Study on the Effects of Irrigation Quotas and Amendments on Salinized Soil and Maize Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Site
2.2. Experimental Materials and Design
2.3. Measurement Items and Methods
2.3.1. Physical and Chemical Properties of Soils and Their Measurement Methods
2.3.2. Groundwater Level and Mineralization, and Measurement Methods
2.3.3. Maize Growth Characteristics and Their Measurement
2.4. Data Analysis
3. Results
3.1. Characteristics of Groundwater Level Movement in Salinized Soils
3.2. Variation Patterns of Groundwater Salinity in Salinized Soil
3.3. Characteristics of pH and Salinity Changes in Salinized Soils
3.4. Effects of Water and Salt Transport on Soil Fertility
3.5. Effects of Water and Salt Transport on Maize Growth Characteristics
3.6. Influence of Water, Salt, and Soil Fertility on Crop Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, F.; Zhang, F.; Fan, J.; Hou, X.; Bai, W.; Liu, X.; Wang, Y.; Pan, X. Optimization of Irrigation and Nitrogen Fertilization Increases Ash Salt Accumulation and Ions Absorption of Drip-Fertigated Sugar Beet in Saline-Alkali Soils. Field Crop. Res. 2021, 271, 108247. [Google Scholar] [CrossRef]
- Maleki Tirabadi, M.; Banihabib, M.; Randhir, T. An Integrated Framework for Simultaneously Modeling Primary and Secondary Salinity at a Watershed Scale. J. Hydrol. 2022, 612, 128171. [Google Scholar] [CrossRef]
- Zahedifar, M. Effect of biochar on cadmium fractions in some polluted saline and sodic soils. Environ. Manag. 2020, 66, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xia, R.; Ying, Y.; Lu, S. Desulfurization steel slag improves the saline-sodic soil quality by replacing sodium ions and affecting soil pore structure. J. Environ. Manag. 2023, 345, 118874. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shao, T.; Lv, Z.; Yue, Y.; Liu, A.; Long, X.; Zhou, Z.; Gao, X.; Rengel, Z. The mechanisms of improving coastal saline soils by planting rice. Sci. Total Env. 2020, 703, 135529. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. ‘World Soil Day: Food and Agriculture Organization of the United Nations Emphasizes that Soil Salinization Poses a Threat to Global Food Security’ [EB/OL]. 3 December 2021. Available online: https://www.fao.org/newsroom/detail/world-soil-day-fao-highlights-threat-of-soil-salinization-to-food-security-031221/en (accessed on 5 April 2023).
- Chen, L.; Zhou, G.; Feng, B.; Wang, C.; Luo, Y.; Li, F.; Shen, C.; Ma, D.; Zhang, C.; Zhang, J. Saline–Alkali Land Reclamation Boosts Topsoil Carbon Storage by Preferentially Accumulating Plant-Derived Carbon. Sci. Bull. 2024, 69, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Chen, D.; He, Y.; Zhou, Q.; Tian, Y.; Gao, L. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands. Int. J. Phytoremediat. 2016, 18, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Negacz, K.; Malek, Z.; De Vos, A.; Vellinga, P. Saline soils worldwide: Identifying the most promising areas for saline agriculture. J. Arid. Environ. 2022, 203, 104775. [Google Scholar] [CrossRef]
- Du, Y.; Liu, X.; Zhang, L.; Zhou, W. Drip Irrigation in Agricultural Saline-Alkali Land Controls Soil Salinity and Improves Crop Yield: Evidence from a Global Meta-Analysis. Sci. Total Environ. 2023, 880, 163226. [Google Scholar] [CrossRef] [PubMed]
- Jat Baloch, M.Y.; Zhang, W.; Sultana, T.; Akram, M.; Shoumik, B.A.A.; Khan, M.Z.; Farooq, M.A. Utilization of Sewage Sludge to Manage Saline–Alkali Soil and Increase Crop Production: Is It Safe or Not? Environ. Technol. Innov. 2023, 32, 103266. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Ma, C.; Lei, C.-Y.; Zhu, X.-L.; Ren, C.-G.; Liu, N.; Liu, Z.-Y.; Du, H.; Tang, T.; Li, R.-Z.; Cui, H.-L. Saline-Alkali Land Amendment and Value Development: Microalgal Biofertilizer for Efficient Production of a Halophytic Crop—Chenopodium Quinoa. Land Degrad. Dev. 2023, 34, 956–968. [Google Scholar] [CrossRef]
- Liu, C.; Shang, H.; Han, L.; Sun, X. Effect of Alkali Residue and Humic Acid on Aggregate Structure of Saline-Alkali Soil. Soil Sci. Soc. Am. J. 2024, 88, 291–303. [Google Scholar] [CrossRef]
- Heng, T.; He, X.L.; Yang, L.L.; Xu, X.; Feng, Y. Mechanism of Saline–Alkali Land Improvement Using Subsurface Pipe and Vertical Well Drainage Measures and Its Response to Agricultural Soil Ecosystem. Environ. Pollut. 2022, 293, 118583. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Guo, J.; Xu, L.; Song, Z.; Zhang, J.; Tang, A.; Zhang, X.; Leng, C.; Liu, Y.; Wang, L.; et al. Water regime-nitrogen fertilizer incorporation interaction: Field study on methane and nitrous oxide emissions from a rice agroecosystem in Harbin, China. J. Environ. Sci. 2018, 64, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Zhang, L.; Li, S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and Potential of Water-Saving Irrigation for Rice Production in China. Agric. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- Zhang, S.; Zamanian, K.; Raza, S.; Raheb, A.; Feng, Y.; Zhao, X. A Balance among Irrigation and Fertilization Regimes to Reduce Greenhouse Gases Emissions from Saline and Alkaline Soils. Land Degrad. Dev. 2024, 35, 168–182. [Google Scholar] [CrossRef]
- Dai, J.; Cui, Z.; Zhang, Y.; Zhan, L.; Nie, J.; Cui, J.; Zhang, D.; Xu, S.; Sun, L.; Chen, B.; et al. Enhancing stand establishment and yield formation of cotton with multiple drip irrigation during emergence in saline fields of Southern Xinjiang. Field Crop. Res. 2024, 315, 109482. [Google Scholar] [CrossRef]
- Ding, B.; Cao, H.; Zhang, J.; Bai, Y.; He, Z.; Guo, S.; Wang, B.; Jia, Z.; Liu, H. Biofertilizer application improved cotton growth, nitrogen use efficiency, and yield in saline water drip-irrigated cotton fields in Xinjiang, China. Ind. Crop. Prod. 2023, 205, 117553. [Google Scholar] [CrossRef]
- Tao, W.; Li, J.; Li, W.; Wen, C.; Gao, S.; Wang, Y.; Liu, D.; Xu, L.; Jiang, Y.; Liu, Z.; et al. Higher rice productivity and lower paddy nitrogen loss with optimized irrigation and fertilization practices in a rice-upland system. Agric. Ecosyst. Environ. 2024, 374, 109176. [Google Scholar] [CrossRef]
- Xing, J.; Li, X.; Li, Z.; Wang, X.; Hou, N.; Li, D. Remediation of soda-saline-alkali soil through soil amendments: Microbially mediated carbon and nitrogen cycles and remediation mechanisms. Sci. Total Environ. 2024, 924, 171641. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Guo, Q.; Song, D.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Sun, G.; Yuan, F.; Liu, Z. Long-Term Mineral Fertilizer Substitution by Organic Fertilizer and the Effect on the Abundance and Community Structure of Ammonia-Oxidizing Archaea and Bacteria in Paddy Soil of South China. Eur. J. Soil. Biol. 2021, 103, 103288. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.P.; Van Zwieten, L.; Collins, D.; Pitt, W.; Armstrong, R.; Tavakkoli, E. Additive effects of organic and inorganic amendments can significantly improve structural stability of a sodic dispersive subsoil. Geoderma 2021, 404, 115281. [Google Scholar] [CrossRef]
- Dhakate, P.; Kandhol, N.; Raturi, G.; Ray, P.; Bhardwaj, A.; Srivastava, A.; Kaushal, L.; Singh, A.; Pandey, S.; Chauhan, D.K.; et al. Silicon Nanoforms in Crop Improvement and Stress Management. Chemosphere 2022, 305, 135165. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Khan, A.L.; Waqas, M.; Lee, I.J. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review. Front. Plant Sci. 2017, 8, 510. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Zhang, D.; Zhang, J.; Li, Z.; Sang, W.; Zhao, L.; Xu, M. Ecological Environmental Effects of Yellow River Irrigation Revealed by Isotope and Ion Hydrochemistry in the Yinchuan Plain, Northwest China. Ecol. Indic. 2022, 135, 108574. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; He, P.; Chen, D.; Dai, X.; Jin, Q.; Su, X. The Optimal Irrigation Water Salinity and Salt Component for High-Yield and Good-Quality of Tomato in Ningxia. Agric. Water Manag. 2022, 274, 107940. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Wang, R.; Xu, X.; Ren, D.; Huang, Q.; Xiong, Y.; Huang, G. Evaluation of Irrigation Water Saving and Salinity Control Practices of Maize and Sunflower in the Upper Yellow River Basin with an Agro-Hydrological Model Based Method. Agric. Water Manag. 2023, 278, 108157. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, F.; Xie, X.; Cheng, Y.; Xu, X. Effects of N and P Addition on Nutrient and Stoichiometry of Rhizosphere and Non-Rhizosphere Soils of Alfalfa in Alkaline Soil. Sci. Rep. 2023, 13, 12119. [Google Scholar] [CrossRef]
- Endo, T.; Abdalla, M.; Elkarim, A.; Toyoda, M.; Yamamoto, S.; Yamanaka, N. Simplified evaluation of salt affected soils using 1:5 soil-water extract. Commun. Soil. Sci. Plant Anal. 2021, 52, 2533–2549. [Google Scholar] [CrossRef]
- Li, G.; Ma, Z.; Wei, L.; Wu, C.; Chen, H.; Guo, B.; Ge, T.; Wang, J.; Li, J. Long-term agricultural cultivation decreases microbial nutrient limitation in coastal saline soils. Sci. Total Environ. 2024, 949, 175005. [Google Scholar] [CrossRef]
- Heydari, B.; Khayat, N.; Nazarpour, A. Assessment of the immediate impact of anions and cations on clay soils resistance parameters case study (garmsiri project iran). Case Stud. Constr. Mater. 2024, 20, e03105. [Google Scholar] [CrossRef]
- Khasanov, S.; Li, F.; Kulmatov, R.; Zhang, Q.; Qiao, Y.; Odilov, S.; Yu, P.; Leng, P.; Hirwa, H.; Tian, C.; et al. Evaluation of the Perennial Spatio-Temporal Changes in the Groundwater Level and Mineralization, and Soil Salinity in Irrigated Lands of Arid Zone: As an Example of Syrdarya Province, Uzbekistan. Agric. Water Manag. 2022, 263, 107444. [Google Scholar] [CrossRef]
- DB 33/T 895-2013; Technical Specification for Assessment and Rating Criteria of Cultivated Land Quality. Quality and Technical Supervision Bureau of Zhejiang Province: Hangzhou, China, 2013.
- Yan, S.; Gao, Y.; Tian, M.; Tian, Y.; Li, J. Comprehensive Evaluation of Effects of Various Carbon-Rich Amendments on Tomato Production under Continuous Saline Water Irrigation: Overall Soil Quality, Plant Nutrient Uptake, Crop Yields and Fruit Quality. Agric. Water Manag. 2021, 255, 106995. [Google Scholar] [CrossRef]
- Liu, S.; Wang, N.; Li, D.; Tian, C.; Zhang, K.; Hu, M.; Niu, H.; Zhao, Z. Effects of Halophyte Suaeda Salsa Continuous Cropping on Physical and Chemical Properties of Saline Soil under Drip Irrigation in Arid Regions. Agric. Ecosyst. Environ. 2024, 371, 109076. [Google Scholar] [CrossRef]
- Ghasempour, R.; Aalami, M.T.; Kirca, V.S.O.; Roushangar, K. Assessing the Soil Salinity Vulnerability and Groundwater Quality Variations Due to Drying up of the Lake. Environ. Sci. Pollut. Res. 2023, 30, 115611–115627. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xin, P.; Yu, X. Interactions of macropores with tides, evaporation and rainfall and their effects on pore-water salinity in salt marshes. J. Hydrol. 2024, 630, 130740. [Google Scholar] [CrossRef]
- Lena, B.; Bondesan, L.; Pinheiro, E.; Ortiz, B.; Morata, G.; Kumar, H. Determination of irrigation scheduling thresholds based on HYDRUS-1D simulations of field capacity for multilayered agronomic soils in Alabama, USA. Agric. Water Manag. 2022, 259, 107234. [Google Scholar] [CrossRef]
- Zheng, j.; Chen, T.; Xia, G.; Chen, W.; Liu, G.; Chi, D. Effects of zeolite applicationon grain yield, water use and nitrogen uptake of rice under alternate wetting and drying irrigation. Int. J. Agric. Biol. Eng. 2018, 11, 157–164. [Google Scholar] [CrossRef]
- Luo, R.; Kuzyakov, Y.; Liu, D.; Fan, J.; Luo, J.; Lindsey, S.; He, J.; Ding, W. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls. Soil. Biol. Biochem. 2020, 144, 107764. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Li, P.; Xiao, L.; Wang, X. Temporal effects of soil organic carbon mineralization during the formation of a siltation body produced by erosion. Catena 2024, 241, 108030. [Google Scholar] [CrossRef]
- Li, S.; Yao, Y.; Yang, M.; Zhang, Y.; Zhang, S.; Shen, T.; Ding, F.; Li, Z.; Liu, W.; Cui, J.; et al. Effects of different amendments on aggregate stability and microbial communities of coastal saline–alkali soil in the Yellow River Delta. Land Degrad. Dev. 2023, 34, 1694–1707. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, P.; Li, X.; Duan, Z. How to Remediate Sulfate-Nitrate Salinized Greenhouse Soil? An Optimal Combination of Organic Amendment, Fertilizer and Irrigation. Sci. Hortic. 2023, 321, 112264. [Google Scholar] [CrossRef]
- Abdehvand, Z.Z.; Karimi, D.; Rangzan, K.; Mousavi, S.R. Assessment of soil fertility and nutrient management strategies in calcareous soils of Khuzestan province: A case study using the Nutrient Index Value method. Env. Monit. Assess. 2024, 196, 503. [Google Scholar] [CrossRef]
- Ali, S.; Jan, A.; Manzoor; Sohail, A.; Khan, A.; Khan, M.I.; Inamullah; Zhang, J.; Daur, I. Soil Amendments Strategies to Improve Water-Use Efficiency and Productivity of Maize under Different Irrigation Conditions. Agric. Water Manag. 2018, 210, 88–95. [Google Scholar] [CrossRef]
Soil Layer | pH | Total Salt | SOM | AH-N | AP | AK | SO42− | HCO3− | Cl− |
---|---|---|---|---|---|---|---|---|---|
cm | g/kg | g/kg | mg/kg | mg/kg | mg/kg | g/kg | g/kg | g/kg | |
0~20 | 8.52 | 2.25 | 13.63 | 36.4 | 15.85 | 149.44 | 0.05 | 0.04 | 0.03 |
20~40 | 8.47 | 2 | 12.87 | 30.1 | 8.7 | 133.49 | 0.04 | 0.04 | 0.02 |
40~60 | 8.45 | 1.09 | 8.15 | 21.12 | 0.29 | 120.37 | 0.08 | 0.04 | 0.02 |
60~80 | 8.46 | 1.14 | 7.23 | 21.12 | 0.87 | 123.16 | 0.09 | 0.04 | 0.02 |
80~100 | 8.47 | 1.13 | 6.85 | 21.12 | 0.87 | 121.7 | 0.11 | 0.04 | 0.02 |
Main Plot/Irrigation Quota | Subplot/Amendments | |||
---|---|---|---|---|
W1 | T0 | T1 | T2 | T3 |
T2 | T3 | T0 | T1 | |
T0 | T1 | T2 | T3 | |
W2 | T2 | T3 | T0 | T1 |
T0 | T1 | T2 | T3 | |
T2 | T3 | T0 | T1 | |
W3 | T0 | T1 | T2 | T3 |
T2 | T3 | T0 | T1 | |
T0 | T1 | T2 | T3 |
Amendments | Dosage/kg·hm−2 |
---|---|
microbial agents | 816.33 |
humic acid | 6122.45 |
microsilica | 612.25 |
Treatment | pH | Total Salt (g/kg) | ||||
---|---|---|---|---|---|---|
Earlier Stage | Medium Stage | Late Stage | Earlier Stage | Medium Stage | Late Stage | |
W1T0 | 8.52 | 8.43 a | 8.14 b | 2.25 | 2.07 a | 1.50 a |
W1T1 | 8.52 | 8.23 ef | 7.92 c | 2.25 | 2.04 a | 1.36 bc |
W1T2 | 8.52 | 8.20 ef | 7.63 ef | 2.25 | 1.73 abc | 1.21 de |
W1T3 | 8.52 | 8.37 ab | 7.96 c | 2.25 | 1.93 efg | 1.36 bc |
W2T0 | 8.52 | 8.33 bc | 8.16 ab | 2.25 | 1.97 ab | 1.48 a |
W2T1 | 8.52 | 8.27 cde | 7.75 d | 2.25 | 1.89 bcd | 1.27 cd |
W2T2 | 8.52 | 8.17 f | 7.54 f | 2.25 | 1.62 efg | 1.07 f |
W2T3 | 8.52 | 8.35 ab | 7.72 de | 2.25 | 1.73 g | 1.22 de |
W3T0 | 8.52 | 8.33 bcd | 8.25 a | 2.25 | 1.77 cde | 1.43 ab |
W3T1 | 8.52 | 8.25 ef | 7.81 d | 2.25 | 1.76 def | 1.21 de |
W3T2 | 8.52 | 8.17 f | 7.64 e | 2.25 | 1.67 def | 1.12 ef |
W3T3 | 8.52 | 8.25 de | 7.93 c | 2.25 | 1.82 fg | 1.25 d |
Irrigation quota | - | 15.37 ** | 48.47 ** | - | 54.92 ** | 32.77 ** |
Amendments | - | 86.23 ** | 458.35 ** | - | 55.61 ** | 131.98 ** |
Interaction | - | 6.82 ** | 11.17 ** | - | 8.40 ** | 3.19 * |
Treatment | SO42− (mg/kg) | HCO3− (mg/kg) | Cl− (g/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|
Earlier Stage | Medium Stage | Late Stage | Earlier Stage | Medium Stage | Late Stage | Earlier Stage | Medium Stage | Late Stage | |
W1T0 | 54.40 | 52.36 a | 26.56 ab | 39.35 | 35.78 ab | 21.99 b | 35.76 | 33.52 a | 26.87 ab |
W1T1 | 54.40 | 50.39 a | 35.41 ab | 39.35 | 27.90 bc | 20.73 bcd | 35.76 | 28.99 bcd | 24.89 bc |
W1T2 | 54.40 | 46.20 abc | 32.32 ab | 39.35 | 18.49 d | 16.40 cdef | 35.76 | 23.89 e | 15.39 gh |
W1T3 | 54.40 | 49.51 a | 19.52 b | 39.35 | 32.43 abc | 21.01 bc | 35.76 | 28.22 bcd | 20.16 de |
W2T0 | 54.40 | 52.45 a | 20.11 b | 39.35 | 26.65 c | 11.93 fg | 35.76 | 31.09 ab | 16.45 fg |
W2T1 | 54.40 | 50.60 a | 31.41 ab | 39.35 | 17.02 d | 12.45 efg | 35.76 | 29.49 b | 22.62 cd |
W2T2 | 54.40 | 41.79 c | 19.29 b | 39.35 | 14.92 d | 10.86 g | 35.76 | 25.03 de | 13.28 h |
W2T3 | 54.40 | 48.81 ab | 40.67 ab | 39.35 | 17.37 d | 12.48 efg | 35.76 | 28.80 bcd | 26.45 ab |
W3T0 | 54.40 | 52.07 a | 49.65 a | 39.35 | 37.62 a | 34.42 a | 35.76 | 29.19 bc | 28.57 a |
W3T1 | 54.40 | 46.80 abc | 38.83 ab | 39.35 | 29.99 abc | 17.67 bcde | 35.76 | 27.79 bcde | 23.17 c |
W3T2 | 54.40 | 42.48 bc | 39.76 ab | 39.35 | 29.70 bc | 11.11 fg | 35.76 | 25.43 cde | 18.66 ef |
W3T3 | 54.40 | 46.85 abc | 43.65 ab | 39.35 | 32.10 abc | 15.41 defg | 35.76 | 30.40 ab | 22.20 cd |
Irrigation quota | - | 3.65 * | 12.09 ** | - | 1.29 | 1.29 | - | 0.40 | 37.33 ** |
Amendments | - | 22.18 ** | 0.61 | 78.07 ** | 78.07 ** | - | 36.43 ** | 138.94 ** | |
Interaction | - | 1.02 | 3.34 * | - | 21.53 ** | 21.53 ** | - | 3.96 ** | 51.36 ** |
Treatment | SOM (g/kg) | AH-N (mg/kg) | AP (mg/kg) | AK (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Earlier Stage | Medium Stage | Late Stage | Earlier Stage | Medium Stage | Late Stage | Earlier Stage | Medium Stage | Late Stage | Earlier Stage | Medium Stage | Late Stage | |
W1T0 | 13.63 | 13.84 de | 17.54 d | 149.44 | 149.35 efgh | 173.38 cde | 15.85 | 10.20 e | 14.20 h | 149.44 | 149.35 efgh | 173.38 cde |
W1T1 | 13.63 | 14.56 bcde | 21.58 bc | 149.44 | 152.84 efg | 161.58 def | 15.85 | 25.16 c | 41.46 d | 149.44 | 152.84 efg | 161.58 def |
W1T2 | 13.63 | 15.41 abc | 22.77 ab | 149.44 | 168.89 abc | 192.40 abc | 15.85 | 43.40 a | 45.22 cd | 149.44 | 168.89 abc | 192.40 abc |
W1T3 | 13.63 | 14.62 bcde | 20.64 c | 149.44 | 145.56 fgh | 155.16 ef | 15.85 | 21.29 cd | 23.86 fg | 149.44 | 145.56 fgh | 155.16 ef |
W2T0 | 13.63 | 13.30 e | 18.32 d | 149.44 | 141.05 gh | 148.34 f | 15.85 | 16.90 de | 31.75 e | 149.44 | 141.05 gh | 148.34 f |
W2T1 | 13.63 | 14.49 bcde | 21.85 bc | 149.44 | 158.63 cde | 176.43 abcd | 15.85 | 34.08 b | 54.89 ab | 149.44 | 158.63 cde | 176.43 abcd |
W2T2 | 13.63 | 16.50 a | 24.19 a | 149.44 | 171.41 ab | 195.92 a | 15.85 | 25.46 c | 57.32 bc | 149.44 | 171.41 ab | 195.92 a |
W2T3 | 13.63 | 15.52 abc | 20.88 c | 149.44 | 139.38 h | 168.36 def | 15.85 | 16.53 de | 29.34 a | 149.44 | 139.38 h | 168.36 def |
W3T0 | 13.63 | 13.73 de | 22.09 bc | 149.44 | 146.12 fgh | 171.41 cde | 15.85 | 15.34 de | 17.69 ef | 149.44 | 146.12 fgh | 171.41 cde |
W3T1 | 13.63 | 14.15 cde | 21.84 bc | 149.44 | 155.90 def | 190.85 abc | 15.85 | 27.25 bc | 48.95 gh | 149.44 | 155.90 def | 190.85 abc |
W3T2 | 13.63 | 15.94 ab | 22.63 b | 149.44 | 179.79 a | 195.03 ab | 15.85 | 26.95 bc | 44.64 cd | 149.44 | 179.79 a | 195.03 ab |
W3T3 | 13.63 | 15.06 abcd | 20.75 c | 149.44 | 167.23 bcd | 174.06 bcde | 15.85 | 26.84 bc | 19.16 gh | 149.44 | 167.23 bcd | 174.06 bcde |
Irrigation quota | - | 1.41 | 17.30 ** | - | 61.99 ** | 34.78 ** | - | 1.29 | 115.57 ** | - | 19.19 ** | 10.21 ** |
Amendments | - | 33.65 ** | 96.66 ** | - | 70.58 ** | 182.41 ** | - | 78.07 ** | 449.05 ** | - | 78.46 ** | 33.48 ** |
Interaction | - | 1.94 | 21.15 ** | - | 9.11 ** | 115.08 ** | - | 21.53 ** | 7.14 ** | - | 9.84 ** | 6.39 ** |
Treatment | Plant Height /cm | Stem Diameter /mm | Aboveground Dry Matter Mass/kg·hm−2 | Grain Yield /kg·hm−2 |
---|---|---|---|---|
W1T0 | 294.11 ± 4.67 c | 17.45 ± 0.35 e | 49,697.35 ± 2550.86 e | 9620.59 ± 191.95 d |
W1T1 | 315.22 ± 2.71 abc | 19.40 ± 0.37 bcd | 69,816.50 ± 4128.54 ab | 13,393.24 ± 901.72 abc |
W1T2 | 319.33 ± 9.02 ab | 20.55 ± 0.30 ab | 70,228.57 ± 1012.36 ab | 13,964.46 ± 765.25 ab |
W1T3 | 306.00 ± 3.48 abc | 20.32 ± 0.60 ab | 58,497.13 ± 1933.73 cd | 11,987.76 ± 369.51 c |
W2T0 | 260.22 ± 4.91 d | 18.11 ± 0.67 de | 47,274.97 ± 1037.14 e | 10,220.06 ± 357.93 d |
W2T1 | 297.42 ± 8.98 bc | 19.85 ± 0.88 bc | 62,423.95 ± 2013.26 c | 10,204.58 ± 464.11 d |
W2T2 | 323.67 ± 2.85 a | 21.54 ± 0.24 a | 72,985.49 ± 632.73 a | 14,646.57 ± 165.15 a |
W2T3 | 309.00 ± 4.18 abc | 20.75 ± 0.13 ab | 64,378.98 ± 1221.55 bc | 13,462.67 ± 368.84 abc |
W3T0 | 257.33 ± 19.88 d | 18.46 ± 0.35 cde | 46,977.16 ± 5067.40 e | 9005.85 ± 454.86 d |
W3T1 | 301.00 ± 2.00 abc | 20.40 ± 1.19 ab | 52,012.99 ± 1473.69 de | 12,874.92 ± 697.46 bc |
W3T2 | 293.78 ± 9.16 c | 20.15 ± 0.27 ab | 64,986.51 ± 566.29 bc | 12,037.73 ± 139.68 c |
W3T3 | 300.78 ± 1.58 abc | 19.81 ± 0.18 bc | 61,136.75 ± 2025.60 c | 12,198.71 ± 776.92 c |
Irrigation quota | 20.42 ** | 3.97 * | 21.73 ** | 2.38 * |
Amendments | 51.28 ** | 42.73 ** | 125.96 ** | 89.17 ** |
Interaction | 5.95 ** | 2.77 * | 11.82 ** | 19.58 ** |
Treatment | Score | Ranking |
---|---|---|
W1T0 | −4.13 | 12 |
W1T1 | −0.69 | 8 |
W1T2 | 2.51 | 3 |
W1T3 | −1.58 | 9 |
W2T0 | −3.06 | 11 |
W2T1 | 0.94 | 4 |
W2T2 | 4.49 | 1 |
W2T3 | 0.38 | 6 |
W3T0 | −2.55 | 10 |
W3T1 | 0.88 | 5 |
W3T2 | 2.72 | 2 |
W3T3 | 0.09 | 7 |
Grade | SOM (g/kg) | AH-N (mg/kg) | AP (mg/kg) | AK (mg/kg) | TN (g/kg) | TP (g/kg) |
---|---|---|---|---|---|---|
1st | >40 | >150 | >40 | >200 | >2 | >1 |
2nd | 30~40 | 120~150 | 20~40 | 150~200 | 1.5~2 | 0.8~1 |
3rd | 20~30 | 90~120 | 10~20 | 100~150 | 1~1.5 | 0.6~0.8 |
4th | 10~20 | 60~90 | 5~10 | 50~100 | 0.75~1 | 0.4~0.6 |
5th | 6~10 | 30~60 | 3~5 | 30~50 | 0.5~0.75 | 0.2~0.4 |
6th | <6 | <30 | <3 | <30 | <6 | <6 |
Treatment | SOM (g/kg) | AH-N (mg/kg) | AP (mg/kg) | AK (mg/kg) | TN (g/kg) | TP (g/kg) | Soil Grade |
---|---|---|---|---|---|---|---|
CK | 13.63 | 36.4 | 15.85 | 149.44 | 0.85 | 0.84 | 4th |
W1T0 | 17.54 | 33.40 | 14.20 | 173.38 | 1.00 | 1.11 | 4th |
W1T1 | 21.58 | 48.10 | 41.46 | 161.58 | 1.08 | 1.27 | 3rd |
W1T2 | 22.77 | 62.47 | 45.22 | 192.40 | 1.08 | 1.80 | 3rd |
W1T3 | 20.64 | 42.40 | 23.86 | 155.16 | 0.88 | 1.40 | 3rd |
W2T0 | 18.32 | 45.57 | 31.75 | 148.34 | 0.91 | 1.11 | 4th |
W2T1 | 21.85 | 48.60 | 54.89 | 176.43 | 1.00 | 1.54 | 3rd |
W2T2 | 24.19 | 68.03 | 57.32 | 195.92 | 1.16 | 2.09 | 3rd |
W2T3 | 20.88 | 45.27 | 29.34 | 168.36 | 0.97 | 1.39 | 3rd |
W3T0 | 22.09 | 42.90 | 17.69 | 171.41 | 0.75 | 1.27 | 4th |
W3T1 | 21.84 | 52.40 | 48.95 | 190.85 | 1.07 | 1.69 | 3rd |
W3T2 | 22.63 | 43.73 | 44.64 | 195.03 | 1.17 | 2.03 | 3rd |
W3T3 | 20.75 | 61.77 | 19.16 | 174.06 | 0.90 | 1.59 | 3rd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Yue, S.; Sun, L.; Gao, M.; Wang, R. Study on the Effects of Irrigation Quotas and Amendments on Salinized Soil and Maize Growth. Water 2024, 16, 2194. https://doi.org/10.3390/w16152194
Chen L, Yue S, Sun L, Gao M, Wang R. Study on the Effects of Irrigation Quotas and Amendments on Salinized Soil and Maize Growth. Water. 2024; 16(15):2194. https://doi.org/10.3390/w16152194
Chicago/Turabian StyleChen, Liang, Shaoli Yue, Lifeng Sun, Ming Gao, and Rui Wang. 2024. "Study on the Effects of Irrigation Quotas and Amendments on Salinized Soil and Maize Growth" Water 16, no. 15: 2194. https://doi.org/10.3390/w16152194
APA StyleChen, L., Yue, S., Sun, L., Gao, M., & Wang, R. (2024). Study on the Effects of Irrigation Quotas and Amendments on Salinized Soil and Maize Growth. Water, 16(15), 2194. https://doi.org/10.3390/w16152194