An Integrated Hydrogeophysical Approach for Unsaturated Zone Monitoring Using Time Domain Reflectometry, Electrical Resistivity Tomography and Ground Penetrating Radar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Infiltration Experiment Setup
2.2. Infiltration Rate and Grain Size Analysis
2.3. Inverse Modeling for the Estimation of the Soil Moisture Profile
3. Results
3.1. TDR Measurements
3.2. ERT Measurements
3.3. GPR Measurements
- Subtract mean (dewow);
- Correct max. phase;
- Move start-time;
- Manual gain;
- Bandpassbutterworth filter (200–600 MHz);
- Background removal;
- Spectral whitening (200–600 MHz);
- Deconvolution (0, 26, 2, 0.5);
- fk migration (Stolt) (V: 0.1 m/ns);
- Envelope.
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vereecken, H.; Binley, A.; Cassiani, G.; Revil, A.; Titov, K. Applied Hydrogeophysics. In Unsaturated Zone Processes; NATO Science Series; Cassiani, G., Binley, A., Ferré, P.A., Eds.; Springer: Dordrecht, The Netherlands, 2006; Volume 71, pp. 75–116. [Google Scholar] [CrossRef]
- Kanmani, K.; Vasanthi, P.; Pari, P.; Shafeer Ahamed, N.S. Estimation of Soil Moisture for Different Crops Using SAR Polarimetric Data. Civ. Eng. J. 2023, 9, 1402–1411. [Google Scholar] [CrossRef]
- Jaroensutasinee, K.; Jaroensutasinee, M.; Boonsanong, P. Climatic Factor Differences and Mangosteen Fruit Quality between On- and Off-Season Productions. Emerg. Sci. J. 2023, 7, 578–588. [Google Scholar] [CrossRef]
- Bloem, E.; Forquet, N.; Søiland, A.; Binley, A.; French, H.K. Towards understanding time-lapse electrical resistivity signals measured during contaminated snowmelt infiltration. Near Surf. Geophys. 2020, 18, 399–412. [Google Scholar] [CrossRef]
- Pfletschinger, H.; Engelhardt, I.; Piepenbrink, M.; Königer, F.; Schuhmann, R.; Kallioras, A.; Schüth, C. Soil column experiments to quantify vadose zone water fluxes in arid settings. Environ. Earth Sci 2012, 65, 1523–1533. [Google Scholar] [CrossRef]
- Kallioras, A.; Khan, A.; Piepenbrink, M.; Pfletschinger, H.; Koniger, F.; Dietrich, P.; Schuth, C. Time-domain reflectometry probing systems for the monitoring of hydrological processes in the unsaturated zone. Hydrogeol. J. 2016, 24, 1297–1309. [Google Scholar] [CrossRef]
- Busch, S.; Weihermüller, L.; Huisman, J.A.; Steelman, C.M.; Endres, A.L.; Vereecken, H.; van der Kruk, J. Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface. Water Resour. Res. 2013, 49, 8480–8494. [Google Scholar] [CrossRef]
- Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y. Characterization of Soil Water Content Variability and Soil Texture using GPR Groundwave Techniques. J. Environ. Eng. Geophys. 2010, 15, 93–110. [Google Scholar] [CrossRef]
- Daily, W.; Ramirez, A.; LaBrecque, D.; Nitao, J. Electrical Resistivity Tomography of Vadose Water Movement. Water Resour. Res. 1992, 28, 1429–1442. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, W00D06. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Pachepsky, Y.; Montzka, C.; Van Der Kruk, J.; Bogena, H.; Weihermuller, L.; Herbst, M.; Martinez, G.; VanderBorght, J.; et al. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Romano, N. Soil Moisture at Local Scale: Measurements and Simulations. J. Hydrol. 2014, 516, 6–20. [Google Scholar] [CrossRef]
- Nimmo, J.R. Unsaturated Zone Flow Processes. In Encyclopedia of Hydrological Sciences; Part 13 Groundwater; Anderson, M.G., Bear, J., Eds.; Wiley: Chichester, UK, 2005; Volume 4, pp. 2299–2322. [Google Scholar] [CrossRef]
- Fellner-Feldegg, J. The measurement of dielectrics in the time domain. J. Phys. Chem. 1969, 73, 616–623. [Google Scholar] [CrossRef]
- Hoekstra, P.; Delaney, A. Dielectric properties of soils at UHF and microwave frequencies. J. Geophys. Res. 1974, 79, 1699–1708. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Electromagnetic detection of soil moisture: Progress report 1. Can. J. Remote Sens. 1977, 3, 76–86. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Zegelin, S.J.; White, I.; Jenkins, D.R. Improved field probes for soil-water content and electrical conductivity measurement using time-domain reflectometry. Water Resour. Res. 1989, 25, 2367–2376. [Google Scholar] [CrossRef]
- Todoroff, P.; Luk, J.-D.L.S. Calculation of in situ soil water content profiles from TDR signal traces. Meas. Sci. Technol. 2000, 12, 27. [Google Scholar] [CrossRef]
- Roth, C.H.; Malicki, M.A.; Plagge, R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. J. Soil Sci. 1992, 43, 1–13. [Google Scholar] [CrossRef]
- Heimovaara, T.J.; Bouten, W. A computer-controlled 36 channel time domain reflectometry system for monitoring soil water contents. Water Resour. Res. 1990, 26, 2311–2316. [Google Scholar]
- Dalton, F.N.; Herkelrath, W.N.; Rawlins, D.S.; Rhoades, J.D. Time domain reflectometry: Simultaneous measurement of soil water content and electrical conductivity with a single probe. Science 1984, 224, 989–990. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.M.; Or, D.; Friedman, S.P. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Ferre, P.A.; Rudolph, D.L.; Kachanoski, R.G. Spatial averaging of water content by time domain reflectometry: Implications for twin rod probes with and without dielectric coatings. Water Resour. Res. 1996, 32, 271–279. [Google Scholar] [CrossRef]
- Ferre, P.A.; Knight, J.H.; Rudolph, D.L.; Kachanoski, R.G. The sample areas of conventional and alternative time domain reflectometry probes. Water Resour. Res. 1998, 34, 2971–2979. [Google Scholar] [CrossRef]
- Huisman, J.; Snepvangers, J.; Bouten, W.; Heuvelink, G. Mapping spatial variation in surface soil water content: Comparison of ground-penetrating radar and time domain reflectometry. J. Hydrol. 2002, 269, 194–207. [Google Scholar] [CrossRef]
- Fan, J.; Scheuermann, A.; Guyot, A.; Baumgartl, T.; Lockington, D.A. Quantifying spatiotemporal dynamics of root-zone soil water in a mixed forest on subtropical coastal sand dune using surface ERT and spatial TDR. J. Hydrol. 2015, 523, 475–488. [Google Scholar] [CrossRef]
- Yu, Y.; Weihermüller, L.; Klotzsche, A.; Lärm, L.; Vereecken, H.; Huisman, J.A. Sequential and coupled inversion of horizontal borehole ground penetrating radar data to estimate soil hydraulic properties at the field scale. J. Hydrol. 2021, 596, 126010. [Google Scholar] [CrossRef]
- Terry, N.; Day-Lewis, F.D.; Lane, J.W.; Johnson, C.D.; Werkema, D. Field evaluation of semi-automated moisture estimation from geophysics using machine learning. Vadose Zone J. 2023, 22, e20246. [Google Scholar] [CrossRef]
- Heimovaara, T.J. Design of triple wire time domain reflectometry probes in practice and theory. Soil Sci. Soc. Am. J. 1993, 57, 1410–1417. [Google Scholar] [CrossRef]
- Wyseure, G.C.L.; Mojid, M.A.; Malik, M.A. Measurement of volumetric water content by TDR in saline soils. Eur. J. Soil Sci. 1997, 48, 347–354. [Google Scholar] [CrossRef]
- Kim, D.J.; Choi, S.I.; Ryszard, O.; Feyen, J.; Kim, H.S. Determination of moisture content in a deformable soil using time-domain reflectometry (TDR). Eur. J. Soil Sci. 2000, 51, 119–127. [Google Scholar] [CrossRef]
- Blonquist, J.M.; Jones, S.B.; Robinson, D.A. Standardizing characterization of electromagnetic water content sensors: Part 2. Evaluation of seven sensing systems. Vadose Zone J. 2005, 4, 1059–1069. [Google Scholar] [CrossRef]
- Plauborg, F.; Iversen, B.V.; Laerke, P.E. In situ comparison of three dielectric soil moisture sensors in drip irrigated sandy soils. Vadose Zone J. 2005, 4, 1037–1047. [Google Scholar] [CrossRef]
- Jabro, J.D.; Evans, R.G.; Kim, Y.; Iversen, W.M. Estimating in situ soil–water retention and field water capacity in two contrasting soil textures. Irrig. Sci. 2009, 27, 223–229. [Google Scholar] [CrossRef]
- Evett, S.R.; Tolk, J.A.; Howell, T.A. Time Domain Reflectometry Laboratory Calibration in Travel Time, Bulk Electrical Conductivity, and Effective Frequency. Vadose Zone J. 2005, 4, 1020. [Google Scholar] [CrossRef]
- Becker, R.; Schlaeger, S.; Hübner, C.; Scheuermann, A.; Schaedel, W. Spatial time domain reflectometry for monitoring transient soil moisture profiles: Applications of the Soil Moisture Group, Univ. of Karlsrhue. In Proceedings of the German Microwave Conference (GeMIC, 2006), Karlsruhe, Germany, 28–30 March 2006; DuEPublico (Duisburg-Essen Publications Online): Duisburg-Essen, Germany, 2006. [Google Scholar]
- Dahan, O.; McDonald, E.V.; Young, M.H. Flexible Time Domain Reflectometry Probe for Deep Vadose Zone Monitoring. Vadose Zone J. 2003, 2, 270–275. [Google Scholar] [CrossRef]
- Stacheder, M.; Koeniger, F.; Schuhmann, R. New Dielectric Sensors and Sensing Techniques for Soil and Snow Moisture Measurements. Sensors 2009, 9, 2951–2967. [Google Scholar] [CrossRef] [PubMed]
- West, L.J.; Truss, S.W. Borehole time domain reflectometry in layered sandstone: Impact of measurement technique on vadose zone process identification. J. Hydrol. 2006, 319, 143–162. [Google Scholar] [CrossRef]
- Schwartz, B.F.; Schreiber, M.E.; Pooler, P.S.; Rimstidt, J.D. Calibrating Access-tube Time Domain Reflectometry Soil Water Measurements in Deep Heterogeneous Soils. Soil Sci. Soc. Am. J. 2008, 72, 917–930. [Google Scholar] [CrossRef]
- Casanova, J.J.; Evett, S.R.; Schwartz, R.C. Design of Access-Tube TDR Sensor for Soil Water Content: Testing. IEEE Sens. J. 2012, 12, 2064–2070. [Google Scholar] [CrossRef]
- Murdoch, L.C.; Slack, W.W.; Harrar, W.; Siegrist, R.L. Embedded sidewall samplers and sensors to monitor the subsurface. Ground Water 2000, 38, 657–664. [Google Scholar] [CrossRef]
- Johst, M.; Casper, M.C.; Schlaeger, S. Reliability of Inversely Reconstructed Soil Moisture Profiles and Consequences for Field Applications. Open Hydrol. J. 2010, 4, 35–43. [Google Scholar] [CrossRef]
- Schlaeger, S. A fast TDR-inversion technique for the reconstruction of spatial soil moisture content. Hydrol. Earth Syst. Sci. 2005, 9, 481–492. [Google Scholar] [CrossRef]
- Oswald, B.; Benedickter, H.R.; Bachtold, W.; Fluhler, H. Spatially resolved water content profiles from inverted time domain reflectometry signals. Water Resour. Res. 2003, 39, 1357. [Google Scholar] [CrossRef]
- Heimovaara, T.J.; Huisman, J.A.; Vrugt, J.A.; Bouten, W. Obtaining the Spatial Distribution of Water Content along a TDR Probe Using the SCEM-UA Bayesian Inverse Modeling Scheme. Vadose Zone J. 2004, 3, 1128–1145. [Google Scholar] [CrossRef]
- Delin, G.N.; Herkelrath, W.N. Use of Soil Moisture Probes to Estimate Ground Water Recharge at an Oil Spill Site. J. Am. Water Resour. Assoc. (JAWRA) 2005, 41, 1259–1277. [Google Scholar] [CrossRef]
- Noborio, K.; Kachanoski, R.G.; Tan, C.S. Solute Transport Measurement under Transient Field Conditions Using Time Domain Reflectometry. Vadose Zone J. 2006, 5, 412–418. [Google Scholar] [CrossRef]
- Al-Jabri, S.A.; Lee, J.; Gaur, A.; Horton, R.; Jaynes, D.B. A dripper-TDR method for in situ determination of hydraulic conductivity and chemical transport properties of surface soils. Adv. Water Resour. 2006, 29, 239–249. [Google Scholar] [CrossRef]
- Kargas, G.; Londra, P.A.; Valiantzas, J.D. Estimation of near-saturated hydraulic conductivity values using a mini disc infiltrometer. Water Util. J. 2017, 16, 97–104. [Google Scholar]
- He, H.; Aogu, K.; Li, M.; Xu, J.; Sheng, W.; Jones, S.B.; González-Teruel, J.D.; Robinson, D.A.; Horton, R.; Bristow, K.; et al. A review of time domain reflectometry (TDR) applications in porous media. Adv. Agron. 2021, 168, 83–155. [Google Scholar] [CrossRef]
- Noborio, K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput. Electron. Agric. 2001, 31, 213–237. [Google Scholar] [CrossRef]
- Ferré, P.A.; Topp, G.C. Time Domain Reflectometry Techniques for Soil Water Content and Electrical Conductivity Measurements. Sens. Update 1999, 7, 277–300. [Google Scholar] [CrossRef]
- Jones, S.B.; Wraith, J.M.; Or, D. Time domain reflectometry measurement principles and applications. Hydrol. Process. 2002, 16, 141–153. [Google Scholar] [CrossRef]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, P.A. Measuring soil water content with ground penetrating radar: A review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Robinson, D.A.; Abdu, H.; Lebron, I.; Jones, S.B. Imaging of hill-slope soil moisture wetting patterns in a semi-arid oak savanna catchment using time-lapse electromagnetic induction. J. Hydrol. 2012, 416–417, 39–49. [Google Scholar] [CrossRef]
- Binley, A.; Hubbard, S.S.; Huisman, J.A.; Revil, A.; Robinson, D.A.; Singha, K.; Slater, L.D. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour. Res. 2015, 51, 3837–3866. [Google Scholar] [CrossRef]
- Grayson, R.B.; Western, A.W. Towards area1 estimation of soil water content from point measurements: Time and space stability of mean response. J. Hydrol. 1998, 207, 68–82. [Google Scholar] [CrossRef]
- Robinson, D.A.; Binley, A.; Crook, N.; Day-Lewis, F.D.; Ferré, T.P.A.; Grauch, V.J.S.; Knight, R.; Knoll, M.; Lakshmi, V.; Miller, R.; et al. Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrol. Process. 2008, 22, 3604–3635. [Google Scholar] [CrossRef]
- Rubin, Y.; Hubbard, S.S. Hydrogeophysics; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Blanchy, G.; Watts, C.W.; Richards, J.; Bussell, J.; Huntenburg, K.; Sparkes, D.L.; Stalham, M.; Hawkesford, M.J.; Whalley, W.R.; Binley, A. Time-lapse geophysical assessment of agricultural practices on soil moisture dynamics. Vadose Zone J. 2020, 19, e20080. [Google Scholar] [CrossRef]
- Deiana, R.; Cassiani, G.; Kemna, A.; Villa, A.; Bruno, V.; Bagliani, A. An experiment of non-invasive characterization of the vadose zone via water injection and cross-hole time-lapse geophysical monitoring. Near Surf. Geophys. 2007, 5, 183–194. [Google Scholar] [CrossRef]
- Deiana, R.; Cassiani, G.; Villa, A.; Bagliani, A.; Bruno, V. Calibration of a vadose zone model using water injection monitored by GPR and electrical resistance tomography. Vadose Zone J. 2008, 7, 215–226. [Google Scholar] [CrossRef]
- Looms, M.C.; Binley, A.; Jensen, K.H.; Nielsen, L.; Hansen, T.M. Identifying Unsaturated Hydraulic Parameters Using an Integrated Data Fusion Approach on Cross-Borehole Geophysical Data. Vadose Zone J. 2008, 7, 238–248. [Google Scholar] [CrossRef]
- Ehosioke, S.; Nguyen, F.; Rao, S.; Kremer, T.; Placencia-Gomez, E.; Huisman, J.A.; Kemna, A.; Javaux, M.; Garré, S. Sensing the electrical properties of roots: A review. Vadose Zone J. 2020, 19, e20082. [Google Scholar] [CrossRef]
- Day-Lewis, F.D.; Lane, J.W.; Gorelick, S.M. Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA. Hydrogeol. J. 2006, 14, 1–14. [Google Scholar] [CrossRef]
- Singha, K.; Gorelick, M.S. Hydrogeophysical tracking of three-dimensional tracer migration: The concept and application of apparent petrophysical relations. Water Resour. Res. 2006, 42, W06422. [Google Scholar] [CrossRef]
- Oberdörster, C.; Vanderborght, J.; Kemna, A.; Vereecken, H. Investigating preferential flow processes in a forest soil using time domain reflectometry and electrical resistivity tomography. Vadose Zone J. 2010, 9, 350–361. [Google Scholar] [CrossRef]
- Pidlisecky, A.; Singha, K.; Day-Lewis, F.D. A distribution-based parameterization for improved tomographic imaging of solute plumes. Geophys. J. Int. 2011, 187, 214–224. [Google Scholar] [CrossRef]
- Hubbard, S.S.; Chen, J.; Facng, Y.; Williams, K.; Mukhopadhyay, S.; Sonnenthal, E.; McFarlane, K.; Linde, N.; Scheibe, T. Improved parameterization of hydrological models and reduction of geophysical monitoring data ambiguity through joint use of geophysical and numerical modeling methods. In Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark, 18–22 June 2006. [Google Scholar]
- Weihermüller, L.; Huisman, J.A.; Herbst, M.; Lambot, S.; Vereecken, H. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol. 2007, 340, 205–216. [Google Scholar] [CrossRef]
- Kowalsky, M.B.; Finsterle, S.A.; Rubin, Y. Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Adv. Water Resour. 2004, 27, 583–599. [Google Scholar] [CrossRef]
- Rucker, D.F.; Ferre, T.P.A. Parameter estimation for soil hydraulic properties using zero-offset borehole radar: Analytical method. Soil Sci. Soc. Am. J. 2004, 68, 1560–1567. [Google Scholar] [CrossRef]
- Binley, A.; Winship, P.; Middleton, R.; Pokar, M.; West, J. Highresolution characterization of vadose zone dynamics using cross-borehole radar. Water Resour. Res. 2001, 37, 2639–2652. [Google Scholar] [CrossRef]
- Binley, A.; Winship, P.; West, L.; Pokar, M.; Middleton, R. Seasonal Variation of Moisture Content in Unsaturated Sandstone Inferred from Borehole Radar and Resistivity Profiles. J. Hydrol. 2002, 267, 160–172. [Google Scholar] [CrossRef]
- Binley, A.; Cassiani, G.; Middleton, R.; Winship, P. Vadose zone flow model parameterization using cross-borehole radar and resistivity imaging. J. Hydrol. 2002, 267, 147–159. [Google Scholar] [CrossRef]
- Haarder, E.B.; Binley, A.; Looms, M.C.; Doetsch, J.; Nielsen, L.; Jensen, K.H. Comparing plume characteristics inferred from cross-borehole geophysical data. Vadose Zone J. 2012, 11, vzj2012-0031. [Google Scholar] [CrossRef]
- Truss, S.; Grasmueck, M.; Vega, S.; Viggiano, D.A. Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar. Water Resour. Res. 2007, 43, W03405. [Google Scholar] [CrossRef]
- Klotzsche, A.; Lärm, L.; Vanderborght, J.; Cai, G.; Morandage, S.; Zörner, M.; Vereecken, H.; van der Kruk, J. Monitoring Soil Water Content Using Time-Lapse Horizontal Borehole GPR Data at the Field-Plot Scale. Vadose Zone J. 2019, 18, 190044. [Google Scholar] [CrossRef]
- Tsoflias, G.P.; Halihan, T.; Sharp, J.M., Jr. Monitoring pumping test response in a fractured aquifer using ground penetrating radar. Water Resour. Res. 2001, 37, 1221–1229. [Google Scholar] [CrossRef]
- Paz, C.; Alcalá, F.J.; Carvalho, J.M.; Ribeiro, L. Current uses of ground penetrating radar in groundwater-dependent ecosystems research. Sci. Total Environ. 2017, 595, 868–885. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 1995, 60, 1682–1690. [Google Scholar] [CrossRef]
- Robinson, D.A.; Lebron, I.; Kocar, B.; Phan, K.; Sampson, M.; Crook, N.; Fendorf, S. Time-lapse geophysical imaging of soil moisture dynamics in tropical deltaic soils: An aid to interpreting hydrological and geochemical processes. Water Resour. Res. 2009, 45, 185–188. [Google Scholar] [CrossRef]
- Cassiani, G.; Binley, A.; Ferré, T.P. Unsaturated Zone Processes; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Cassiani, G.; Binley, A.M.; Ferré, T.P.A. Unsaturated zone processes. In Applied Hydrogeophysics; NATO Science Series; Vereecken, H., Binley, A., Cassiani, G., Kharkhordin, I., Revil, A., Titov, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 51, pp. 75–116. [Google Scholar]
- Cassiani, G.; Bruno, V.; Villa, A.; Fusi, N.; Binley, A.M. A saline trace test monitored via time-lapse surface electrical resistivity tomography. J. Appl. Geophys. 2006, 59, 244–259. [Google Scholar] [CrossRef]
- Al Hagrey, S.A.; Michaelsen, J. Resistivity and percolation study of preferential flow in vadose zone at Bokhorst, Germany. Geophysics 1999, 64, 746–753. [Google Scholar] [CrossRef]
- Kemna, A.; Vanderborght, J.; Kulessa, B.; Vereecken, H. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J. Hydrol. 2002, 267, 125–146. [Google Scholar] [CrossRef]
- Müller, K.; Vanderborght, J.; Englert, A.; Kemna, A.; Huisman, J.; Rings, J.; Vereecken, H. Imaging and characterization of solute transport during two tracer test in a shallow aquifer using electrical resistivity tomography and multilevel groundwater samplers. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Tso, C.-H.M.; Kuras, O.; Binley, A. On the field estimation of moisture content using electrical geophysics: The impact of petrophysical model uncertainty. Water Resour. Res. 2019, 55, 7196–7211. [Google Scholar] [CrossRef]
- Michot, D.; Benderitter, Y.; Dorigny, A.; Nicoullaud, B.; King, D.; Tabbagh, A. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour. Res. 2003, 39, 1138. [Google Scholar] [CrossRef]
- Mertzanides, Y.; Tsakmakis, I.; Kargiotis, E.; Sylaios, G. Electrical resistivity tomography for spatiotemporal variations of soil moisture in a precision irrigation experiment. Int. Agrophysics 2020, 34, 309–319. [Google Scholar] [CrossRef]
- Vanella, D.; Ramírez-Cuesta, J.M.; Sacco, A.; Longo-Minnolo, G.; Cirelli, G.L.; Consoli, S. Electrical resistivity imaging for monitoring soil water motion patterns under different drip irrigation scenarios. Irrig. Sci. 2021, 39, 145–157. [Google Scholar] [CrossRef]
- French, H.K.; Hardbattle, C.; Binley, A.; Winship, P.; Jakobsen, L. Monitoring snowmelt induced unsaturated flow and transport using electrical resistivity tomography. J. Hydrol. 2002, 267, 273–284. [Google Scholar] [CrossRef]
- French, H.K.; Binley, A. Snowmelt infiltration: Monitoring temporal and spatial variability using time-lapse electrical resistivity. J. Hydrol. 2004, 297, 174–186. [Google Scholar] [CrossRef]
- Krzeminska, D.; Bloem, E.; Starkloff, T.; Stolte, J. Combining FDR and ERT for monitoring soil moisture and temperature patterns in undulating terrain in south-eastern Norway. Catena 2022, 212, 106100. [Google Scholar] [CrossRef]
- Park, S. Fluid migration in the vadose zone from 3-D inversion of resistivity monitoring data. Geophysics 1998, 63, 41–51. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Shimada, J.; Sato, A. Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resour. Res. 2001, 37, 273–285. [Google Scholar] [CrossRef]
- Singha, K.; Johnson, T.C.; Day-Lewis, F.D.; Slater, L.D. Electrical Imaging for Hydrogeology; The Groundwater Project: Guelph, ON, Canada, 2022. [Google Scholar] [CrossRef]
- Vanderborght, J.; Kemna, A.; Hardelauf, H.; Vereecken, H. Potential of electrical resistivity tomography to infer aquifer transport characteristics from tracer studies: A synthetic case study. Water Resour. Res. 2005, 41, W06013. [Google Scholar] [CrossRef]
- Kowalsky, M.B.; Finsterle, S.; Peterson, J.; Hubbard, S.; Rubin, Y.; Majer, E.; Ward, A.; Gee, G. Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resour. Res. 2005, 41, W11425. [Google Scholar] [CrossRef]
- Camporese, M.; Cassiani, G.; Deiana, R.; Salandin, P. Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment. Water Resour. Res. 2012, 47, W12508. [Google Scholar] [CrossRef]
- Tran, A.P.; Vanclooster, M.; Zupanski, M.; Lambot, S. Joint estimation of soil moisture profile and hydraulic parameters by ground-penetrating radar data assimilation with maximum likelihood ensemble filter. Water Resour. Res. 2014, 50, 3131–3146. [Google Scholar] [CrossRef]
- Hayley, K.; Bentley, L.R.; Gharibi, M. Time-lapse electrical resistivity monitoring of salt-affected soil and groundwater. Water Resour. Res. 2009, 45, W07425. [Google Scholar] [CrossRef]
- Strobach, E.; Harris, B.D.; Dupuis, J.C.; Kepic, A.W. Time-lapse borehole radar for monitoring rainfall infiltration through podosol horizons in a sandy vadose zone. Water Resour. Res. 2014, 50, 2140–2163. [Google Scholar] [CrossRef]
- Van Dam, R.L.; Eustice, B.P.; Hyndman, D.W.; Wood, W.W.; Simmons, C.T. Electrical imaging and fluid modeling of convective fingering in a shallow water-table aquifer. Water Resour. Res. 2014, 50, 954–968. [Google Scholar] [CrossRef]
- Apostolopoulos, G.; Kapetanios, A. Geophysical investigation, in a regional and local mode, at Thorikos Valley, Attica, Greece, trying to answer archaeological questions. Archaeol. Prospect. 2021, 28, 435–452. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Bagarello, V.; Sgroi, A. Using the Single-Ring Infiltrometer Method to Detect Temporal Changes in Surface Soil Field-Saturated Hydraulic Conductivity. Soil Tillage Res. 2004, 76, 13–24. [Google Scholar] [CrossRef]
- Youngs, E.G.; Elrick, D.E.; Reynolds, W.D. Comparison of steady flows from infiltration rings in “Green and Ampt” and “Gardner” soils. Water Resour. Res. 1993, 29, 1647–1650. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Elrick, D.E. Ponded Infiltration From a Single Ring: I. Analysis of Steady Flow. Soil Sci. Soc. Am. J. 1990, 54, 1233–1241. [Google Scholar] [CrossRef]
- Hazen, A. Discussion of ‘dams on sand foundations’ by A.C. Koenig. Trans. Am. Soc. Civ. Eng. 1911, 73, 199–203. [Google Scholar]
- Hatfield, J.L.; Sauer, T.J.; Cruse, R.M. Soil: The Forgotten Piece of the Water, Food, Energy Nexus. Adv. Agron. 2017, 143, 1–46. [Google Scholar] [CrossRef]
- Davis, J.L.; Chudobiak, W.J. In-Situ Meter for Measuring Relative Permittivity of Soils; Pap 75-1A; Geological Survey of Canada: Ottawa, ON, Canada, 1975; pp. 75–79. [Google Scholar]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic Determination of Soil Water Content Using TDR: I. Applications to Wetting Fronts and Steep Gradients. Soil Sci. Soc. Am. J. 1982, 46, 672–678. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic Determination of Soil Water Content Using TDR: II. Evaluation of Installation and Configuration of Parallel Transmission Lines. Soil Sci. Soc. Am. J. 1982, 46, 678–684. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L. Detecting infiltration of water through soil cracks by time-domain reflectometry. Geoderma 1981, 26, 13–23. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L. Measurement of soil water content using TDR: A field evaluation. Soil Sci. Soc. Am. J. 1985, 49, 19–24. [Google Scholar] [CrossRef]
- Hook, W.R.; Livingston, N.J.; Sun, Z.J.; Hook, P.B. Remote Diode Shorting Improves Measurement of Soil Water by Time Domain Reflectometry. Soil Sci. Soc. Am. J. 1992, 56, 1384–1391. [Google Scholar] [CrossRef]
- Frueh, W.T.; Hopmans, J.W. Soil moisture calibration of a TDR multilevel probe in gravely soils. Soil Sci. 1997, 162, 554–565. [Google Scholar] [CrossRef]
- Adelakun, I.A.; Ranjan, R.S. Design of a multilevel TDR probe for measuring soil water content at different depths. Trans. ASABE 2013, 56, 1451–1460. [Google Scholar] [CrossRef]
- Kafarski, M.; Majcher, J.; Wilczek, A.; Szyplowska, A.; Lewandowski, A.; Zackiewicz, A.; Skierucha, W. Penetration Depth of a Soil Moisture Profile Probe Working in Time-Domain Transmission Mode. Sensors 2019, 19, 5485. [Google Scholar] [CrossRef] [PubMed]
- Greco, R. Soil water content inverse profiling from single TDR waveforms. J. Hydrol. 2006, 317, 325–339. [Google Scholar] [CrossRef]
- Greco, R.; Guida, A. Field measurements of topsoil moisture profiles by vertical TDR probes. J. Hydrol. 2008, 348, 442–451. [Google Scholar] [CrossRef]
- Laloy, E.; Huisman, J.A.; Jacques, D. High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals. J. Hydrol. 2014, 519, 2121–2135. [Google Scholar] [CrossRef]
- Todoroff, P.; Langellier, P. Comparison of empirical and partly deterministic methods of time domain reflectometry calibration, based on a study of two tropical soils. Soil Tillage Res. 1998, 45, 325–340. [Google Scholar] [CrossRef]
- Dirksen, C.; Dasberg, S. Improved calibration of time domain reflectometry soil water content measurements. Soil Sci. Soc. Am. J. 1993, 57, 660–667. [Google Scholar] [CrossRef]
- Weitz, A.M.; Grauel, W.T.; Keller, M.; Veldkamp, E. Calibration of time domain reflectometry technique using undisturbed soil samples from humid tropical soils of volcanic origin. Water Resour. Res. 1997, 33, 1241–1249. [Google Scholar] [CrossRef]
- Brisco, B.; Pultz, T.J.; Brown, R.J.; Topp, G.C.; Hares, M.A.; Zebchuk, W.D. Soil Moisture Measurement Using Potable Dielectric Probes and Time Domain Reflectometry. Water Resour. Res. 1992, 28, 1339–1346. [Google Scholar] [CrossRef]
- Dasberg, S.; Hopmans, J.W. Time domain reflectometry calibration for uniformly and non-uniformly wetted sandy and clayey loam soils. Soil Sci. Soc. Am. J. 1992, 56, 1341–1345. [Google Scholar] [CrossRef]
- Roth, K.; Schulin, R.; Flühler, H.; Attinger, W. Calibartion of Time Domain Reflectometry for Water Content Measurement Using a Composite Dielectric Approach. Water Resour. Res. 1990, 26, 2267–2273. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El Rayes, M.A. Microwave dielectric behaviour of wet soils: Part II. Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [Google Scholar] [CrossRef]
- Gregory, P.; Poss, R.; Eastham, J.; Micin, S. Use of Time Domain Reflectometry (TDR) to measure the water content of sandy soils. Aust. J. Soil Res. 1995, 33, 265–276. [Google Scholar] [CrossRef]
- Hokett, S.; Chapman, J.; Russell, C. Potential use of time domain reflectometry for measuring water content in rock. J. Hydrol. 1992, 138, 89–96. [Google Scholar] [CrossRef]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef]
- Nijland, W.; van der Meijde, M.; Addink, E.A.; de Jong, S.M. Detection of soil moisture and vegetation water abstraction in a Mediterranean natural area using electrical resistivity tomography. Catena 2010, 81, 209–216. [Google Scholar] [CrossRef]
- Curioni, G.; Chapman, D.N.; Royal, A.C.; Metje, N.; Dashwood, B.; Gunn, D.A.; Inauen, C.M.; Chambers, J.E.; Meldrum, P.I.; Wilkinson, P.B.; et al. Time domain reflectometry (TDR) potential for soil condition monitoring of geotechnical assets. Can. Geotech. J. 2019, 56, 942–955. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-Penetrating Radar for High-Resolution Mapping of Soil and Rock Stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Slater, L.; Comas, X. The contribution of ground penetrating radar to water resource research. In Ground Penetrating Radar: Theory and Applications; Jol, H.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 203–246. [Google Scholar]
- Algeo, J.; Van Dam, R.L.; Slater, L. Early-time GPR: A method to monitor spatial variations in soil water content during irrigation in clay soils. Vadose Zone J. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- DeGroot-Hedlin, C.; Constable, S. Occam’s inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics 1990, 55, 1613–1624. [Google Scholar]
- Sasaki, Y. Resolution of resistivity tomography inferred from numerical simulation. Geophys Prospect. 1992, 40, 453–464. [Google Scholar]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 2003, 34, 182. [Google Scholar] [CrossRef]
- Claerbout, J.F.; Muir, F. Robust modeling with erratic data. Geophysics 1973, 38, 826–844. [Google Scholar] [CrossRef]
Borehole | Textural Class | Gravel (%) | Sand (%) | Silt (%) | Clay (%) | Cu | Cc | k (m/day) |
---|---|---|---|---|---|---|---|---|
B | Sandy loam | 41 | 38 | 13 | 8 | 870.9 | 2.44 | 3.205 |
A | Sandy loam | 33 | 42 | 16 | 9 | 577.98 | 0.89 | 2.851 |
D | Sandy loam | 37 | 40 | 17 | 6 | 550.1 | 1.17 | 5.14 |
C | Sandy loam | 28 | 44 | 20 | 8 | 445.21 | 0.63 | 2.082 |
Central | Sandy loam | 30 | 41 | 23 | 6 | 423.87 | 0.36 | 3.266 |
Time | 0 min | 40 min | 80 min | 140 min | 190 min | 240 min |
---|---|---|---|---|---|---|
Flow (L/min) | 2.2 | 1.5 | 1.4 | 1.2 | 1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, A.; Apostolopoulos, G.; Kallioras, A. An Integrated Hydrogeophysical Approach for Unsaturated Zone Monitoring Using Time Domain Reflectometry, Electrical Resistivity Tomography and Ground Penetrating Radar. Water 2024, 16, 2559. https://doi.org/10.3390/w16182559
Papadopoulos A, Apostolopoulos G, Kallioras A. An Integrated Hydrogeophysical Approach for Unsaturated Zone Monitoring Using Time Domain Reflectometry, Electrical Resistivity Tomography and Ground Penetrating Radar. Water. 2024; 16(18):2559. https://doi.org/10.3390/w16182559
Chicago/Turabian StylePapadopoulos, Alexandros, George Apostolopoulos, and Andreas Kallioras. 2024. "An Integrated Hydrogeophysical Approach for Unsaturated Zone Monitoring Using Time Domain Reflectometry, Electrical Resistivity Tomography and Ground Penetrating Radar" Water 16, no. 18: 2559. https://doi.org/10.3390/w16182559
APA StylePapadopoulos, A., Apostolopoulos, G., & Kallioras, A. (2024). An Integrated Hydrogeophysical Approach for Unsaturated Zone Monitoring Using Time Domain Reflectometry, Electrical Resistivity Tomography and Ground Penetrating Radar. Water, 16(18), 2559. https://doi.org/10.3390/w16182559