A Practical, Adaptive, and Scalable Real-Time Control Approach for Stormwater Storage Systems
Abstract
:1. Introduction
- To extend the TFC approach of Liang et al. (2022) [17] so that it is applicable to systems of storages that are controlled to achieve desired flow target(s) at downstream locations(s) of interest, rather than just a single storage.
- To demonstrate the utility of the proposed target flow control systems (TFCS) approach on three diverse case studies from the literature that have different storage configurations (e.g., storages in series and parallel) and management objectives (e.g., restricting maximum flow, minimizing overflow volume, maintaining storage levels between operational boundaries).
- To compare the performance of the proposed TFCS approach with that of benchmark and best-performing advanced approaches from the literature for the three case studies considered.
2. Materials and Methods
2.1. Problem Statement
2.2. Proposed Solution
- For each storage (i = 1, …, N), we express the net outflow ( to be proportional to its filling degree () with coefficient :
- is the net outflow of storage i at time t, which is the difference between the storage inflow and the unknown target storage outflow ( ):
where is a system configuration parameter that depends on the storage system layout in the vicinity of each individual storage, such that for storage i and the other storages p () in the system:
- b.
- is the filling degree of storage i at time t (i.e., the ratio of the actual storage volume () at time t to the maximum storage volume (), where the actual storage volume () is a function of storage level ()):
- c.
- is the coefficient of proportionality
- 2.
- We express the flow at the location of interest () as the sum of the target outflows from the storages () that directly contribute to the flow at target location j as follows:
- 3.
- We solve the resulting set of 2N + 1 linear equations (i.e., Equations (2), (3) and (6)) for the 2N + 1 unknowns: (1) target outflows at each of the N storages (), (2) net outflow at each of the N storages (, and (3) the coefficient of proportionality () for each timestep t.
2.3. Implementation
3. Case Study and Computational Experiments
3.1. Case Study and Performance Assessment
3.1.1. Case Study Configuration
3.1.2. Quantitative Performance Assessment
3.2. Computational Experiments
3.2.1. Calibrated EFD Approach
3.2.2. Best-Performing Advanced Approaches
3.2.3. TFCS Approach
4. Results
4.1. Overview of Results: Performance of the TFCS Approach
4.2. Analysis of Results: Illustration of Typical Performance for the TFCS Approach
4.3. Summary of Results: Benchmarking Performance and Practicality of the TFCS Approach
5. Discussion
5.1. Practical Benefits of the TFCS Approach
5.2. Practicality of Implementation
5.3. Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.N.; Ghisi, E.; Rahman, A.; Furumai, H. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Shishegar, S.; Duchesne, S.; Pelletier, G. Optimization methods applied to stormwater management problems: A review. Urban Water J. 2018, 15, 276–286. [Google Scholar] [CrossRef]
- Liang, R.; Di Matteo, M.; Maier, H.R.; Thyer, M.A. Real-Time, Smart Rainwater Storage Systems: Potential Solution to Mitigate Urban Flooding. Water 2019, 11, 2428. [Google Scholar] [CrossRef]
- Locatelli, L.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Deletic, A.; Roldin, M.; Binning, P.J. Hydrologic impact of urbanization with extensive stormwater infiltration. J. Hydrol. 2017, 544, 524–537. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Borghgraef, K.; Vinckier, C. Causes of water supply problems in urbanised regions in developing countries. Water Resour. Manag. 2010, 24, 1885–1902. [Google Scholar] [CrossRef]
- Lund, N.S.V.; Falk, A.K.V.; Borup, M.; Madsen, H.; Steen Mikkelsen, P. Model predictive control of urban drainage systems: A review and perspective towards smart real-time water management. Crit. Rev. Environ. Sci. Technol. 2018, 48, 279–339. [Google Scholar] [CrossRef]
- Di Matteo, M.; Liang, R.; Maier, H.R.; Thyer, M.A.; Simpson, A.R.; Dandy, G.C.; Ernst, B. Controlling rainwater storage as a system: An opportunity to reduce urban flood peaks for rare, long duration storms. Environ. Model. Softw. 2019, 111, 34–41. [Google Scholar] [CrossRef]
- Liang, R.; Thyer, M.A.; Maier, H.R.; Dandy, G.C.; Di Matteo, M. Optimising the design and real-time operation of systems of distributed stormwater storages to reduce urban flooding at the catchment scale. J. Hydrol. 2021, 602, 126787. [Google Scholar] [CrossRef]
- Li, J. A data-driven improved fuzzy logic control optimization-simulation tool for reducing flooding volume at downstream urban drainage systems. Sci. Total Environ. 2020, 732, 138931. [Google Scholar] [CrossRef]
- Meneses, E.J.; Gaussens, M.; Jakobsen, C.; Mikkelsen, P.S.; Grum, M.; Vezzaro, L. Coordinating rule-based and system-wide model predictive control strategies to reduce storage expansion of combined urban drainage systems: The case study of Lundtofte, Denmark. Water 2018, 10, 76. [Google Scholar] [CrossRef]
- Sharior, S.; McDonald, W.; Parolari, A.J. Improved reliability of stormwater detention basin performance through water quality data-informed real-time control. J. Hydrol. 2019, 573, 422–431. [Google Scholar] [CrossRef]
- Ibrahim, Y.A. Real-Time Control Algorithm for Enhancing Operation of Network of Stormwater Management Facilities. J. Hydrol. Eng. 2020, 25, 04019065. [Google Scholar] [CrossRef]
- Schmitt, Z.K.; Hodges, C.C.; Dymond, R.L. Simulation and assessment of long-term stormwater basin performance under real-time control retrofits. Urban Water J. 2020, 17, 467–480. [Google Scholar] [CrossRef]
- Dong, X.; Huang, S.; Zeng, S. Design and evaluation of control strategies in urban drainage systems in Kunming city. Front. Environ. Sci. Eng. 2017, 11, 1–8. [Google Scholar] [CrossRef]
- Muschalla, D.; Vallet, B.; Anctil, F.; Lessard, P.; Pelletier, G.; Vanrolleghem, P.A. Ecohydraulic-driven real-time control of stormwater basins. J. Hydrol. 2014, 511, 82–91. [Google Scholar] [CrossRef]
- Sadler, J.M.; Goodall, J.L.; Behl, M.; Bowes, B.D.; Morsy, M.M. Exploring real-time control of stormwater systems for mitigating flood risk due to sea level rise. J. Hydrol. 2020, 583, 124571. [Google Scholar] [CrossRef]
- Liang, R.; Maier, H.R.; Thyer, M.A.; Dandy, G.C.; Tan, Y.; Chhay, M.; Sau, T.; Lam, V. Calibration-free approach to reactive real-time control of stormwater storages. J. Hydrol. 2022, 614, 128559. [Google Scholar] [CrossRef]
- Mullapudi, A.; Lewis, M.J.; Gruden, C.L.; Kerkez, B. Deep reinforcement learning for the real time control of stormwater systems. Adv. Water Resour. 2020, 140, 103600. [Google Scholar] [CrossRef]
- Sun, C.; Lorenz Svensen, J.; Borup, M.; Puig, V.; Cembrano, G.; Vezzaro, L. An MPC-enabled SWMM implementation of the Astlingen RTC benchmarking network. Water 2020, 12, 1034. [Google Scholar] [CrossRef]
- Rimer, S.P.; Mullapudi, A.; Troutman, S.C.; Ewing, G.; Bowes, B.D.; Akin, A.A.; Sadler, J.; Kertesz, R.; McDonnell, B.; Montestruque, L. pystorms: A simulation sandbox for the development and evaluation of stormwater control algorithms. Environ. Model. Softw. 2023, 162, 105635. [Google Scholar] [CrossRef]
- Schütze, M.; Lange, M.; Pabst, M.; Haas, U. Astlingen–a benchmark for real time control (RTC). Water Sci. Technol. 2018, 2017, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Reader-Harris, M.; Sattary, J. The orifice plate discharge coefficient equation. Flow Meas. Instrum. 1990, 1, 67–76. [Google Scholar] [CrossRef]
- Reader-Harris, M.; Sattary, J.; Spearman, E. The orifice plate discharge coefficient equation—Further work. Flow Meas. Instrum. 1995, 6, 101–114. [Google Scholar] [CrossRef]
- Borsanyi, P.; Benedetti, L.; Dirckx, G.; De Keyser, W.; Muschalla, D.; Solvi, A.-M.; Vandenberghe, V.; Weyand, M.; Vanrolleghem, P.A. Modelling real-time control options on virtual sewer systems. J. Environ. Eng. Sci. 2008, 7, 395–410. [Google Scholar] [CrossRef]
- Dirckx, G.; Schütze, M.; Kroll, S.; Thoeye, C.; De Gueldre, G.; Van De Steene, B. Cost-efficiency of RTC for CSO impact mitigation. Urban Water J. 2011, 8, 367–377. [Google Scholar] [CrossRef]
- Wang, P.; Mou, S.; Lian, J.; Ren, W. Solving a system of linear equations: From centralized to distributed algorithms. Annu. Rev. Control 2019, 47, 306–322. [Google Scholar] [CrossRef]
- Hackbusch, W. Iterative Solution of Large Sparse Systems of Equations; Springer: Berlin/Heidelberg, Germany, 1994; Volume 95. [Google Scholar] [CrossRef]
- Rutishauser, H. The Jacobi method for real symmetric matrices. Numer. Math. 1966, 9, 1–10. [Google Scholar] [CrossRef]
- Maier, H.R.; Razavi, S.; Kapelan, Z.; Matott, L.S.; Kasprzyk, J.; Tolson, B.A. Introductory overview: Optimization using evolutionary algorithms and other metaheuristics. Environ. Model. Softw. 2019, 114, 195–213. [Google Scholar] [CrossRef]
- Gironás, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A new applications manual for the Storm Water Management Model(SWMM). Environ. Model. Softw. 2010, 25, 813–814. [Google Scholar] [CrossRef]
- Fortin, F.-A.; De Rainville, F.-M.; Gardner, M.-A.G.; Parizeau, M.; Gagné, C. DEAP: Evolutionary algorithms made easy. J. Mach. Learn. Res. 2012, 13, 2171–2175. [Google Scholar] [CrossRef]
- Auger, A.; Bader, J.; Brockhoff, D.; Zitzler, E. Theory of the hypervolume indicator: Optimal μ-distributions and the choice of the reference point. In Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, Orlando, FL, USA, 9–11 January 2009; pp. 87–102. [Google Scholar] [CrossRef]
- Beume, N.; Naujoks, B.; Emmerich, M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 2007, 181, 1653–1669. [Google Scholar] [CrossRef]
- Zitzler, E.; Brockhoff, D.; Thiele, L. The hypervolume indicator revisited: On the design of Pareto-compliant indicators via weighted integration. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Matsushima, Japan, 5–8 March 2007; pp. 862–876. [Google Scholar] [CrossRef]
- McDonnell, B.E.; Ratliff, K.; Tryby, M.E.; Wu, J.J.X.; Mullapudi, A. PySWMM: The Python Interface to Stormwater Management Model (SWMM). J. Open Source Softw. 2020, 5, 2292. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Imberger, M.; Burns, M.J.; Bos, D.G.; Fletcher, T.D. Dispersed Urban-Stormwater Control Improved Stream Water Quality in a Catchment-Scale Experiment. Water Resour. Res. 2022, 58, e2022WR032041. [Google Scholar] [CrossRef]
- Xu, W.D.; Burns, M.J.; Cherqui, F.; Duchesne, S.; Pelletier, G.; Fletcher, T.D. Real-time controlled rainwater harvesting systems can improve the performance of stormwater networks. J. Hydrol. 2022, 614, 128503. [Google Scholar] [CrossRef]
- de Macedo, M.B.; do Lago, C.A.F.; Mendiondo, E.M. Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment. Sci. Total Environ. 2019, 647, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Lin, Z.; Zhu, Z.; Wang, H.; Ma, G. Influence of opening and closing process of ball valve on external performance and internal flow characteristics. Exp. Therm. Fluid Sci. 2017, 80, 193–202. [Google Scholar] [CrossRef]
- Ma, G.; Lin, Z.; Zhu, Z.; Fang, Y. Effect of variable speed motion curve of electric actuator on ball valve performance and internal flow field. Adv. Mech. Eng. 2021, 13, 16878140211028003. [Google Scholar] [CrossRef]
- Fowler, K.J.A.; McMahon, T.A.; Westra, S.; Horne, A.; Guillaume, J.H.A.; Guo, D.; Nathan, R.; Maier, H.R.; John, A. Climate stress testing for water systems: Review and guide for applications. WIREs Water 2024, e1747. [Google Scholar] [CrossRef]
- Hamers, E.; Maier, H.R.; Zecchin, A.C.; van Delden, H. Framework for considering the interactions between climate change, socio-economic development and land use planning in the assessment of future flood risk. Environ. Model. Softw. 2024, 171, 105886. [Google Scholar] [CrossRef]
- Hamers, E.; Maier, H.R.; Zecchin, A.C.; van Delden, H. Effectiveness of nature-based solutions for mitigating the impact of pluvial flooding in urban areas at the regional scale. Water 2023, 15, 642. [Google Scholar] [CrossRef]
- Keenan, C.; Maier, H.R.; van Delden, H.; Zecchin, A.C. Bridging the cyber-physical divide: A novel approach for quantifying and visualising the cyber risk of physical assets. Water 2024, 16, 637. [Google Scholar] [CrossRef]
Case Study No. | Name | Catchment Area | Storage Information | Rainfall Information | Objective | ||
---|---|---|---|---|---|---|---|
Controlled | In Series | In Parallel | |||||
1 | Gamma | 400 ha | 4 | 4 | 0 | 1 in 25 years, 6 h event | Flow below threshold |
2 | Astlingen | 177 ha | 4 | 2 | 3 | 1 year of continuous | Minimize total overflow volume |
3 | Delta-M | 250 ha | 5 | 4 | 2 | 48 h obs. event (return period of 2 months) | Storage level within the operational boundary |
Case Study | Objective | Metric |
---|---|---|
Case Study 1 (Gamma) | Keep flow below the threshold. |
|
Case Study 2 (Astlingen) | Minimize overflow volume. |
|
Case Study 3 (Delta-M) | Keep storage level within upper and lower threshold. |
|
|
Control Approach | Case Study 1 | Case Study 2 | Case Study 3 | |
---|---|---|---|---|
Time (%) * | Reduction (%) ** | Time (%) *** | Deviation (m) **** | |
No Control | 47% | 0.0% | 75.8% | 687.6 m |
TFCS | 0% | 13.2% | 3.2% | 0.3 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, R.; Maier, H.R.; Thyer, M.A.; Dandy, G.C. A Practical, Adaptive, and Scalable Real-Time Control Approach for Stormwater Storage Systems. Water 2024, 16, 2844. https://doi.org/10.3390/w16192844
Liang R, Maier HR, Thyer MA, Dandy GC. A Practical, Adaptive, and Scalable Real-Time Control Approach for Stormwater Storage Systems. Water. 2024; 16(19):2844. https://doi.org/10.3390/w16192844
Chicago/Turabian StyleLiang, Ruijie, Holger Robert Maier, Mark Andrew Thyer, and Graeme Clyde Dandy. 2024. "A Practical, Adaptive, and Scalable Real-Time Control Approach for Stormwater Storage Systems" Water 16, no. 19: 2844. https://doi.org/10.3390/w16192844
APA StyleLiang, R., Maier, H. R., Thyer, M. A., & Dandy, G. C. (2024). A Practical, Adaptive, and Scalable Real-Time Control Approach for Stormwater Storage Systems. Water, 16(19), 2844. https://doi.org/10.3390/w16192844