Johnson, W.P.; Naftz, D.L. Selenium mass balance in the Great Salt Lake, Utah. Sci. Total Environ. 2008, 407, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Utah Department of Environmental Quality. Standards of Quality for Waters of the State. Available online: https://documents.deq.utah.gov/water-quality/standards-technical-services/DWQ-2021-017555.pdf (accessed on 19 September 2022).
- Utah Department of Environmental Quality Division of Water Quality. Water Quality Standards-Utah Department of Environmental Quality. Available online: https://deq.utah.gov/water-quality/water-quality-standards (accessed on 19 September 2022).
- Utah Department of Environmental Quality. Water Qulaity Assessment and Analysis: Utah Lake Water Quality Study. Available online: https://deq.utah.gov/water-quality/water-quality-assessment-and-analysis-utah-lake (accessed on 14 March 2024).
- Horowitz, A.J.; Elrick, K.A.; Colberg, M.R. The effect of membrane filtration artifacts on dissolved trace element concentrations. Water Res. 1992, 26, 753–763. [Google Scholar] [CrossRef]
- Holcomb, B. Utah Lake Marina HAB Treatments Evaluation of Treatment Effectiveness 2021 Interim Report Utah Department of Environmental Quality; Utah Department of Environmental Quality: Salt Lake City, UT, USA, 2021.
- The Utah Lake Authority. Utah Lake Authority FY 2023 Annual Monitoring Report; Utah Division of Environmental Quality: Salt Lake City, UT, USA, 2023.
- United States Bureau of Reclamation. Historic Data. Available online: https://www.usbr.gov/rsvrWater/HistoricalApp.html (accessed on 15 January 2024).
- United States Environmental Protection Agency. 2018 Final Aquatic Life Criteria for Aluminum in Freshwater; US EPA, Environmental Protection Agency, Ed.; US EPA: Washington, DC, USA, 2022.
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- PSOMAS. Utah Lake TMDL: Pollutant Loading Assessment & Designated Beneficial Use Impairment Assessment; Utah Department of Environmental Quality, Ed.; Utah Department of Environmental Quality: Salt Lake City, UT, USA, 2007.
- United States Environmental Protection Agency. Consumer Factsheet on: Barium (Archived). Available online: https://archive.epa.gov/water/archive/web/pdf/archived-consumer-fact-sheet-on-barium.pdf (accessed on 14 March 2024).
- United States Environmental Protection Agency. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 14 March 2024).
- Welch, A.H.; Westjohn, D.; Helsel, D.R.; Wanty, R.B. Arsenic in ground water of the United States: Occurrence and geochemistry. Groundwater 2000, 38, 589–604. [Google Scholar] [CrossRef]
- Korte, N.E.; Fernando, Q. A review of arsenic (III) in groundwater. Crit. Rev. Environ. Control 1991, 21, 1–39. [Google Scholar] [CrossRef]
DE | Acute Standard (mg/L) | Chronic Standard (mg/L) | Designated Use |
---|---|---|---|
Aluminum (Al) * | 0.75 | 0.75 | 3B, 3D |
Arsenic (As) ** | 0.10 | 0.10 | 4 |
Boron (B) ** | 0.75 | 0.75 | 4 |
Cadmium (Cd) | 0.0018 | 0.00072 | 3B, 3D |
Chromium (Cr) (Hexavalent) *** | 0.016 | 0.011 | 3B, 3D |
Copper (Cu) | 0.013 | 0.009 | 3B, 3D |
Iron (Fe) ** | 1 | 1 | 3B, 3D |
Nickel (Ni) | 0.468 | 0.052 | 3B,3D |
Phosphorus (P) * | 0.025 | 0.025 | 3B |
Lead (Pb) | 0.065 | 0.0025 | 3B, 3D |
Selenium (Se) | 0.0184 | 0.0046 | 3B, 3D |
Zinc (Zn) | 0.12 | 0.12 | 3B, 3D |
Analyte | Model/Method | Equipment |
---|---|---|
DE Total (digested) | EPA 3015A | Thermo Scientific™ 7400 ICP-OES |
DE Dissolved (filtered) | 0.45 µ filter | Thermo Scientific™ 7400 ICP-OES (ThermoFisher Scientific, Waltham, MA, USA) |
Analyte | Detection Limit (µg/L) | Analyte | Detection Limit (µg/L) |
---|---|---|---|
Aluminum (Al) | 1.51 | Molybdenum (Mo) | 1.11 |
Arsenic (As) | 4.74 | Sodium (Na) | 1.80 |
Boron (B) | 1.26 | Nickel (Ni) | 2.29 |
Barium (Ba) | 0.17 | Phosphorus (P) | 5.66 |
Calcium (Ca) | 0.02 | Lead (Pb) | 4.50 |
Cadmium (Cd) | 0.19 | Sulfur (S) | 2.22 |
Cobalt (Co) | 1.16 | Selenium (Se) | 7.36 |
Chromium (Cr) | 0.85 | Silicon (Si) | 7.20 |
Copper (Cu) | 2.36 | Strontium (Sr) | 0.04 |
Iron (Fe) | 0.80 | Titanium (Ti) | 0.58 |
Potassium (K) | 5.10 | Vanadium (V) | 0.80 |
Magnesium (Mg) | 0.04 | Zinc (Zn) | 0.60 |
Manganese (Mn) | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valek, R.A.; Tanner, K.B.; Taggart, J.B.; Ryan, R.L.; Cardall, A.C.; Woodland, L.M.; Oxborrow, M.J.; Williams, G.P.; Miller, A.W.; Sowby, R.B. Regulated Inductively Coupled Plasma–Optical Emission Spectrometry Detectible Elements in Utah Lake: Characterization and Discussion. Water 2024, 16, 2170. https://doi.org/10.3390/w16152170
Valek RA, Tanner KB, Taggart JB, Ryan RL, Cardall AC, Woodland LM, Oxborrow MJ, Williams GP, Miller AW, Sowby RB. Regulated Inductively Coupled Plasma–Optical Emission Spectrometry Detectible Elements in Utah Lake: Characterization and Discussion. Water. 2024; 16(15):2170. https://doi.org/10.3390/w16152170
Chicago/Turabian StyleValek, Rachel A., Kaylee B. Tanner, Jacob B. Taggart, Rebecca L. Ryan, Anna C. Cardall, Lauren M. Woodland, Maddeline J. Oxborrow, Gustavious P. Williams, A. Woodruff Miller, and Robert B. Sowby. 2024. "Regulated Inductively Coupled Plasma–Optical Emission Spectrometry Detectible Elements in Utah Lake: Characterization and Discussion" Water 16, no. 15: 2170. https://doi.org/10.3390/w16152170
APA StyleValek, R. A., Tanner, K. B., Taggart, J. B., Ryan, R. L., Cardall, A. C., Woodland, L. M., Oxborrow, M. J., Williams, G. P., Miller, A. W., & Sowby, R. B. (2024). Regulated Inductively Coupled Plasma–Optical Emission Spectrometry Detectible Elements in Utah Lake: Characterization and Discussion. Water, 16(15), 2170. https://doi.org/10.3390/w16152170