Trimethoprim Removal from Aqueous Solutions via Volcanic Ash-Soil Adsorption: Process Modeling and Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. XRD Characterization
2.3. Determination of Antibiotic Concentration
2.4. Batch Study
2.5. Experimental and Modeling Design
3. Results
3.1. Adsorbent Characterization
3.2. Model Fitting
3.3. Evaluation of the Influencing Parameters
3.4. Optimization and Model Validation
3.5. Adsorbent Characterization after Adsorption
3.6. Possible Mechanism of Trimethoprim Adsorption into Volcanic Ash-Soils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mpatani, F.M.; Aryee, A.A.; Kani, A.N.; Han, R.; Li, Z.; Dovi, E.; Qu, L. A review of treatment techniques applied for selective removal of emerging pollutant-trimethoprim from aqueous systems. J. Clean. Prod. 2021, 308, 127359. [Google Scholar] [CrossRef]
- Alishiri, M.; Gonbadi, M.; Narimani, M.; Abdollahi, S.A.; Shahsavaripour, N. Optimization of process parameters for trimethoprim and sulfamethoxazole removal by magnetite-chitosan nanoparticles using Box–Behnken design. Sci. Rep. 2023, 13, 14489. [Google Scholar] [CrossRef] [PubMed]
- Stec, J.; Kosikowska, U.; Mendrycka, M.; Stępień-Pyśniak, D.; Niedźwiedzka-Rystwej, P.; Bębnowska, D.; Hrynkiewicz, R.; Ziętara-Wysocka, J.; Grywalska, E. Opportunistic Pathogens of Recreational Waters with Emphasis on Antimicrobial Resistance—A Possible Subject of Human Health Concern. Int. J. Environ. Res. Public Health 2022, 19, 7308. [Google Scholar] [CrossRef] [PubMed]
- Baaloudj, O.; Nasrallah, N.; Bouallouche, R.; Kenfoud, H.; Khezami, L.; Assadi, A.A. High efficient Cefixime removal from water by the sillenite Bi12TiO20: Photocatalytic mechanism and degradation pathway. J. Clean. Prod. 2022, 330, 129934. [Google Scholar] [CrossRef]
- Scholar, E. Trimethoprim. In xPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Jodeh, S.; Jaber, A.; Hanbali, G.; Massad, Y.; Safi, Z.S.; Radi, S.; Mehmeti, V.; Berisha, A.; Tighadouini, S.; Dagdag, O. Experimental and theoretical study for removal of trimethoprim from wastewater using organically modified silica with pyrazole-3-carbaldehyde bridged to copper ions. BMC Chem. 2022, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Mutuku, C.; Gazdag, Z.; Melegh, S. Occurrence of Antibiotics and Bacterial Resistance Genes in Wastewater Resistance Mechanisms and Antimicrobial Resistance Control Approaches. World J. Microbiol. Biotechnol. 2022, 38, 152. [Google Scholar] [CrossRef] [PubMed]
- Gier Della Rocca, D.; Hedel, B.; Rodríguez-Castellón, E.; Moreira, R.F.P.M. Magnetic mining waste based-membranes for trimethoprim removal and fouling mitigation with ozone. Chem. Eng. J. 2023, 468, 143566. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Frontistis, Z.; Nika, M.C.; Aalizadeh, R.; Thomaidis, N.S.; Mantzavinos, D. Sonochemical degradation of trimethoprim in water matrices: Effect of operating conditions, identification of transformation products and toxicity assessment. Ultrason. Sonochem. 2020, 67, 105139. [Google Scholar] [CrossRef] [PubMed]
- Chianese, S.; Fenti, A.; Blotevogel, J.; Musmarra, D.; Iovino, P. Trimethoprim removal from wastewater: Adsorption and electro-oxidation comparative case study. Case Stud. Chem. Environ. Eng. 2023, 8, 105139. [Google Scholar] [CrossRef]
- Teo, Y.S.; Jafari, I.; Liang, F.; Jung, Y.; Van der Hoek, J.P.; Ong, S.L.; Hu, J. Investigation of the efficacy of the UV/Chlorine process for the removal of trimethoprim: Effects of operational parameters and artificial neural networks modelling. Sci. Total Environ. 2022, 812, 100433. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Mohammadzadeh, M.; Leiviskä, T. Iron-modified peat and magnetite-pine bark biosorbents for levofloxacin and trimethoprim removal from synthetic water and various pharmaceuticals from real wastewater. Ind. Crops Prod. 2023, 195, 116491. [Google Scholar] [CrossRef]
- Çalışkan Salihi, E.; Wang, J.; Kabacaoğlu, G.; Kırkulak, S.; Šiller, L. Graphene oxide as a new generation adsorbent for the removal of antibiotics from waters. Sep. Sci. Technol. 2021, 56, 453–461. [Google Scholar] [CrossRef]
- Wang, N.; French, D.; Dai, S.; Graham, I.T.; Zhao, L.; Song, X.; Zheng, J.; Gao, Y.; Wang, Y. Origin of chamosite and berthierine: Implications for volcanic-ash-derived Nb-Zr-REY-Ga mineralization in the Lopingian sequences from eastern Yunnan, SW China. J. Asian Earth Sci. 2023, 253, 105703. [Google Scholar] [CrossRef]
- Caceres-Jensen, L.; Rodriguez-Becerra, J.; Escudey, M.; Joo-Nagata, J.; Villagra, C.A.; Dominguez-Vera, V.; Neira-Albornoz, A.; Cornejo-Huentemilla, M. Nicosulfuron sorption kinetics and sorption/desorption on volcanic ash-derived soils: Proposal of sorption and transport mechanisms. J. Hazard. Mater. 2020, 385, 121576. [Google Scholar] [CrossRef] [PubMed]
- Suazo-Hernández, J.; Urdiales, C.; Poblete-Grant, P.; Pesenti, H.; Cáceres-Jensen, L.; Sarkar, B.; Bolan, N.; de la Luz Mora, M. Effect of particle size of nanoscale zero–valent copper on inorganic phosphorus adsorption–desorption in a volcanic ash soil. Chemosphere 2023, 340, 121576. [Google Scholar] [CrossRef]
- Caceres Jensen, L.; Rodriguez Becerra, J.; Escudey, M. Impact of Physical/Chemical Properties of Volcanic Ash-Derived Soils on Mechanisms Involved during Sorption of Ionisable and Non-Ionisable Herbicides. In Advanced Sorption Process Applications; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Canales, C.P.; Delgado, S.; Cáceres-Jensen, L.; Buason, A.; Kristofersson, D.; Urdiales, C.; Antilén, M. sAdsorption kinetics studies of ciprofloxacin in soils derived from volcanic materials by electrochemical approaches and assessment of socio-economic impact on human health. Chemosphere 2023, 321, 138144. [Google Scholar] [CrossRef] [PubMed]
- Terraza Pira, M.F.; Sumner, M.E.; Plante, A.; Thompson, A. Mineral characteristics of volcanic ash-derived soils affecting boron adsorption. Soil Sci. Soc. Am. J. 2023, 87, 682–695. [Google Scholar] [CrossRef]
- Zhu, W.; Lee, S.J.; Castro, N.J.; Yan, D.; Keidar, M.; Zhang, L.G. Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Sci. Rep. 2016, 6, 21974. [Google Scholar] [CrossRef]
- Guo, C.; Ding, L.; Jin, X.; Zhang, H.; Zhang, D. Application of response surface methodology to optimize chromium (VI) removal from aqueous solution by cassava sludge-based activated carbon. J. Environ. Chem. Eng. 2021, 9, 104785. [Google Scholar] [CrossRef]
- Fiyadh, S.S.; Alardhi, S.M.; Al Omar, M.; Aljumaily, M.M.; Al Saadi, M.A.; Fayaed, S.S.; Ahmed, S.N.; Salman, A.D.; Abdalsalm, A.H.; Jabbar, N.M.; et al. A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique. Heliyon 2023, 9, e15455. [Google Scholar] [CrossRef]
- Markandeya; Shukla, S.P.; Srivastav, A.L. Removal of Disperse Orange and Disperse Blue dyes present in textile mill effluent using zeolite synthesized from cenospheres. Water Sci. Technol. 2021, 84, 445–457. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, G.; Liu, J.; Li, G.; Wang, Y. Highly efficient CO2 adsorption by imidazole and tetraethylenepentamine functional sorbents: Optimization and analysis using response surface methodology. J. Environ. Chem. Eng. 2021, 9, 105639. [Google Scholar] [CrossRef]
- Azzouni, D.; Baragh, F.; Mahmoud, A.M.; Alanazi, M.M.; Rais, Z.; Taleb, M. Optimization of methylene blue removal from aqueous solutions using activated carbon derived from coffee ground pyrolysis: A response surface methodology (RSM) approach for natural and cost-effective adsorption. J. Saudi Chem. Soc. 2023, 27, 101695. [Google Scholar] [CrossRef]
- Garcia, B.B.; Lourinho, G.; Romano, P.; Brito, P.S.D. Photocatalytic degradation of swine wastewater on aqueous TiO2 suspensions: Optimization and modeling via Box-Behnken design. Heliyon 2020, 6, e03293. [Google Scholar] [CrossRef]
- Yousefi, M.; Gholami, M.; Oskoei, V.; Mohammadi, A.A.; Baziar, M.; Esrafili, A. Comparison of LSSVM and RSM in simulating the removal of ciprofloxacin from aqueous solutions using magnetization of functionalized multi-walled carbon nanotubes: Process optimization using GA and RSM techniques. J. Environ. Chem. Eng. 2021, 9, 105677. [Google Scholar] [CrossRef]
- Baratoux, D.; Mangold, N.; Arnalds, O.; Bardintzeff, J.M.; Platevoët, B.; Grégoire, M.; Pinet, P. Volcanic sands of Iceland—Diverse origins of aeolian sand deposits revealed at Dyngjusandur and Lambahraun. Earth Surf. Process. Landf. 2011, 36, 1789–1808. [Google Scholar] [CrossRef]
- Hussein, Z.M.; Rasheed, A.S. A reliable quantification method for trimethoprim in pharmaceutical samples by hilic-hplc. Indian J. Forensic Med. Toxicol. 2021, 15, 2403–2409. [Google Scholar] [CrossRef]
- Yankam, B.M.; Oladugba, A.V. Robustness of orthogonal uniform composite designs against missing data. Commun. Stat.—Theory Methods 2023, 52, 1369–1384. [Google Scholar] [CrossRef]
- Soleimani, H.; Sharafi, K.; Amiri Parian, J.; Jaafari, J.; Ebrahimzadeh, G. Acidic modification of natural stone for Remazol Black B dye adsorption from aqueous solution- central composite design (CCD) and response surface methodology (RSM). Heliyon 2023, 9, e14743. [Google Scholar] [CrossRef]
- Kouamo Tchakoute, H.; Elimbi, A.; Diffo Kenne, B.B.; Mbey, J.A.; Njopwouo, D. Synthesis of geopolymers from volcanic ash via the alkaline fusion method: Effect of Al2O3/Na2O molar ratio of soda-volcanic ash. Ceram. Int. 2013, 39, 269–276. [Google Scholar] [CrossRef]
- Scarciglia, F.; De Rosa, R.; Vecchio, G.; Apollaro, C.; Robustelli, G.; Terrasi, F. Volcanic soil formation in Calabria (southern Italy): The Cecita Lake geosol in the late Quaternary geomorphological evolution of the Sila uplands. J. Volcanol. Geotherm. Res. 2008, 177, 101–117. [Google Scholar] [CrossRef]
- Djon Li Ndjock, B.I.; Baenla, J.; Mbah, J.B.B.; Elimbi, A.; Cyr, M. Amorphous phase of volcanic ash and microstructure of cement product obtained from phosphoric acid activation. SN Appl. Sci. 2020, 2, 720. [Google Scholar] [CrossRef]
- El-Desoky, A.; Hassan, A.; Mahmoud, A. Volcanic Ash as a Material for Soil Conditioner and Fertility. J. Soil Sci. Agric. Eng. 2018, 9, 491–495. [Google Scholar] [CrossRef]
- Luhar, S.; Rajamane, N.P.; Corbu, O.; Luhar, I. Impact of incorporation of volcanic ash on geopolymerization of eco-friendly geopolymer composites: A review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 572, 012001. [Google Scholar] [CrossRef]
- Rout, P.R.; Bhunia, P.; Dash, R.R. A mechanistic approach to evaluate the effectiveness of red soil as a natural adsorbent for phosphate removal from wastewater. Desalination Water Treat. 2015, 54, 358–373. [Google Scholar] [CrossRef]
- Ofudje, E.A.; Adeogun, I.A.; Idowu, M.A.; Kareem, S.O.; Ndukwe, N.A. Simultaneous removals of cadmium(II) ions and reactive yellow 4 dye from aqueous solution by bone meal-derived apatite: Kinetics, equilibrium and thermodynamic evaluations. J. Anal. Sci. Technol. 2020, 11, 7. [Google Scholar] [CrossRef]
- Elkady, M.; Diab, K.E.; Shokry, H. Trimethoprim antibiotic adsorption from aqueous solution onto eco-friendly zr-metal organic framework material. Materials 2021, 14, 7545. [Google Scholar] [CrossRef]
- Al-Bayati, R.A.; Ahmed, A.S. Adsorption—Desorption of Trimethoprim Antibiotic Drug from Aqueous Solution by Two Different Natural Occurring Adsorbents. Int. J. Chem. 2011, 3, 21. [Google Scholar] [CrossRef]
- Demirezen, N.; Tarinç, D.; Polat, D.; Çeşme, M.; Gölcü, A.; Tümer, M. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2012, 94, 243–255. [Google Scholar] [CrossRef]
- Mejías, C.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Thermodynamic and Kinetic Investigation of the Adsorption and Desorption of Trimethoprim and Its Main Metabolites in Mediterranean Crop Soils. Molecules 2023, 28, 437. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-López, L.; Santás-Miguel, V.; Cela-Dablanca, R.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Pérez-Rodríguez, P.; Arias-Estévez, M. Ciprofloxacin and Trimethoprim Adsorption/Desorption in Agricultural Soils. Int. J. Environ. Res. Public Health 2022, 19, 8426. [Google Scholar] [CrossRef] [PubMed]
- Chabilan, A.; Landwehr, N.; Horn, H.; Borowska, E. Impact of log(Kow) Value on the Extraction of Antibiotics from River Sediments with Pressurized Liquid Extraction. Water 2022, 14, 2534. [Google Scholar] [CrossRef]
Factor | Factor Level | Unit | ||||
---|---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | ||
Initial TRM concentration (C) | 2 | 4 | 6 | 8 | 10 | mg/L |
Contact time (t) | 5 | 20 | 35 | 50 | 65 | min |
Stirring speed (S) | 300 | 450 | 600 | 750 | 900 | rpm |
Solid-to-liquid ratio (R) | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | g/mL |
SO | RO | Factor Level | y | |||
---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | |||
1 | 22 | −1 | −1 | −1 | −1 | 51.66 |
2 | 26 | +1 | −1 | −1 | −1 | 44.08 |
3 | 3 | −1 | +1 | −1 | −1 | 62.17 |
4 | 29 | +1 | +1 | −1 | −1 | 59.15 |
5 | 7 | −1 | −1 | +1 | −1 | 56.52 |
6 | 24 | +1 | −1 | +1 | −1 | 52.44 |
7 | 18 | −1 | +1 | +1 | −1 | 69.73 |
8 | 8 | +1 | +1 | +1 | −1 | 56.74 |
9 | 14 | −1 | −1 | −1 | +1 | 64.26 |
10 | 20 | +1 | −1 | −1 | +1 | 56.58 |
11 | 4 | −1 | +1 | −1 | +1 | 72.95 |
12 | 21 | +1 | +1 | −1 | +1 | 69.94 |
13 | 30 | −1 | −1 | +1 | +1 | 65.08 |
14 | 1 | +1 | −1 | +1 | +1 | 57.86 |
15 | 25 | −1 | +1 | +1 | +1 | 72.08 |
16 | 13 | +1 | +1 | +1 | +1 | 73.14 |
17 | 11 | −2 | 0 | 0 | 0 | 67.22 |
18 | 16 | +2 | 0 | 0 | 0 | 65.96 |
19 | 12 | 0 | −2 | 0 | 0 | 34.87 |
29 | 17 | 0 | +2 | 0 | 0 | 75.75 |
21 | 15 | 0 | 0 | −2 | 0 | 61.29 |
22 | 19 | 0 | 0 | +2 | 0 | 71.88 |
23 | 10 | 0 | 0 | 0 | −2 | 46.45 |
24 | 6 | 0 | 0 | 0 | +2 | 73.74 |
25 | 23 | 0 | 0 | 0 | 0 | 69.92 |
26 | 2 | 0 | 0 | 0 | 0 | 63.53 |
27 | 5 | 0 | 0 | 0 | 0 | 68.29 |
28 | 28 | 0 | 0 | 0 | 0 | 71.19 |
29 | 27 | 0 | 0 | 0 | 0 | 68.27 |
30 | 9 | 0 | 0 | 0 | 0 | 73.33 |
Minerals | Percentage | |
---|---|---|
Olivina | 79.06% | |
- Forsterite | 51.25% | |
- Fayalite | 27.81% | |
Augite | 20.94% |
Source | DF | SS | MS | F | p |
---|---|---|---|---|---|
Regression | 6 | 2527.71 | 421.29 | 93.32 | <0.0001 |
Residual error | 23 | 345.49 | 15.02 | ||
Lack-of-fit | 18 | 290.19 | 16.12 | 1.46 | 0.360 |
Pure error | 5 | 55.30 | 11.06 | ||
Total | 29 | 2873.20 |
Coefficient | Term | Value | SE | Low CI | High CI |
---|---|---|---|---|---|
a0 | Intercept | 67.63 | 1.12 | 65.31 | 69.94 |
a1 | C | −1.96 | 0.79 | −3.60 | −0.32 |
a2 | t | 7.05 | 0.79 | 5.41 | 8.69 |
a3 | S | 1.83 | 0.79 | 0.20 | 3.47 |
a4 | R | 5.58 | 0.79 | 3.95 | 7.22 |
a22 | t × t | −3.36 | 0.73 | −4.87 | −1.86 |
a44 | R × R | −2.17 | 0.73 | −3.67 | −0.67 |
Point | C (mg/L) | t (min) | S (rpm) | R (g/mL) | yexp (%) | ycalc (%) |
---|---|---|---|---|---|---|
Optimum | 4.5 | 45.5 | 747 | 0.040 | 75.88 | 77.59 |
Internal | 5.0 | 30.0 | 500 | 0.025 | 59.52 | 61.33 |
Internal | 7.0 | 40.0 | 700 | 0.035 | 68.83 | 72.09 |
External | 3.0 | 10.0 | 400 | 0.015 | 34.22 | 33.78 |
External | 9.0 | 60.0 | 800 | 0.045 | 70.16 | 73.02 |
Minerals | Percentage | |
---|---|---|
Olivina | 77.71% | |
- Forsterite | 30.46% | |
- Fayalite | 47.24% | |
Augite | 22.29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavecchia, R.; Zuorro, A.; Baaloudj, O.; Brienza, M. Trimethoprim Removal from Aqueous Solutions via Volcanic Ash-Soil Adsorption: Process Modeling and Optimization. Water 2024, 16, 2209. https://doi.org/10.3390/w16152209
Lavecchia R, Zuorro A, Baaloudj O, Brienza M. Trimethoprim Removal from Aqueous Solutions via Volcanic Ash-Soil Adsorption: Process Modeling and Optimization. Water. 2024; 16(15):2209. https://doi.org/10.3390/w16152209
Chicago/Turabian StyleLavecchia, Roberto, Antonio Zuorro, Oussama Baaloudj, and Monica Brienza. 2024. "Trimethoprim Removal from Aqueous Solutions via Volcanic Ash-Soil Adsorption: Process Modeling and Optimization" Water 16, no. 15: 2209. https://doi.org/10.3390/w16152209
APA StyleLavecchia, R., Zuorro, A., Baaloudj, O., & Brienza, M. (2024). Trimethoprim Removal from Aqueous Solutions via Volcanic Ash-Soil Adsorption: Process Modeling and Optimization. Water, 16(15), 2209. https://doi.org/10.3390/w16152209