Evaluation of Groundwater Resources in the Middle and Lower Reaches of Songhua River Based on SWAT Model
Abstract
:1. Introduction
2. Overview of the Study Area
Name Abbreviation | Description | Name Abbreviation | Description |
---|---|---|---|
ATc | Anthropogenic accumulation | HSs | Organic soil |
CMe | Saturated protosol | LVh | Simple high activity luvisols |
FLc | Calcareous alluvial soil | PHh | Simple black soil |
GLm | Mollic gleysol | WATER | Water body |
3. Data and Methods
3.1. Data Sources
3.1.1. Digital Elevation Model (DEM)
3.1.2. Soil Type Data
3.1.3. Land Use Type Data
3.1.4. Meteorological Data and Runoff Data
3.2. Research Methods
3.2.1. SWAT Model
3.2.2. Shallow Aquifer Reservoir Variable Calculation Method
3.2.3. Construction of MODFLOW Model
- (1)
- Aquifer generalization
- (2)
- Generalization of boundary conditions
- (3)
- The model’s space-time dispersion
- (4)
- Determination of initial conditions
4. Results and Analysis
4.1. Subwatershed Division and HRU Unit Based on SWAT Model
4.2. Calibration and Verification of SWAT Model Parameters
4.3. Calibration and Validation of Parameters Utilizing the MODFLOW Model
4.4. Evaluation of Groundwater Resources Based on SWAT Model
4.5. Prediction of Groundwater Recharge Based on MODFLOW Model
5. Discussion
5.1. Relevance and Constraints of the Model in Groundwater Resource Assessment Research and Potential for Future Developments
5.2. Analysis of Groundwater Recharge and Distribution Characteristics
6. Conclusions
- The application of the SWAT and MODFLOW models for assessing groundwater resources yielded favorable simulation results in this region. The runoff simulation at the Tongjiang Hydrological Station, located at the basin’s total water outlet, was exemplary. R2 exceeded 0.8, NSE surpassed 0.75, and the R2 values for simulation and verification of groundwater levels were 0.98 and 0.97, respectively. The discrepancy between the simulated value and the actual value was less than 0.6 m.
- The study area is predominantly characterized by a robust extraction sector. In 2016, the simulated runoff reached its peak, with a storage variable of 872 million m3/a. It is in a state of positive equilibrium. The primary source of groundwater in the discharge item, represented as base flow recharge from the river, constituted 81.46%. The second factor accounts for approximately 7.14%, primarily attributed to the replenishment of deep aquifers, while the least significant factor, the loss to the vadose zone, constitutes merely 2.1%.
- From 2010 to 2016, the average groundwater runoff modulus in the middle and lower reaches of the Songhua River basin was 1.005 L/(s·km²), with a total recharge of 216.58 × 108 m3 and a total recoverable amount of 105.11 × 108 m3. The mean annual recharge was 25.11 × 108 m3, while the total groundwater recharge was 26.54 × 108 m3, 33.11 × 108 m3, and 33.25 × 108 m3 in the super dry year (2011), normal year (2014), and high water year (2016), respectively, with the groundwater recharge in the high water year being 1.25 times greater.
- The MODFLOW model was employed to simulate groundwater recharge in the middle and lower reaches of the Songhua River for the years 2011, 2014, and 2016. The discrepancies in results compared to the SWAT model were 2.22 × 108 m3, 2.32 × 108 m3, and 1.0 × 108 m3, respectively, with a minimal relative error base. The SWAT model effectively simulates groundwater resource assessment in cold regions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, L.; Zheng, G.G.; Li, R.Y.; Fu, C.Y.; Chen, J.; Meng, Y.C.; Pan, Y.; Hu, P. An integrated approach for quantifying trace metal sources in surface soils of a typical farmland in the three rivers plain, China. Environ. Pollut. 2023, 337, 136077. [Google Scholar]
- You, L.; Wang, S.; Tao, Y.; Liu, Y. Appropriate Method to Estimate Farmland Drainage Coefficient in the Wanyan River Surface Waterlogged Area in Suibin County of the Sanjiang Plain, China. Appl. Sci. 2023, 13, 2769. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, H.; Feng, X.; Han, Y. Tradeoff and synergy of farmland ecosystem services in Heilongjiang Province. J. China Agric. 2023, 28, 160–171. (In Chinese) [Google Scholar]
- Chen, Y.; Yang, Q.; Luo, Y.; Shen, Y.; Pan, X.; Li, L.; Li, Z. Water resources in arid region of Northwest China. Arid. Land Geogr. 2012, 35, 1–9. (In Chinese) [Google Scholar]
- Hu, C.; Lu, C.; Wu, B. Practice and thinking on the Development of water-saving agriculture in Songhua River Basin in the new era. In Chinese Hydraulic Society. In Proceedings of the 2023 Chinese Water Conservancy Academic Conference (Volume 3), Zhengzhou, Henan, China, 4 November 2023; Yellow River Water Conservancy Press: Zhengzhou, China, 2023; Volume 5. [Google Scholar]
- Ye, X.; Cui, R.; Wang, L.; Du, X. The influence of riverbank filtration on regional water resources: A case study in the Second Songhua River catchment, China. Water Supply 2020, 20, 1425–1438. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, Z.; Liu, J.; Li, J.; Xie, M.; Jiang, Y.; Wang, H. Based on the songhua river basin water resources evolution regularity of permafrost hydrology simulation. J. South-North Water Divers. Water Conserv. Sci. Technol. 2023, 21, 127–136, (Both in English and Chinese). [Google Scholar]
- Li, J. Optimization Design of SWAT Model and Its Application in Chayu River Basin. Master’s Thesis, Lanzhou University, Lanzhou, China, 2024. [Google Scholar]
- Liu, H.Y. Research and application progress of SWAT model. Subtrop. Soil Water Conserv. 2019, 31, 34–37. (In Chinese) [Google Scholar]
- Chen, P.; Li, J.; Yu, Q.; Guo, J.; Mang, J. Groundwater distribution characteristics and water resources evaluation in Jinghe River Basin based on SWAT model. J. Irrig. Drain. 2021, 40, 102–109+126. [Google Scholar]
- Zhao, L.; Wang, Y.; Zhou, Y. Groundwater resources evaluation in the Pearl River Basin based on SWAT model. Earth Sci. 2024, 49, 1876–1890. [Google Scholar]
- Li, Y.-J.; Jiang, X.-H.; Chen, J.; Yang, Z.; Wang, G.; Ding, H. Prediction of groundwater flow field in riverside area of Bayannur City based on GMS. South--North Water Divers. Hydraul. Sci. Technol. 2016, 14, 36–41+83. [Google Scholar]
- Zhu, H.; Zhang, X.; Wang, W.; Jiang, C.; Liu, Z.; Liu, B. Numerical simulation and prediction of groundwater in Licheng District of Jinan City. Groundwater 2021, 43, 52–54+70. (In Chinese) [Google Scholar]
- Zhang, H.; Zhang, S.; Zhang, Y.; Liu, K.; Pan, W.; Xu, J.; Bian, Z.; Yang, S.; Pan, Y.; Xu, Z. Nitrogen control of shallow groundwater based on Visual MODFLOW software. J. Jinan Univ. (Nat. Sci. Ed.) 2022, 36, 56–64. [Google Scholar]
- An, N.N.; Nhut, H.S.; Phuong, T.A.; Huy, V.Q.; Hanh, N.C.; Thao, G.T.P.; Trinh, P.T.; Hoa, P.V.; Bình, N.A. Groundwater simulation in Dak Lak province based on MODFLOW model and climate change scenarios. Front. Eng. Built Environ. 2022, 2, 55–67. [Google Scholar] [CrossRef]
- Bushira, K.M.; Hernandez, J.R.; Sheng, Z. Surface and groundwater flow modeling for calibrating steady state using MODFLOW in Colorado River Delta, Baja California, Mexico. Model. Earth Syst. Environ. 2017, 3, 815–824. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Yang, G.; Zhao, L.; Chen, S.; Wang, C.; Chen, J.; Yang, M. Study of groundwater using visual MODFLOW in the Manas River Basin, China. Water Policy 2016, 18, 1139–1154. [Google Scholar] [CrossRef]
- Jia, X. Songhua river basin in recent 40 years of meteorological drought evolution characteristics. J. Northeast. Water Conserv. Water Electr. 2024, 42, 42–45+71. [Google Scholar]
- Liu, Z.-T.; Hao, Z.-C.; Xu, H.-Q.; Ju, Q.; Wu, G.-Y.; Xing, R.-F. Climate modeling and prediction in Songhua River Basin based on model integration. J. Hydroelectr. Power 2019, 46, 14–18. [Google Scholar]
- Ye, X.-Y.; Wu, Y.-M.; Du, X.-Q.; Li, W.-L. Comprehensive identification method of dynamic genetic types of subsurface water: A case study of Songhua River Basin, Sanjiang Plain. Prog. Water Sci. 2022, 33, 68–78. [Google Scholar]
- Zhao, S. Based on the Suitable Water Level of Sanjiang Plain Groundwater Exploitation Groundwater Regulation Scheme Research. Master’s Thesis, Jilin University, Jilin, China, 2023. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, Y.; Yu, Y.; Zhang, G.-X.; Sun, Y.-N.; Fu, Q.-N. Groundwater environment change and its controlling factors in Songhua River Basin, Sanjiang Plain. J. Hydropower Energy 2024, 42, 38–42. [Google Scholar]
- Ridwansyah, I.; Yulianti, M.; Apip; Onodera, S.I.; Shimizu, Y.; Wibowo, H.; Fakhrudin, M. The impact of land use and climate change on surface runoff and groundwater in Cimanuk watershed. Indones. Limnol. 2020, 21, 487–498. [Google Scholar] [CrossRef]
- Xu, A.; Mu, Z. G four river basin upstream of the SWAT model database construction. J. Yangtze River Technol. Econ. 2021, 5, 114–116. [Google Scholar] [CrossRef]
- Zhu, Y. Study on Water Resource Vulnerability in Songhua River Basin under Changing Environment; Jilin University: Jilin, China, 2024. [Google Scholar]
- Chen, K.; Wang, L.; Liu, Y.; Liu, J.-X. Applicability evaluation of CMADS dataset in Hulan River Basin. J. Irrig. Drain. 2019, 43, 60–68. [Google Scholar]
- Gu, X.; Yang, G.; He, X.; Zhao, L.; Li, X.; Li, P.; Liu, B.; Gao, Y.; Xue, L.; Long, A. Simulation of hydrological processes in Manas River Basin based on CMADS and SWAT model. J. Water Resour. Water Eng. 2021, 32, 116–123. [Google Scholar]
- Dai, J.; Cui, Y. Swat-based distributed hydrological model of irrigation district—I. Principle and method of model construction. J. Hydraul. Eng. 2009, 40, 145–152. [Google Scholar]
- Zhao, X.; Yan, X. Study on the Change Trend of Soil Water Storage in Heilongjiang Province in the Past 20 Years. Geogr. Sci. 2006, 5, 5569–5573. [Google Scholar]
- Wang, Z.; Liu, C.; Huang, Y. Research on the principle, structure and application of SWAT model. Prog. Geogr. 2003, 1, 79–86. [Google Scholar]
- Cui, J. Application of water balance method in groundwater resource assessment. Groundwater 2022, 44, 51–52+91. (In Chinese) [Google Scholar]
- Saurette, D.D.; Biswas, A.; Heck, J.R.; Gillespie, A.W.; Berg, A.A. Determining minimum sample size for the conditioned Latin hypercube sampling algorithm. Pedosphere 2024, 34, 530–539. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, J.; Shao, S. Comparison on thermal and hydraulic performances of transverse mini-channel based on a novel comprehensive evaluation factor. Appl. Therm. Eng. 2024, 253, 123795. [Google Scholar] [CrossRef]
- Hou, M.; Dong, A.Z.; Ying, H.Y.; Wang, Z.-H. Influence of parameter change of empirical frequency formula on hydrological frequency analysis. J. Zhejiang Univ. Water Resour. Hydropower 2023, 35, 24–30. [Google Scholar]
- Wu, L.; Lu, T.; Guo, J.; Lu, Y.; Li, H. High fluoride groundwater distribution and formation mechanism of jilantai desert basin. J. Irrig. Drain. Lancet 2024, 9, 113–120. [Google Scholar]
- Liu, Y.; Wu, T.; Wang, S.; Ju, M.-D. Study on the efficiency of coastal vegetation belt in reducing non-point source pollution by coupled remote sensing and SWAT model. Nat. Resour. Remote Sens. 2024, 1–10. Available online: http://kns.cnki.net/kcms/detail/10.1759.P.20230531.1032.019.html (accessed on 5 August 2024).
- Zhao, H. Simulation and Prediction of Snowmelt Runoff in Northeast Cold Region Based on Improved SWAT. Master’s Thesis, Jilin University, Jilin, China, 2023. [Google Scholar]
- Lai, G.; Wu, D.; Zhong, Y.; Zeng, F.-H.; Chen, J.; Zhang, W.-L. Development and Application of SWAT Model. J. Hohai Univ. (Nat. Sci. Ed.) 2012, 40, 243–251. [Google Scholar]
- Xin, Y.; Zhang, W.; Zou, L.; Zhou, T.-J.; Zhao, Y. High-resolution regional model prediction of precipitation erosivity affected by climate change in Northeast China. Chin. J. Atmos. Sci. 2019, 48, 480–496. [Google Scholar]
- Yifru, B.A.; Lee, S.; Lim, K.J. Calibration and uncertainty analysis of integrated SWAT-MODFLOW model based on iterative ensemble smoother method for watershed scale river-aquifer interactions assessment. Earth Sci. Inform. 2023, 16, 3545–3561. [Google Scholar] [CrossRef]
- Deng, Z.; Ma, Q.; Zhang, J.; Feng, Q.; Niu, Z.; Zhu, G.; Jin, X.; Chen, M.; Chen, H. A New Socio-Hydrology System Based on System Dynamics and a SWAT-MODFLOW Coupling Model for Solving Water Resource Management in Nanchang City, China. Sustainability 2023, 15, 16079. [Google Scholar] [CrossRef]
- Li, L.F.; Chen, J.Y.; Chen, L.; Chen, S.-B.; Xu, Y.-Z.; Zhi, X.-S.; Shen, Z.-Y.; Yang, D.-W. Improvement of SWAT model reservoir module and simulation of nitrogen and phosphorus flux in watershed. Chin. J. Environ. Sci. 2023, 43, 427–439. (In Chinese) [Google Scholar]
- Cui, H.; Wu, T.; Liu, J.; Liu, W.-P.; Li, Z.-H.; Cheng, X.-X.; Liu, W.-P. Effect of succession process on groundwater in marsh wetland and farmland in Sanjiang Plain. Hydrogeol. Eng. Geol. 2023, 50, 51–58. [Google Scholar]
- Zhang, D.; Zhang, W.; Zhu, L.; Zhu, Q.-A. Research on improvement and application of the hydrophysical model of distributed SWAT basin. Sci. Geogr. Sin. 2005, 4, 52–58. [Google Scholar]
- Jia, C.C.; Guo, L.; Cui, S.; Fu, Q.; Liu, D. Temporal and spatial evolution of NPP and its response mechanism to extreme climate in Songhua River Basin. South--North Water Divers. Water Sci. Technol. 2019, 22, 131–147. (In Chinese) [Google Scholar]
- Chu, G.; Chen, S.; Xu, C.M.; Liu, Y.-H.; Wang, D.-Y.; Zhang, X.-F. Evolution and prospect of paddy planting system in China. Chin. Rice 2021, 27, 63–65+70. (In Chinese) [Google Scholar]
- Yu, Y. Study on the impact of engineering water resources utilization on aquatic ecology in Jinxi Irrigation area, Fujin City, Heilongjiang Province. Sci. Technol. Innov. 2020, 13, 118–119. [Google Scholar]
FLC | PHh | GLM | HSs | ATc | LVh | CMe |
---|---|---|---|---|---|---|
2.28 | 26.44 | 6.09 | 1.02 | 2.01 | 13.17 | 0.38 |
Coefficient | SOL_BD1 | SOL_AWC1 | SOL_K1 | SOL_CBN1 | SOL_BD2 | SOL_AWC2 | SOL_K2 | SOL_CBN2 | Hierarchy | |
---|---|---|---|---|---|---|---|---|---|---|
Soil Type | ||||||||||
FLc | 1.53 | 0.14 | 9.32 | 0.6 | 1.48 | 0.14 | 12.65 | 0.4 | L-L | |
LPe | 1.55 | 0.1 | 9.36 | 1.13 | 0 | 0 | 0 | 0 | L | |
PHh | 1.37 | 0.14 | 14.24 | 1.95 | 1.52 | 0.13 | 8.22 | 0.67 | L-L | |
GLm | 1.41 | 0.14 | 13.58 | 1.65 | 1.5 | 0.13 | 5.2 | 0.69 | L-CL | |
HSs | 1.14 | 0.13 | 13.65 | 39.4 | 1.18 | 0.14 | 22.43 | 38.46 | CL-SaCL | |
ATc | 0.98 | 0.18 | 44.52 | 1.12 | 1.49 | 0.14 | 8.94 | 0.82 | SIL-L | |
LVh | 1.52 | 0.13 | 9.33 | 0.74 | 1.52 | 0.13 | 4.11 | 0.36 | L-CL | |
CMe | 1.49 | 0.13 | 10.27 | 1 | 1.55 | 0.12 | 5.70 | 0.37 | L-L | |
WATER | 1.72 | 0 | 260 | 0 | 0 | 0 | 0 | 0 | - |
Coefficient | Description | Coefficient | Description |
---|---|---|---|
SOL_BD | weight of dried soil, comprising soil particles and intergranular pores, per unit volume. It stands for the moist bulk density of soil (SOILdensity). | CLAY | Clay content, %wt, refers to soil particles < 0.002 mm in diameter. |
SOL_AWC | Indicates the effective water content of soil layer, in mm/mm. | SILT | SILT1 refers to the loam content of the soil (%wt), that is, the percentage by weight of soil particles between 0.002 and 0.05 mm in diameter. |
SOL_CBN | Organic carbon content (%wt) of the soil layer. | SAND | Sand content, %wt, refers to particles with diameters between 0.05 and 2.0 mm. |
SOL_K | Saturated water conductivity/saturated hydraulic conductivity, mm/hr. | ROCK | Gravel content, %wt, refers to particles with a diameter greater than 2 mm. |
SOL_ZMS | Represents the maximum root depth of the soil profile, mm. | USLE_K | Erodibility factor |
Reclassification Coding | Name | SWAT Coding |
---|---|---|
1 | Cultivated land | AGRL |
2 | Forest land | FRST |
3 | Grassland | RNGB |
4 | Water bodies | WATR |
5 | Urban and rural, industrial and mining, and residential land | URML |
6 | Fallow land | WETL |
Data Type | Data Source |
---|---|
Digital Elevation Model (DEM) | NASA Earth Science data website (https://nasadaacs.eos.nasa.gov/) (accessed on 15 July 2024) |
Soil type and attribute list | HWSD data downloaded from the National Tibetan Plateau Scientific Data Center (World Soil Database) (accessed on 15 July 2024) |
Land type use data | Institute of Aerospace Information Innovation, Chinese Academy of Sciences |
Meteorological data | CMADS (V1.1) downloaded from the National Tibetan Plateau Scientific Data Center (accessed on 18 July 2024) |
Runoff data | Tongjiang city hydrology station |
Partition Number | Initial Range of Permeability Coefficient (m/d) | Initial Value Range of Water Supply Degree |
---|---|---|
Ⅰ | 20~25 | 0.1~0.2 |
Ⅱ | 15~20 | 0.15~0.20 |
Ⅲ | 15~20 | 0.10~0.15 |
Ⅳ | 1~5 | 0~0.1 |
Ⅴ | 15~20 | 0.1~0.2 |
ⅰ | 20.0~25.0 | 0.001~0.002 |
ⅱ | 10.0~15.0 | 0.01~0.02 |
ⅲ | 15.0~20.0 | 0.01~0.02 |
ⅳ | 10.0~15.0 | 0.001~0.002 |
ⅴ | 20.0~25.0 | 0.01~0.02 |
ⅵ | 18.0~20.0 | 0.001~0.002 |
ⅶ | 15.0~20.0 | 0.001~0.002 |
Encoding | Parameter Name | Parameter Meaning | Optimal Parameter (Basin No. 1) |
---|---|---|---|
1 | r__CN2.mgt | SCS runoff curve value | 0.80 |
2 | v__GW_DELAY.gw | Groundwater delay time (h) | 793.90 |
3 | v__GWQMN.gw | Level threshold of shallow aquifers when groundwater enters the main channel (mm) | 2.17 |
4 | v__REVAPMN.gw | Shallow groundwater evaporation depth threshold (mm) | 954.40 |
5 | v__SOL_AWC().sol | Surface water availability (mm) | −0.52 |
6 | v__CH_K2.rte | Effective permeability coefficient (mm/h) | 795.29 |
7 | v__RCHRG_DP.gw | Permeability coefficient of deep aquifer | 0.67 |
8 | r__SOL_K().sol | Soil saturated water conductivity (mm/h) | 1.104 |
9 | r__SOL_ALB().sol | Moist soil albedo | 0.29 |
10 | v__ALPHA_BNK.rte | Base flow regression constant | 0.31 |
11 | v__SLSUBBSN.hru | Average slope length (m) | 1.91 |
12 | r__HRU_SLP.hru | Average slope (m/m) | 2.25 |
13 | v__CANMX.hru | Maximum canopy water storage (mm) | 227.5 |
14 | v__SFTMP.bsn | Average air temperature on snowfall days (°C) | 10.9 |
15 | v__SMTMP.bsn | Average temperature on snowfall days (°C) | 13.7 |
16 | v__SMFMX.bsn | Snowmelt factor | 34.7 |
17 | v__TIMP.bsn | Temperature lag coefficient of snow cover | 2.93 |
18 | v__SNOCOVMX.bsn | Snow depth threshold/cm | 992.29 |
19 | v__TLAPS.sub | Temperature lapse rate (°C/km) | 4.51 |
20 | v__ESCO.hru | Soil evaporation compensation coefficient | 1.41 |
21 | v__EPCO.hru | Plant absorption compensation coefficient | 0.89 |
22 | v__ALPHA_BF.gw | Base flow alpha factor (1/day) | 1.29 |
Model Reliability | R2 | NSE |
---|---|---|
Equivalent to gold | 0.80 < R2 ≤ 1.00 | 0.75 < NSE ≤ 1.00 |
Excellent | 0.70 < R2 ≤ 0.80 | 0.65 < NSE ≤ 0.75 |
Typical | 0.50 < R2 ≤ 0.70 | 0.50 < NSE ≤ 0.65 |
Not satisfactory | R2 ≤ 0.50 | NSE ≤ 0.50 |
Partition Number | Value of the Permeability Coefficient (m/d) | Initial Value of Water Supply |
---|---|---|
Ⅰ | 22 | 0.18 |
Ⅱ | 16 | 0.13 |
Ⅲ | 16 | 0.12 |
Ⅳ | 2 | 0~0.1 |
Ⅴ | 17 | 0.15 |
ⅰ | 23.0 | 0.0014 |
ⅱ | 13.0 | 0.009 |
ⅲ | 15 | 0.009 |
ⅳ | 14 | 0.008 |
ⅴ | 23 | 0.0014 |
ⅵ | 17.0 | 0.0011 |
ⅶ | 17.0 | 0.0011 |
Year | Supply Term | Excretion Term | Subtotal | ∆Sgw | ||
---|---|---|---|---|---|---|
PERC | REVAP | GWQ | DARCHG | |||
2010 | 25.9 | 2.0 | 16.10 | 8.63 | 6.93 | +6.93 |
2011 | 13.1 | 2.51 | 17.3 | 9.05 | 15.76 | −15.76 |
2012 | 28.1 | 1.48 | 17.44 | 0.93 | 8.25 | 8.25 |
2013 | 23.77 | 0.1 | 20.6 | 1.08 | 1.99 | 1.99 |
2014 | 26.65 | 0.1122 | 22 | 1.16 | 3.38 | 3.38 |
2015 | 18.1 | 0 | 22.08 | 1.15 | 5.13 | −5.13 |
2016 | 32.01 | 0.06 | 22.06 | 1.17 | 8.72 | 8.72 |
Mean value | 23.94 | 0.60 | 17.18 | 3.31 | 50.16 | 8.38 |
Discharge percentage/% | 2.8 | 81.46 | 15.69 |
Subcatchment | Dry Year (2011) | Normal Water Year (2014) | Wet Year (2016) | ||||||
---|---|---|---|---|---|---|---|---|---|
Runoff Modulus (l·s−1·km2) | Supply (104 m3·a−1) | Recoverable Amount (104 m3·a−1) | Runoff Modulus (l·s−1·km2) | Supply (104 m3·a−1) | Recoverable Amount (104 m3·a−1) | Runoff Modulus (l·s−1·km2) | Supply (104 m3·a−1) | Recoverable Amount (104 m3·a−1) | |
1 | 0.44 | 838.89 | 377.50 | 0.54 | 4091.70 | 1841.27 | 0.51 | 3968.50 | 1785.83 |
2 | 0.43 | 5441.23 | 2448.55 | 0.68 | 7283.90 | 3277.76 | 0.62 | 6427.05 | 2892.17 |
3 | 0.41 | 7825.90 | 3521.66 | 0.60 | 9888.50 | 4449.83 | 0.64 | 10,191.80 | 4586.31 |
4 | 1.09 | 5532.00 | 2489.40 | 0.98 | 6996.00 | 3148.20 | 1.02 | 7864.50 | 3539.03 |
5 | 0.88 | 5938.80 | 2672.46 | 0.88 | 7543.97 | 3394.79 | 0.94 | 8346.50 | 3755.93 |
6 | 0.24 | 784.61 | 353.07 | 0.47 | 1164.85 | 524.18 | 0.40 | 1070.60 | 481.77 |
7 | 1.75 | 27,620.44 | 12,429.20 | 2.13 | 37,619.41 | 16,928.73 | 1.89 | 34,748.30 | 15,636.74 |
8 | 1.44 | 9113.07 | 4100.88 | 1.65 | 11,380.22 | 5121.10 | 1.77 | 12,513.80 | 5631.21 |
9 | 1.72 | 10,855.50 | 4884.98 | 1.93 | 12,809.49 | 5764.27 | 1.90 | 12,440.40 | 5598.18 |
10 | 1.88 | 26,439.69 | 11,897.86 | 1.68 | 19,364.28 | 8713.93 | 1.71 | 20,369.70 | 9166.37 |
11 | 0.15 | 1653.00 | 743.85 | 0.15 | 1118.82 | 503.47 | 0.19 | 1129.20 | 508.14 |
12 | 0.38 | 4341.00 | 1953.45 | 0.26 | 1650.06 | 742.53 | 0.26 | 1697.80 | 764.01 |
13 | 1.61 | 25,585.30 | 11,513.39 | 1.60 | 21,921.37 | 9864.62 | 1.63 | 23,753.40 | 10,689.03 |
14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
15 | 0.55 | 5388.50 | 2424.83 | 0.65 | 9579.00 | 4310.55 | 0.66 | 9931.70 | 4469.27 |
16 | 0.12 | 1682.10 | 756.95 | 0.31 | 3143.90 | 1414.76 | 0.28 | 2222.77 | 1000.25 |
17 | 1.88 | 114,631.00 | 51,583.95 | 1.98 | 144,797.70 | 65,158.97 | 2.01 | 152,842.08 | 68,778.94 |
18 | 1.45 | 20,271.00 | 9121.95 | 1.58 | 26,564.70 | 11,954.12 | 1.49 | 25,445.30 | 11,450.39 |
19 | 0.19 | 125.00 | 56.25 | 0.23 | 153.16 | 68.92 | 0.25 | 166.14 | 74.76 |
20 | 0.21 | 600.80 | 270.36 | 0.48 | 4344.30 | 1954.94 | 0.50 | 4390.52 | 1975.73 |
21 | 0.55 | 1417.20 | 637.74 | 0.63 | 1811.23 | 815.05 | 0.66 | 1942.50 | 874.13 |
22 | 1.44 | 77,046.78 | 34,671.05 | 1.71 | 92,524.61 | 41,636.07 | 1.81 | 94,238.00 | 42,407.10 |
23 | 0.34 | 3621.00 | 1629.45 | 0.41 | 4637.70 | 2086.97 | 1.55 | 4976.37 | 2239.37 |
24 | 0.55 | 1725.00 | 776.25 | 0.74 | 2150.50 | 967.73 | 0.74 | 2127.50 | 957.38 |
25 | 1.27 | 33,780.00 | 15,201.00 | 1.49 | 42,752.40 | 19,238.58 | 1.51 | 45,773.50 | 20,598.08 |
26 | 0.37 | 7780.00 | 3501.00 | 0.61 | 11,707.48 | 5268.37 | 0.68 | 12,226.17 | 5501.78 |
27 | 1.71 | 32,163.60 | 14,473.62 | 1.86 | 36,586.00 | 16,463.70 | 1.77 | 32,806.80 | 14,763.06 |
28 | 0.68 | 18,201.00 | 8190.45 | 1.21 | 27,736.00 | 12,481.20 | 1.14 | 26,522.55 | 11,935.15 |
29 | 0.73 | 15,840.00 | 7128.00 | 1.15 | 21,519.36 | 9683.71 | 1.10 | 18,530.56 | 8338.75 |
30 | 0.58 | 9028.00 | 4062.60 | 0.71 | 13,296.80 | 5983.56 | 0.68 | 12,000.30 | 5400.14 |
31 | 1.69 | 38,314.00 | 17,241.30 | 1.96 | 51,930.90 | 23,368.91 | 1.85 | 44,141.26 | 19,863.57 |
32 | 1.88 | 17,256.00 | 7765.20 | 2.13 | 24,190.60 | 10,885.77 | 2.32 | 30,336.84 | 13,651.58 |
total | — | 530,840.41 | 238,878.18 | — | 662,258.91 | 298,016.51 | — | 665,142.41 | 299,314.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Dai, C.; Liu, G.; Meng, X.; Li, C. Evaluation of Groundwater Resources in the Middle and Lower Reaches of Songhua River Based on SWAT Model. Water 2024, 16, 2839. https://doi.org/10.3390/w16192839
Yang X, Dai C, Liu G, Meng X, Li C. Evaluation of Groundwater Resources in the Middle and Lower Reaches of Songhua River Based on SWAT Model. Water. 2024; 16(19):2839. https://doi.org/10.3390/w16192839
Chicago/Turabian StyleYang, Xiao, Changlei Dai, Gengwei Liu, Xiang Meng, and Chunyue Li. 2024. "Evaluation of Groundwater Resources in the Middle and Lower Reaches of Songhua River Based on SWAT Model" Water 16, no. 19: 2839. https://doi.org/10.3390/w16192839
APA StyleYang, X., Dai, C., Liu, G., Meng, X., & Li, C. (2024). Evaluation of Groundwater Resources in the Middle and Lower Reaches of Songhua River Based on SWAT Model. Water, 16(19), 2839. https://doi.org/10.3390/w16192839