Performance Evaluation of a Pilot-Scale Constructed Wetland with Typha latifolia for Remediation of Domestic Wastewater in Zimbabwe
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Design and Installation of Pilot Vertical-Flow Constructed Wetlands
2.3. Wastewater Sampling
2.4. Physico-Chemical and Microbial Analysis
2.5. Enumeration of E. coli in Influent and Effluent Wastewater
2.6. Statistical Analysis
3. Results
3.1. Physico-Chemical Parameters
3.2. E. coli Removal
4. Discussion
Microbial Contaminant Removal
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, G.; Rana, M.S.; Saxena, S.; Sharma, S.; Pant, D.; Prajapat, S.K. A review on design, operation, and maintenance of constructed wetlands for removal of nutrients and emerging contaminants. Int. J. Environ. Sci. Technol. 2022, 20, 9249–9270. [Google Scholar] [CrossRef]
- Tibebu, S.; Worku, A.; Angassa, K. Removal of Pathogens from Domestic Wastewater Using Small-Scale Gradual Hydroponics Planted with Duranta erecta, Addis Ababa, Ethiopia. J. Environ. Public Health 2022, 2022, 3182996. [Google Scholar] [CrossRef] [PubMed]
- Almuktar, S.A.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.S.; Saeed, T.; Majed, N. Role of constructed wetlands in mitigating the challenges of industrial growth and climate change impacts in the context of developing countries. Front. Environ. Sci. 2022, 10, 1065555. [Google Scholar] [CrossRef]
- Rajan, R.J. Microbial population dynamics in constructed wetlands: Review of recent advancements for wastewater treatment. Environ. Eng. Res. 2019, 24, 181–190. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Akratos, C.S. Removal of pathogenic bacteria in constructed wetlands: Mechanisms and efficiency. In Phytoremediation; Ansari, A.A., Gill, S.S., Gill, R., Lanza, G., Newman, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 4, pp. 327–346. [Google Scholar] [CrossRef]
- Makopondo, R.O.B.; Rotich, L.K.; Kamau, C.G. Potential Use and Challenges of Constructed Wetlands for Wastewater Treatment and Conservation in Game Lodges and Resorts in Kenya. Sci. World J. 2020, 1–9. [Google Scholar] [CrossRef]
- Klein, A.R. Death before Sentencing: Ending Rampant Suicide, Overdoses, Brutality, and Malpractice in America’s Jails; Rowman & Littlefield: Lanham, MD, USA, 2022. [Google Scholar]
- Badejo, A.A.; Omole, D.O.; Ndambuki, J.M. Municipal wastewater management using Vetiveria zizanioides planted in vertical flow constructed wetland. Appl. Water Sci. 2018, 8, 110. [Google Scholar] [CrossRef]
- Biswal, B.K.; Balasubramanian, R. Constructed Wetlands for Reclamation and Reuse of Wastewater and Urban Stormwater: A Review. Front. Environ. Sci. 2022, 10, 836289. [Google Scholar] [CrossRef]
- Kumar, S.; Pratap, B.; Dubey, D.; Dutta, V. Microbial Communities in Constructed Wetland Microcosms and Their Role in Treatment of Domestic Wastewater. Microorg. Sustain. 2020, 18, 311–327. [Google Scholar] [CrossRef]
- Rahman, E.; Izuan, M.; Halmi, B.; Yuso, M.; Samad, A.; Uddin, K.; Mahmud, K.; Yunus, M.; Shukor, A. Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant. Int. J. Environ. Res. Public Health 2020, 17, 8339. [Google Scholar] [CrossRef]
- Singh, V.; Singh, N.; Rai, S.N.; Kumar, A.; Singh, A.K.; Singh, M.P.; Sahoo, A.; Shekhar, S.; Vamanu, E.; Mishra, V. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics 2023, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- Alufasi, R.; Gere, J.; Chakauya, E.; Lebea, P.; Chingwaru, W. Mechanisms of pathogen removal by macrophytes in constructed wetlands. Environ. Technol. Rev. 2017, 6, 135–144. [Google Scholar] [CrossRef]
- Daee, M.; Gholipour, A.; Stefanakis, A.I. Performance of pilot horizontal roughing filter as polishing stage of waste stabilization ponds in developing regions and modelling verification. Ecol. Eng. 2019, 138, 8–18. [Google Scholar] [CrossRef]
- Shukla, A.; Parde, D.; Gupta, V.; Vijay, R.; Kumar, R. A review on effective design processes of constructed wetlands. Int. J. Environ. Sci. Technol. 2021, 19, 12749–12774. [Google Scholar] [CrossRef]
- Song, S.; Wang, B.; Yang, T.; Gu, Y.; Sheng, S.; Zhao, D.; An, S.; Li, A. Performance and Bacteria Communities of a Full-Scale Constructed Wetland Treating the Secondary Effluent after Multi-Years’ Operation. Processes 2023, 11, 1469. [Google Scholar] [CrossRef]
- Waly, M.M.; Ahmed, T.; Abunada, Z.; Mickovski, S.B. Constructed Wetland for Sustainable and Low-Cost Wastewater Treatment. Land 2022, 11, 1388. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H.; Deng, L.; Zhang, X.; et al. Performance and microbial community of a novel integrated vertical flow constructed wetland treating domestic wastewater. Bioresour. Technol. 2018, 247, 1061–1068. [Google Scholar]
- Birch, G.F.; Matthai, C.; Fazeli, M.S.; Suh, J. Efficiency of a constructed wetland in removing contaminants from stormwater. Wetlands 2006, 24, 459–466. [Google Scholar] [CrossRef]
- Wang, J.; Yu, G. A Review on Microorganisms in Constructed Wetlands for Typical Pollutant Removal, Species, Function, and Diversity. Front. Microbiol. 2022, 13, 845725. [Google Scholar] [CrossRef]
- Elfanssi, S.; Ouazzani, N.; Latrach, L.; Hejjaj, A.; Mandi, L. Phytoremediation of domestic wastewater using a hybrid constructed wetland in mountainous rural area. Int. J. Phytoremediation 2018, 20, 75–87. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Yang, J.X.; Bai, S.W.; Ma, F.; Wang, L. Microbial population dynamics in response to bioaugmentation in a constructed wetland system under 10 degrees Celcius. Bioresour. Technol. 2016, 205, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.Q.; Zhang, X.W.; Gan, L.; He, Z.F.; Zhu, J.L.; Zhang, W. Effects of biochar on the growth of Vallisneria natans in surface flow constructed wetland. Environ. Sci. Pollut. Res. 2021, 28, 66158–66170. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.C.; Liu, Y.; Qu, M.W.; Hao, M.Q.; Yang, D.; Yang, Q. Fate of an antibiotic and its effects on nitrogen transformation functional functional bacteria in integrated vertical flow constructed wetlands. Chem. Eng. J. 2021, 417, 129272. [Google Scholar] [CrossRef]
- Mateo-Díaz, N.F.; Sandoval Herazo, L.C.; Zurita, F.; Sandoval-Herazo, M.; Nani, G.; Fernández-Echeverría, E.; Fernández-Lambert, G.; Martínez-Reséndiz, G. Remediation of River Water Contaminated with Whey Using Horizontal Subsurface Flow Constructed Wetlands with Ornamental Plants in a Tropical Environment. Water 2023, 15, 3456. [Google Scholar] [CrossRef]
- Mburu, N.; Tebitendwa, S.M.; Rousseau, D.P.L.; Bruggen, J.J.A.; Lens, P.N.L. Performance Evaluation of Horizontal Subsurface Flow-Constructed Wetlands for the Treatment of Domestic Wastewater in the Tropics. J. Environ. Eng. 2012, 139, 358–367. [Google Scholar] [CrossRef]
- Oodally, A.; Randall, D.G. Investigating the performance of constructed wetland microbial fuel cells using three indigenous South African wetland plants. J. Water Process Eng. 2019, 32, 100930. [Google Scholar] [CrossRef]
- Ribau, M.; Ribeiro, C.; Almeida, A. Chemosphere Vertical flow constructed wetland as a green solution for low biodegradable and high nitrogen wastewater: A case study of explosives industry. Chemosphere 2021, 272, 129871. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Duque, A.F.; Moura, A.; Henriques, I.S.; Correia, A.; Rangel, A.O.S.S.; Castro, P.M.L. Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment. Bioresour. Technol. 2007, 100, 3228–3235. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment, special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of Enteric Bacteria in Constructed Treatment Wetlands with Emergent Macrophytes: A Review. J. Environ. Sci. Health 2005, 40, 1355–1367. [Google Scholar] [CrossRef]
- Münch, C.; Neu, T.; Kuschk, P.; Röske, I. The root surface as the definitive detail for microbial transformation processes in constructed wetlands—A biofilm characteristic. Water Sci. Technol. 2007, 56, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, L.Y.; Wu, J.; Zhong, F.; Cheng, S.P. Step-feeding ratios affect nitrogen removal and related microbial communities in multistage vertical flow constructed wetlands. Sci. Total Environ. 2020, 721, 137689. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Plants used in CWs with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Kivaisi, A.K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecol. Eng. 2001, 16, 545–560. [Google Scholar] [CrossRef]
- Stefanakis, A.I. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef]
- Stefanakis, A.I. Constructed wetlands for sustainable wastewater treatment in hot and arid climates: Opportunities, challenges and case studies in the Middle East. Water 2020, 12, 1665. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment. Five decades of experience. Environ. Sci. Technol. 2010, 5, 61–69. [Google Scholar] [CrossRef]
- Bobo, E.D.; Jimu, L.; Nyamugure, T. Vegetation Diversity and Composition of Bindura Mining Town in Zimbabwe. Discov. Innov. 2009, 21, 6–11. [Google Scholar]
- Nyakudya, I.W.; Dafana, M.M.; Katsvanga, C.A.T.; Jimu, L. Comparative analysis of the early growth performance of indigenous acacia species in revegetating Trojan nickel mine tailings in Zimbabwe. Electron. J. Environ. Agric. Food Chem. 2010, 9, 1393–1403. [Google Scholar] [CrossRef]
- Brown, D.; Dodman, D.; Sherpard, Z. Climate Change Responses in Zimbabwe: Local Actions and National Policy; International Institute for Environment and Development: London, UK, 2013. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington DC, USA, 2017. [Google Scholar]
- Alufasi, R.; Parawira, W.; Stefanakis, A.I.; Lebea, P.; Chakauya, E.; Chingwaru, W. Internalisation of Salmonella spp. by Typha latifolia and Cyperus papyrus in vitro and implications for pathogen removal in Constructed Wetlands. Environ. Technol. 2020, 43, 949–961. [Google Scholar] [CrossRef]
- Konnerup, D.; Koottatep, T.; Brix, H. Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol. Eng. 2009, 35, 248–257. [Google Scholar] [CrossRef]
- Manios, T.; Stentiford, E.I.; Millner, P. Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands. J. Environ. Sci. Health Toxic Hazard. Subst. Environ. Eng. 2003, 38, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresour. Technol. 2009, 100, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Bojcevska, H.; Tonderski, K. Impact of loads, season, and plant species on the performance of a tropical constructed wetland polishing effluent from sugar factory stabilization ponds. Ecol. Eng. 2007, 29, 66–76. [Google Scholar] [CrossRef]
- Mashauri, D.A.; Mulungu, D.M.M.; Abdulhussein, B.S. Constructed wetland at the Universty of Dar es Salaam. Water Res. 2000, 34, 1135–1144. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Dong, J.; Tan, S.K. Application of constructed wetlands for treating agricultural runoff and agro-industrial wastewater: A review. Hydrobiologia 2018, 805, 1–31. [Google Scholar] [CrossRef]
- Wu, Y.; Han, R.; Yang, X.; Zhang, Y.; Zhang, R. Long-term performance of an integrated constructed wetland for advanced treatment of mixed wastewater. Ecol. Eng. 2017, 99, 91–98. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Quitério, P.V.B.; Silva, G.; Crispim, L.F.C.; Brix, H.; Moura, S.C.; Castro, P.M.L. Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J. Environ. Manag. 2012, 95, 66–71. [Google Scholar] [CrossRef]
- Reenu, J.S.S.; Roy, L.; Deeptha, G.B.V.T. Domestic wastewater treatment performance using constructed wetland. Sustain. Water Resour. Manag. 2015, 1, 89–96. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Schierano, M.C.; Panigatti, M.C.; Maine, M.A.; Griffa, C.A.; Boglione, R. Horizontal subsurface flow constructed wetland for tertiary treatment of dairy wastewater: Removal efficiencies and plant uptake. J. Environ. Manag. 2020, 272, 111094. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 2005, 25, 478–490. [Google Scholar] [CrossRef]
- Vymazal, J.; Brezinova, T.; Kocarek, M.; Svehla, J. Removal of Fecal indicator bacteria in constructed wetlands treating agricultural runoff. Ecol. Eng. 2016, 95, 722–728. [Google Scholar]
- Zheng, Y.C.; Wang, X.; Dzakpasu, M.; Yuan, G.; Xiong, J.; Zhao, Y. Feasibility Study on Using Constructed Wetlands for Remediation of a Highly Polluted Urban River in a Semi-Arid Region of China. J. Water Sustain. 2016, 6, 139–148. [Google Scholar] [CrossRef]
- Decamp, O.; Warren, A. Investigation of Escherichia coli removal in various designs of subsurface flow wetlands used for wastewater treatment. Ecol. Eng. 2000, 14, 293–299. [Google Scholar] [CrossRef]
- Headley, T.; Nivala, J.; Kassa, K.; Olsson, L.; Wallace, S.; Brix, H.; van Afferden, M.; Müller, R. Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: Effects of design and plants. Ecol. Eng. 2013, 61, 564–574. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alufasi, R.; Parawira, W.; Zvidzai, C.J.; Stefanakis, A.I.; Musili, N.; Lebea, P.; Chakauya, E.; Chingwaru, W. Performance Evaluation of a Pilot-Scale Constructed Wetland with Typha latifolia for Remediation of Domestic Wastewater in Zimbabwe. Water 2024, 16, 2843. https://doi.org/10.3390/w16192843
Alufasi R, Parawira W, Zvidzai CJ, Stefanakis AI, Musili N, Lebea P, Chakauya E, Chingwaru W. Performance Evaluation of a Pilot-Scale Constructed Wetland with Typha latifolia for Remediation of Domestic Wastewater in Zimbabwe. Water. 2024; 16(19):2843. https://doi.org/10.3390/w16192843
Chicago/Turabian StyleAlufasi, Richwell, Wilson Parawira, Cuthbert J. Zvidzai, Alexandros I. Stefanakis, Nancy Musili, Phiyani Lebea, Ereck Chakauya, and Walter Chingwaru. 2024. "Performance Evaluation of a Pilot-Scale Constructed Wetland with Typha latifolia for Remediation of Domestic Wastewater in Zimbabwe" Water 16, no. 19: 2843. https://doi.org/10.3390/w16192843
APA StyleAlufasi, R., Parawira, W., Zvidzai, C. J., Stefanakis, A. I., Musili, N., Lebea, P., Chakauya, E., & Chingwaru, W. (2024). Performance Evaluation of a Pilot-Scale Constructed Wetland with Typha latifolia for Remediation of Domestic Wastewater in Zimbabwe. Water, 16(19), 2843. https://doi.org/10.3390/w16192843