Research Hotspots and Trend Analysis in Modeling Groundwater Dense Nonaqueous Phase Liquid Contamination Based on Bibliometrics
Abstract
:1. Introduction
2. Methodology
2.1. Database Selection
2.2. Bibliometric Indicators and Tools Used
3. Findings of the Bibliometric Analysis
3.1. Analysis of the Publication Volume
3.2. Analysis of the Leading Countries
3.3. Analysis of the Leading Institutions
3.4. Analysis of the Dominant Journals
3.5. Analysis of Research Hotspots and Trends Based on Keyword Clustering
3.5.1. Research Hotspots in Modeling DNAPL Contamination
3.5.2. Assessment of Future Research Trends
4. Summary and Outlook
- (1)
- DNAPL models remain a focus of scholarly attention, with research outputs continuing to grow steadily. The United States is leading the international research on DNAPL models, followed by China and Canada. However, the research priorities vary across countries, and international collaboration and exchange need to be strengthened.
- (2)
- The core of the DNAPL model research focuses on the simulation of DNAPL migration, transformation, and pollution distribution. In terms of published journals, the field is highly specialized, with a limited broader impact. To raise awareness and increase the research impact, developing health risk assessment models based on DNAPL contamination and strengthening cross-disciplinary connections could be beneficial.
- (3)
- Based on the keyword clustering analysis, the key research hotspots related to DNAPL models focus on multiphase flow models, mass transfer models, back diffusion, and practical applications of the models.
- (4)
- Based on the keyword burst analysis, the research trends in DNAPL modeling are centered on back diffusion mechanisms, characterization of the contamination source zones, and prediction of the contaminant distribution at real-world sites, as well as optimization of the remediation strategies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ajo-Franklin, J.B.; Geller, J.T.; Harris, J.M. A survey of the geophysical properties of chlorinated DNAPLs. J. Appl. Geophys. 2006, 59, 177–189. [Google Scholar] [CrossRef]
- Wu, W.; Delshad, M.; Oolman, T.; Pope, G.A. Remedial Options for Creosote-Contaminated Sites. Groundw. Monit. Remediat. 2000, 20, 78–86. [Google Scholar] [CrossRef]
- Okuda, N.; Shimizu, T.; Muratani, M.; Terada, A.; Hosomi, M. Study of penetration behavior of PCB-DNAPL in a sand layer by a column experiment. Chemosphere 2014, 114, 59–68. [Google Scholar] [CrossRef] [PubMed]
- McCray, J.E.; Bai, G.; Maier, R.M.; Brusseau, M.L. Biosurfactant-enhanced solubilization of NAPL mixtures. J. Contam. Hydrol. 2001, 48, 45–68. [Google Scholar] [CrossRef]
- DiFilippo, E.L.; Carroll, K.C.; Brusseau, M.L. Impact of organic-liquid distribution and flow-field heterogeneity on reductions in mass flux. J. Contam. Hydrol. 2010, 115, 14–25. [Google Scholar] [CrossRef]
- Parker, B.L.; Chapman, S.W.; Guilbeault, M.A. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation. J. Contam. Hydrol. 2008, 102, 86–104. [Google Scholar] [CrossRef]
- Pan, Y.; Zeng, X.; Xu, H.; Sun, Y.; Wang, D.; Wu, J. Assessing human health risk of groundwater DNAPL contamination by quantifying the model structure uncertainty. J. Hydrol. 2020, 584, 124690. [Google Scholar] [CrossRef]
- Schaerlaekens, J.; Carmeliet, J.; Feyen, J. Multi-objective optimization of the setup of a surfactant-enhanced DNAPL remediation. Environ. Sci. Technol. 2005, 39, 2327–2333. [Google Scholar] [CrossRef] [PubMed]
- Schaerlaekens, J.; Mertens, J.; Van Linden, J.; Vermeiren, G.; Carmeliet, J.; Feyen, J. A multi-objective optimization framework for surfactant-enhanced remediation of DNAPL contaminations. J. Contam. Hydrol. 2006, 86, 176–194. [Google Scholar] [CrossRef]
- West, M.R.; Kueper, B.H. Numerical simulation of DNAPL source zone remediation with in situ chemical oxidation (ISCO). Ad-Vances Water Resour. 2012, 44, 126–139. [Google Scholar] [CrossRef]
- Kim, U.; Parker, J.C.; Borden, R.C. Stochastic cost-optimization and risk assessment of in situ chemical oxidation for dense non-aqueous phase liquid (DNAPL) source remediation. Stoch. Environ. Res. Risk Assess. 2019, 33, 73–89. [Google Scholar] [CrossRef]
- Xie, Q.; Mumford, K.G.; Kueper, B.H. Simulating field-scale thermal conductive heating with the potential for the migration and condensation of vapors. J. Hazard. Mater. 2023, 453, 131439. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Mumford, K.G.; Kueper, B.H. Modelling gas-phase recovery of volatile organic compounds during in situ thermal treatment. J. Contam. Hydrol. 2020, 234, 103698. [Google Scholar] [CrossRef]
- Zare, F.; Elsawah, S.; Iwanaga, T.; Jakeman, A.J.; Pierce, S.A. Integrated water assessment and modelling: A bibliometric analysis of trends in the water resource sector. J. Hydrol. 2017, 552, 765–778. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2005, 57, 359–377. [Google Scholar] [CrossRef]
- Egghe, L. Theory and practise of the g-index. Scientometrics 2006, 69, 131–152. [Google Scholar] [CrossRef]
- Guleria, A.; Gupta, P.K.; Chakma, S.; Yadav, B.K. Unraveling the Fate and Transport of DNAPLs in Heterogeneous Aquifer Systems—A Critical Review and Bibliometric Analysis. Sustainability 2023, 15, 8214. [Google Scholar] [CrossRef]
- McGuire, T.M.; McDade, J.M.; Newell, C.J. Performance of DNAPL Source Depletion Technologies at 59 Chlorinated Solvent-Impacted Sites. Groundw. Monit. Remediat. 2006, 26, 73–84. [Google Scholar] [CrossRef]
- Kowalski, L.; Denne, J.; Dyer, R.; Garrahan, K.; Wentsel, R.S. Overview of EPA Superfund human health research program. Int. J. Hy-Giene Environ. Health 2002, 205, 143–148. [Google Scholar] [CrossRef]
- Yin, H. The Environmental and Economic Impacts of Environmental Regulations the Case of Underground Storage Tank Regulations; University of Pennsylvania: Philadelphia, PA, USA, 2006. [Google Scholar]
- Sousa, C. Contaminated sites: The Canadian situation in an international context. J. Environ. Manag. 2001, 62, 131–154. [Google Scholar] [CrossRef]
- Li, X.; Jiao, W.; Xiao, R.; Chen, W.; Liu, W. Contaminated sites in China: Countermeasures of provincial governments. J. Clean. Prod. 2017, 147, 485–496. [Google Scholar] [CrossRef]
- Yang, Z.; Niemi, A.; Fagerlund, F.; Illangasekare, T.; Detwiler, R.L. Dissolution of dense non-aqueous phase liquids in vertical fractures: Effect of finger residuals and dead-end pools. J. Contam. Hydrol. 2013, 149, 88–99. [Google Scholar] [CrossRef]
- Demiray, Z.; Akyol, N.H.; Akyol, G.; Copty, N.K. Surfactant-enhanced in-situ oxidation of DNAPL source zone: Experiments and numerical modeling. J. Contam. Hydrol. 2023, 258, 104233. [Google Scholar] [CrossRef]
- Kouznetsova, I.; Mao, X.; Robinson, C.; Barry, D.; Gerhard, J.I.; McCarty, P.L. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling. Adv. Water Resour. 2010, 33, 969–986. [Google Scholar] [CrossRef]
- Knight, R. Ground Penetrating Radar for Environmental Applications. Annu. Rev. Earth Planet. Sci. 2001, 29, 229–255. [Google Scholar] [CrossRef]
- Kang, X.; Power, C.; Kokkinaki, A.; Revil, A.; Wu, J.; Shi, X.; Deng, Y. Characterization of DNAPL source zones in clay-sand media via joint inversion of DC resistivity, induced polarization and borehole data. J. Contam. Hydrol. 2023, 258, 104240. [Google Scholar] [CrossRef] [PubMed]
- Dokou, Z.; Pinder, G.F. Optimal search strategy for the definition of a DNAPL source. J. Hydrol. 2009, 376, 542–556. [Google Scholar] [CrossRef]
- Carey, G.R.; Chapman, S.W.; Parker, B.L.; McGregor, R. Application of an Adapted Version of MT3DMS for Modeling Back-Diffusion Re-mediation Timeframes. Remediat. J. 2015, 25, 55–79. [Google Scholar] [CrossRef]
- Tao, S.; Yang, D.; Zhang, L.; Yu, L.; Wang, Z.; Li, L.; Zhang, J.; Yao, R.; Huang, L.; Shao, M. Knowledge domain and emerging trends in diabetic cardiomyopathy: A scientometric review based on CiteSpace analysis. Front. Cardiovasc. Med. 2022, 9, 891428. [Google Scholar] [CrossRef]
- Erning, K.; Grandel, S.; Dahmke, A.; Schäfer, D. Simulation of DNAPL infiltration and spreading behaviour in the saturated zone at varying flow velocities and alternating subsurface geometries. Environ. Earth Sci. 2012, 65, 1119–1131. [Google Scholar] [CrossRef]
- Fetter, C.W.; Boving, T.; Kreamer, D. Contaminant Hydrogeology, 3rd ed.; Waveland Press: Long Grove, IL, USA, 2018. [Google Scholar]
- Dekker, T.J.; Abriola, L.M. The influence of field-scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formations. J. Contam. Hydrol. 2000, 42, 187–218. [Google Scholar] [CrossRef]
- Lemke, L.D.; Abriola, L.M.; Goovaerts, P. Dense nonaqueous phase liquid (DNAPL) source zone characterization: Influence of hydraulic property correlation on predictions of DNAPL infiltration and entrapment. Water Resour. Res. 2004, 40, W01511. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, G.; Wu, M.; Hao, Y.; Mo, C.; Li, Q.; Wu, J.; Wu, J.; Hu, B.X. The Effects of Spill Pressure on the Migration and Remediation of Dense Non-Aqueous Phase Liquids in Homogeneous and Heterogeneous Aquifers. Sustainability 2023, 15, 13072. [Google Scholar] [CrossRef]
- Kueper, B.H.; Redman, D.; Starr, R.C.; Reitsma, S.; Mah, M. A Field Experiment to Study the Behavior of Tetrachloroethylene Below the Water Table: Spatial Distribution of Residual and Pooled DNAPL. Groundwater 1993, 31, 756–766. [Google Scholar] [CrossRef]
- Bradford, S.A.; Abriola, L.M.; Rathfelder, K.M. Flow and entrapment of dense nonaqueous phase liquids in physically and chemically heterogeneous aquifer formations. Adv. Water Resour. 1998, 22, 117–132. [Google Scholar] [CrossRef]
- Wu, M.; Yang, Y.; Lin, J.; Wu, J.; Wu, J.; Hu, B.X. The co-effect of heterogeneity and solute concentration on representative elementary volume of DNAPL in groundwater. J. Hydrol. 2020, 585, 124795. [Google Scholar] [CrossRef]
- Gerhard, J.I.; Kueper, B.H. Relative permeability characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media. Water Resour. Res. 2003, 39, 1213. [Google Scholar] [CrossRef]
- Gerhard, J.I.; Kueper, B.H. Influence of constitutive model parameters on the predicted migration of DNAPL in heterogeneous porous media. Water Resour. Res. 2003, 39, 1279. [Google Scholar] [CrossRef]
- Gerhard, J.I.; Kueper, B.H. Capillary pressure characteristics necessary for simulating DNAPL infiltration, redistribution, and immobilization in saturated porous media. Water Resour. Res. 2003, 39, 1212. [Google Scholar] [CrossRef]
- Zheng, F.; Gao, Y.; Sun, Y.; Shi, X.; Xu, H.; Wu, J. Influence of flow velocity and spatial heterogeneity on DNAPL migration in porous media: Insights from laboratory experiments and numerical modelling. Hydrogeol. J. 2015, 23, 1703–1718. [Google Scholar] [CrossRef]
- Koch, J.; Nowak, W. Predicting DNAPL mass discharge and contaminated site longevity probabilities: Conceptual model and high-resolution stochastic simulation. Water Resour. Res. 2015, 51, 806–831. [Google Scholar] [CrossRef]
- Fagerlund, F.; Illangasekare, T.; Phenrat, T.; Kim, H.-J.; Lowry, G. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. J. Contam. Hydrol. 2012, 131, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Pierce, A.; Chapman, S.W.; Zimmerman, L.; Hurley, J.; Aravena, R.; Cherry, J.A.; Parker, B.L. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation. J. Contam. Hydrol. 2018, 212, 96–114. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Lee, K.K.; Clement, T.P. Impact of seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume at an industrial complex in Wonju, Korea. Hydrol. Process. 2012, 26, 317–325. [Google Scholar] [CrossRef]
- Feo, A.; Pinardi, R.; Artoni, A.; Celico, F. Three-Dimensional High-Precision Numerical Simulations of Free-Product DNAPL Extraction in Potential Emergency Scenarios: A Test Study in a PCE-Contaminated Alluvial Aquifer (Parma, Northern Italy). Sustainability 2023, 15, 9166. [Google Scholar] [CrossRef]
- Zhu, J.; Sykes, J. The influence of NAPL dissolution characteristics on field-scale contaminant transport in subsurface. J. Contam. Hydrol. 2000, 41, 133–154. [Google Scholar] [CrossRef]
- Nambi, I.M.; Powers, S.E. Mass transfer correlations for nonaqueous phase liquid dissolution from regions with high initial sat-urations. Water Resour. Res. 2003, 39, 1030. [Google Scholar] [CrossRef]
- Maji, R.; Sudicky, E. Influence of mass transfer characteristics for DNAPL source depletion and contaminant flux in a highly characterized glaciofluvial aquifer. J. Contam. Hydrol. 2008, 102, 105–119. [Google Scholar] [CrossRef]
- Luciano, A.; Mancini, G.; Torretta, V.; Viotti, P. An empirical model for the evaluation of the dissolution rate from a DNAPL-contaminated area. Environ. Sci. Pollut. Res. 2018, 25, 33992–34004. [Google Scholar] [CrossRef]
- Parker, J.; Park, E. Modeling field-scale dense nonaqueous phase liquid dissolution kinetics in heterogeneous aquifers. Water Resour. Res. 2004, 40, W05109. [Google Scholar] [CrossRef]
- Christ, J.A.; Ramsburg, C.A.; Pennell, K.D.; Abriola, L.M. Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: An evaluation using multiphase numerical simulations. Water Resour. Res. 2006, 42, W11420. [Google Scholar] [CrossRef]
- Saenton, S.; Illangasekare, T.H. Upscaling of mass transfer rate coefficient for the numerical simulation of dense nonaqueous phase liquid dissolution in heterogeneous aquifers. Water Resour. Res. 2007, 43, W02428. [Google Scholar] [CrossRef]
- Christ, J.A.; Ramsburg, C.A.; Pennell, K.D.; Abriola, L.M. Predicting DNAPL mass discharge from pool-dominated source zones. J. Contam. Hydrol. 2010, 114, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Kokkinaki, A.; Werth, C.J.; Sleep, B.E. Comparison of upscaled models for multistage mass discharge from DNAPL source zones. Water Resour. Res. 2014, 50, 3187–3205. [Google Scholar] [CrossRef]
- Boroumand, A.; Abriola, L.M. On the upscaling of mass transfer rate expressions for interpretation of source zone partitioning tracer tests. Water Resour. Res. 2015, 51, 832–847. [Google Scholar] [CrossRef]
- Wang, F.; Annable, M.D.; Jawitz, J.W. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers. J. Contam. Hydrol. 2013, 152, 147–158. [Google Scholar] [CrossRef]
- Jawitz, J.W.; Fure, A.D.; Demmy, G.G.; Berglund, S.; Rao, P.S.C. Groundwater contaminant flux reduction resulting from nonaqueous phase liquid mass reduction. Water Resour. Res. 2005, 41, W10408. [Google Scholar] [CrossRef]
- Guo, Z.; Russo, A.E.; DiFilippo, E.L.; Zhang, Z.; Zheng, C.; Brusseau, M.L. Mathematical modeling of organic liquid dissolution in heterogeneous source zones. J. Contam. Hydrol. 2020, 235, 103716. [Google Scholar] [CrossRef]
- Power, C.; Gerhard, J.I.; Tsourlos, P.; Giannopoulos, A. A new coupled model for simulating the mapping of dense nonaqueous phase liquids using electrical resistivity tomography. Geophysics 2013, 78, EN1–EN15. [Google Scholar] [CrossRef]
- Kang, X.; Kokkinaki, A.; Kitanidis, P.K.; Shi, X.; Lee, J.; Mo, S.; Wu, J. Hydrogeophysical Characterization of Nonstationary DNAPL Source Zones by Integrating a Convolutional Variational Autoencoder and Ensemble Smoother. Water Resour. Res. 2021, 57, e2020WR028538. [Google Scholar] [CrossRef]
- Kang, X.; Kokkinaki, A.; Power, C.; Kitanidis, P.K.; Shi, X.; Duan, L.; Liu, T.; Wu, J. Integrating deep learning-based data assimilation and hydrogeophysical data for improved monitoring of DNAPL source zones during remediation. J. Hydrol. 2021, 601, 126655. [Google Scholar] [CrossRef]
- Falta, R.W.; Suresh Rao, P.; Basu, N. Assessing the impacts of partial mass depletion in DNAPL source zones I. Analytical modeling of source strength functions and plume response. J. Contam. Hydrol. 2005, 78, 259–280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lu, W.; Chang, Z.; Luo, J. A combined search method based on a deep learning combined surrogate model for groundwater DNAPL contamination source identification. J. Hydrol. 2023, 616, 128854. [Google Scholar] [CrossRef]
- Guo, Q.; Shi, X.; Kang, X.; Chang, Y.; Wang, P.; Wu, J. Integrating hydraulic tomography, electrical resistivity tomography, and partitioning interwell tracer test datasets to improve identification of pool-dominated DNAPL source zone architecture. J. Contam. Hydrol. 2021, 241, 103809. [Google Scholar] [CrossRef]
- Hou, Z.; Lao, W.; Wang, Y.; Lu, W. Cyclic Feedback Updating Approach and Uncertainty Analysis for the Source Identification of DNAPL-Contaminated Aquifers. J. Water Resour. Plan. Manag. 2021, 147, 04020103. [Google Scholar] [CrossRef]
- Du, J.; Shi, X.; Mo, S.; Kang, X.; Wu, J. Deep learning based optimization under uncertainty for surfactant-enhanced DNAPL remediation in highly heterogeneous aquifers. J. Hydrol. 2022, 608, 127639. [Google Scholar] [CrossRef]
- Trantham, H.; Durnford, D. Stochastic aggregation model (SAM) for DNAPL–water displacement in porous media. J. Contam. Hydrol. 1999, 36, 377–400. [Google Scholar] [CrossRef]
- Nsir, K.; Schäfer, G.; Roupert, R.d.C.; Mercury, L. Pore scale modelling of DNAPL migration in a water-saturated porous medium. J. Contam. Hydrol. 2018, 215, 39–50. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Mendoza-Sanchez, I.; Abriola, L.M. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones. J. Contam. Hydrol. 2018, 211, 1–14. [Google Scholar] [CrossRef]
- Ding, X.-H.; Feng, S.-J.; Zheng, Q.-T. Forward and back diffusion of reactive contaminants through multi-layer low permeability sediments. Water Res. 2022, 222, 118925. [Google Scholar] [CrossRef]
- Feng, C.; Liu, F.; Huang, F.; Chen, L.; Bi, E. Dense nonaqueous phase liquids back diffusion controlled by biodegradation and heterogeneous sorption-desorption. J. Clean. Prod. 2023, 382, 135370. [Google Scholar] [CrossRef]
- Chapman, S.W.; Parker, B.L. Plume persistence due to aquitard back diffusion following dense nonaqueous phase liquid source removal or isolation. Water Resour. Res. 2005, 41, W12411. [Google Scholar] [CrossRef]
- Blue, J.; Boving, T.; Tuccillo, M.E.; Koplos, J.; Rose, J.; Brooks, M.; Burden, D. Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies. Water 2023, 15, 570. [Google Scholar] [CrossRef]
- Chapman, S.W.; Parker, B.L.; Sale, T.C.; Doner, L.A. Testing high resolution numerical models for analysis of contaminant storage and release from low permeability zones. J. Contam. Hydrol. 2012, 136–137, 106–116. [Google Scholar] [CrossRef]
- Adamson, D.T.; de Blanc, P.C.; Farhat, S.K.; Newell, C.J. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites. Sci. Total Environ. 2016, 562, 98–107. [Google Scholar] [CrossRef]
- Maghrebi, M.; Jankovic, I.; Allen-King, R.M.; Rabideau, A.J.; Kalinovich, I.; Weissmann, G.S. Impacts of transport mechanisms and plume history on tailing of sorbing plumes in heterogeneous porous formations. Adv. Water Resour. 2014, 73, 123–133. [Google Scholar] [CrossRef]
- Maghrebi, M.; Jankovic, I.; Weissmann, G.S.; Matott, L.S.; Allen-King, R.M.; Rabideau, A.J. Contaminant tailing in highly heterogeneous porous formations: Sensitivity on model selection and material properties. J. Hydrol. 2015, 531, 149–160. [Google Scholar] [CrossRef]
- Adamson, D.T.; Chapman, S.W.; Farhat, S.K.; Parker, B.L.; Deblanc, P.; Newell, C.J. Characterization and Source History Modeling Using Low-k Zone Profiles at Two Source Areas. Groundw. Monit. Remediat. 2015, 35, 52–69. [Google Scholar] [CrossRef]
- Wanner, P.; Parker, B.L.; Hunkeler, D. Assessing the effect of chlorinated hydrocarbon degradation in aquitards on plume per-sistence due to back-diffusion. Sci. Total Environ. 2018, 633, 1602–1612. [Google Scholar] [CrossRef]
- Thouement, H.A.; Kuder, T.; Heimovaara, T.J.; van Breukelen, B.M. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards? J. Contam. Hydrol. 2019, 226, 103520. [Google Scholar] [CrossRef]
- Halloran, L.J.S.; Hunkeler, D. Controls on the persistence of aqueous-phase groundwater contaminants in the presence of reactive back-diffusion. Sci. Total Environ. 2020, 722, 137749. [Google Scholar] [CrossRef] [PubMed]
Country | Number of Papers | Centrality |
---|---|---|
USA | 307 | 0.95 |
Canada | 112 | 0.09 |
China | 82 | 0.18 |
France | 33 | 0.16 |
Italy | 22 | 0.04 |
Republic of Korea | 21 | 0.02 |
England | 20 | 0.23 |
Germany | 20 | 0.05 |
Scotland | 16 | 0.11 |
Netherlands | 14 | 0.03 |
Australia | 13 | 0.01 |
Turkey | 11 | 0.16 |
Greece | 10 | 0.15 |
Journal | Number of Citations | Number of Papers | Proportion /% | IF (2024) |
---|---|---|---|---|
Journal of Contaminant Hydrology | 514 | 165 | 26.87 | 3.5 |
Water Resources Research | 512 | 57 | 9.28 | 4.6 |
Environmental Science & Technology | 444 | 38 | 6.19 | 10.8 |
Groundwater | 349 | 17 | 2.77 | 2 |
Advances in Water Resources | 312 | 30 | 4.89 | 4 |
Groundwater Monitoring and Remediation | 232 | 16 | 2.61 | 1.8 |
Journal of Hydrology | 186 | 20 | 3.26 | 5.9 |
Journal of Hazardous Materials | 183 | 13 | 2.12 | 12.2 |
Transport in Porous Media | 158 | 12 | 1.95 | 2.7 |
Chemosphere | 120 | 10 | 1.63 | 8.1 |
Keywords | Strength | Begin | End | 1993–2023 | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
two phase flow | 6.09 | 1998 | 2004 | |||||||||||||||||||||||||||||||
multiphase flow | 5.05 | 1998 | 2005 | |||||||||||||||||||||||||||||||
contaminant transport | 4.93 | 1998 | 2003 | |||||||||||||||||||||||||||||||
nonaqueous phase liquids | 4.35 | 2000 | 2008 | |||||||||||||||||||||||||||||||
field | 3.65 | 2002 | 2009 | |||||||||||||||||||||||||||||||
TCE | 5.89 | 2003 | 2007 | |||||||||||||||||||||||||||||||
behavior | 4.67 | 2004 | 2009 | |||||||||||||||||||||||||||||||
heterogeneous porous media | 4.55 | 2004 | 2014 | |||||||||||||||||||||||||||||||
source strength functions | 5.98 | 2008 | 2016 | |||||||||||||||||||||||||||||||
NAPL dissolution | 4.87 | 2008 | 2013 | |||||||||||||||||||||||||||||||
partial mass depletion | 4.82 | 2008 | 2012 | |||||||||||||||||||||||||||||||
reductive dechlorination | 7.01 | 2009 | 2015 | |||||||||||||||||||||||||||||||
PCE | 3.54 | 2009 | 2015 | |||||||||||||||||||||||||||||||
DNAPL | 4.22 | 2014 | 2020 | |||||||||||||||||||||||||||||||
back diffusion | 5.23 | 2016 | 2022 | |||||||||||||||||||||||||||||||
permeability | 4.13 | 2017 | 2023 | |||||||||||||||||||||||||||||||
enhanced aquifer remediation | 3.62 | 2017 | 2018 | |||||||||||||||||||||||||||||||
DNAPL migration | 3.98 | 2018 | 2023 | |||||||||||||||||||||||||||||||
removal | 3.73 | 2019 | 2023 | |||||||||||||||||||||||||||||||
tomography | 3.69 | 2021 | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, M.; Li, X.; Wu, R.; Xu, Z.; Yin, H. Research Hotspots and Trend Analysis in Modeling Groundwater Dense Nonaqueous Phase Liquid Contamination Based on Bibliometrics. Water 2024, 16, 2840. https://doi.org/10.3390/w16192840
Ju M, Li X, Wu R, Xu Z, Yin H. Research Hotspots and Trend Analysis in Modeling Groundwater Dense Nonaqueous Phase Liquid Contamination Based on Bibliometrics. Water. 2024; 16(19):2840. https://doi.org/10.3390/w16192840
Chicago/Turabian StyleJu, Mengdie, Xiang Li, Ruibin Wu, Zuxin Xu, and Hailong Yin. 2024. "Research Hotspots and Trend Analysis in Modeling Groundwater Dense Nonaqueous Phase Liquid Contamination Based on Bibliometrics" Water 16, no. 19: 2840. https://doi.org/10.3390/w16192840
APA StyleJu, M., Li, X., Wu, R., Xu, Z., & Yin, H. (2024). Research Hotspots and Trend Analysis in Modeling Groundwater Dense Nonaqueous Phase Liquid Contamination Based on Bibliometrics. Water, 16(19), 2840. https://doi.org/10.3390/w16192840