Joint Optimal Use of Sluices of a Group of Cascade Hydropower Stations under High-Intensity Peak Shaving and Frequency Regulation
Abstract
:1. Introduction
2. Methods
2.1. Model Principles and Calculation Steps
2.2. Establishment of Sluice Operation Strategy Table Based on “Offline Calculation”
2.3. “Online Search”-Based Sluice Operation Strategy Generation
2.3.1. Objective Function
2.3.2. Constraints
- Water balance [20] constraint
- b.
- Power quantity balance constraint
- c.
- Power balance constraint
- d.
- Power station output constraint
- e.
- Flow rate balance constraint
- f.
- Power generation flow rate constraint
- g.
- Discharge flow rate constraint
- h.
- Water level constraint
- i.
- Outbound flow rate variation constraint
2.3.3. Search Strategy
3. Case Study
3.1. Overview of the Study Area
3.2. Data Sources
3.3. Analysis and Discussion
3.3.1. Load Process Analysis
3.3.2. Analysis of Water Level Process
3.3.3. Analysis of the Sluice Operation Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galletti, A.; Avesani, D.; Bellin, A.; Majone, B. Detailed simulation of storage hydropower systems in large alpine watersheds. J. Hydrol. 2021, 603, 127125. [Google Scholar] [CrossRef]
- Nazemi, A.; Wheater, H.S. On inclusion of water resource management in earth system models—Part 1: Problem definition and representation of water demand. Hydrol. Earth Syst. Sci. 2015, 19, 33–61. [Google Scholar] [CrossRef]
- He, S.; Gao, H.; Liu, J.; Chen, Z. Distribution system planning considering peak shaving of energy stations. Appl. Energy 2022, 312, 118692. [Google Scholar] [CrossRef]
- Wang, P.; Yuan, W.; Su, C.; Wu, Y.; Lu, L.; Yan, D.; Wu, Z. Short-term optimal scheduling of cascade hydropower plants shaving peak load for multiple power grids. Renew. Energy 2022, 184, 68–79. [Google Scholar] [CrossRef]
- Rana, M.M.; Atef, M.; Sarkar, M.R.; Uddin, M.; Shafiullah, G.M. A Review on Peak Load Shaving in Microgrid-Potential Benefits, Challenges, and Future Trend. Energies 2022, 15, 2278. [Google Scholar] [CrossRef]
- De Ladurantaye, D.; Gendreau, M.; Potvin, J.Y. Optimizing profits from hydroelectricity production. Comput. Oper. Res. 2009, 36, 499–529. [Google Scholar] [CrossRef]
- Avesani, D.; Zanfei, A.; Marco, N.D.; Galletti, A.; Ravazzolo, F.; Righetti, M.; Majone, B. Short-term hydropower optimization driven by innovative time-adapting econometric model. Appl. Energy 2022, 310, 118510. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Y.; Dan, L.I. Study on constant outflow model for reservoir flood control operation and its application. Adv. Water Sci. 2021, 32, 683–693. [Google Scholar] [CrossRef]
- Abdelal, Q.; Al-Rawabdeh, A.; Al Qudah, K.; Hamarneh, C.; Abu-Jaber, N. Hydrological assessment and management implications for the ancient Nabataean flood control system in Petra, Jordan. J. Hydrol. 2021, 601, 126583. [Google Scholar] [CrossRef]
- Jain, S.K.; Shilpa, L.S.; Rani, D.; Sudheer, K.P. State-of-the-art review: Operation of multi-purpose reservoirs during flood season. J. Hydrol. 2023, 618, 129165. [Google Scholar] [CrossRef]
- Wang, W.; Tian, W.; Chau, K.; Zang, H.; Ma, M.; Feng, Z.; Xu, D. Multi-Reservoir Flood Control Operation Using Improved Bald Eagle Search Algorithm with ε Constraint Method. Water 2023, 15, 692. [Google Scholar] [CrossRef]
- He, J.; Liu, S.-M.; Chen, H.-T.; Wang, S.-L.; Guo, X.-Q.; Wan, Y.-R. Flood Control Optimization of Reservoir Group Based on Improved Sparrow Algorithm (ISSA). Water 2023, 15, 132. [Google Scholar] [CrossRef]
- Wang, Q.; Li, A.; Lu, C. Multi-objective Optimization of Large-scale Multi-reservoir Flood Control Operation. J. Phys. Conf. Ser. 2022, 2333, 012016. [Google Scholar] [CrossRef]
- Xu, Z.X.; Mo, L.; Zhou, J.Z.; Zhang, X. Optimal dispatching rules of hydropower reservoir in flood season considering flood resources utilization. A case study of Three Gorges Reservoir in China. J. Clean. Prod. 2023, 388, 135975. [Google Scholar] [CrossRef]
- Huang, X.; Xu, B.; Zhong, P.A.; Yao, H.; Yue, H.; Zhu, F.; Lu, Q.; Sun, Y.; Mo, R.; Li, Z. Robust multi-objective reservoir operation and risk decision-making model for real-time flood control coping with forecast uncertainty. J. Hydrol. 2022, 605, 127334. [Google Scholar] [CrossRef]
- Zhu, F.L.; Zhong, P.A.; Sun, Y.M.; Yeh, W.G. Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties. Water Resour. Res. 2018, 53, 10635–10654. [Google Scholar] [CrossRef]
- Su, C.; Wang, P.; Yuan, W.; Cheng, C.; Zhang, T.; Yan, D.; Wu, Z. An MILP based optimization model for reservoir flood control operation considering spillway sluice scheduling. J. Hydrol. 2022, 613, 128483. [Google Scholar] [CrossRef]
- Kim, Y.G.; Sun, B.Q.; Kim, P.; Jo, M.B.; Pak, G.H. A study on optimal operation of sluice-controlled reservoir system for flood control based on PSO algorithm combined with rearrangement method of partial solution groups. J. Hydrol. 2021, 593, 125783. [Google Scholar] [CrossRef]
- Zhiqiang, J.; Hui, Q.; Changming, J.; Zhongkai, F.; Jianzhong, Z. Two Dimension Reduction Methods for Multi-Dimensional Dynamic Programming and Its Application in Cascade Reservoirs Operation Optimization. Water 2017, 9, 634. [Google Scholar] [CrossRef]
- Song, J.H.; Her, Y.; Kang, M.S. Estimating Reservoir Inflow and Outflow from Water Level Observations Using Expert Knowledge: Dealing with an Ill-Posed Water Balance Equation in Reservoir Management. Water Resour. Res. 2022, 58, e2020WR028183. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, F.; Chen, J.; Li, J. Risk Analysis for Reservoir Real-Time Optimal Operation Using the Scenario Tree-Based Stochastic Optimization Method. Water 2018, 10, 606. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Nonlinear problems via a convergence accelerated decomposition method of adomian. Comput. Model. Eng. Sci. 2021, 127, 1–22. [Google Scholar] [CrossRef]
- Huang, K.; Yuan, J.; Zhou, Z.; Zheng, X. Analysis and evaluation of heat source data of large-scale heating system based on descriptive data mining techniques. Energy 2022, 251, 123834. [Google Scholar] [CrossRef]
- Ruidas, D.; Saha, A.; Chowdhuri, I.; Pal, S.C.; Towfiqul Islam, A.R.M. Application of novel data-mining technique based nitrate concentration susceptibility prediction approach for coastal aquifers in India. J. Clean. Prod. 2022, 346, 131205. [Google Scholar] [CrossRef]
- Attari, M.; Ejlaly, B.; Heidarpour, H.; Ala, A. Application of Data Mining Techniques for the Investigation of Factors Affecting Transportation Enterprises. IEEE Trans. Intell. Transp. Syst. 2022, 23, 9184–9199. [Google Scholar] [CrossRef]
- Feng, Z.K.; Shi, P.F.; Yang, T.; Niu, W.J.; Zhou, J.Z.; Cheng, C.T. Parallel cooperative search algorithm and artificial intelligence method for streamflow time series forecasting. J. Hydrol. 2022, 606, 127434. [Google Scholar] [CrossRef]
- Cui, F.; Al-Sudani, Z.A.; Hassan, G.S.; Afan, H.A.; Ahammed, S.J.; Yaseen, Z.M. Boosted artificial intelligence model using improved alpha-guided grey wolf optimizer for groundwater level prediction. Comparative study and insight for federated learning technology. J. Hydrol. 2022, 606, 127384. [Google Scholar] [CrossRef]
- Hadadi, F.; Moazenzadeh, R.; Mohammadi, B. Estimation of actual evapotranspiration. A novel hybrid method based on remote sensing and artificial intelligence. J. Hydrol. 2022, 609, 127774. [Google Scholar] [CrossRef]
- Zhao, D.; He, Q.; Yu, J.; Guo, M.; Fu, J.; Li, X.; Ni, M. A data-driven digital-twin model and control of high temperature proton exchange membrane electrolyzer cells. Int. J. Hydrogen Energy 2022, 47, 8687–8699. [Google Scholar] [CrossRef]
- Huang, Z.F.; Soh, K.Y.; Islam, M.R.; Chua, K.J. Digital twin driven life-cycle operation optimization for combined cooling heating and power-cold energy recovery (CCHP-CER) system. Appl. Energy 2022, 324, 119774. [Google Scholar] [CrossRef]
Water Level/m | Discharge Rate/(m3·s−1) | Sluice Combination | Sluice Opening/m | ||||
---|---|---|---|---|---|---|---|
1# | 2# | 3# | 4# | 5# | |||
h | Q | 00100 | e11 | e21 | e31 | e41 | e51 |
01010 | e12 | e22 | e32 | e42 | e52 | ||
10001 | e13 | e23 | e33 | e43 | e53 | ||
10101 | e14 | e24 | e34 | e44 | e54 | ||
11111 | e15 | e25 | e35 | e45 | e55 |
Power Station | Regulating Ability | Normal Water Level/m | Dead Water Level /m | Installed Capacity/MW | Spillway Opening Size/m | Discharge Tunnel Opening Size/m | Sluice Opening Size/m |
---|---|---|---|---|---|---|---|
Pubugou | Incomplete annual regulation | 850 | 790 | 3600 | 12 × 17 | 11 × 15 | — |
Shenxigou | Daily regulation | 660 | 655 | 660 | — | 7 × 17 | 9 × 11.5 |
Zhentouba | Daily regulation | 624 | 618 | 720 | — | — | 8 × 16 |
Mode | Spillway 1# | Spillway 2# | Spillway 3# | Flood Discharging Tunnel | Total |
---|---|---|---|---|---|
Before optimization | 4 | 8 | 7 | 144 | 163 |
After optimization | 11 | 10 | 11 | 70 | 102 |
Mode | Sluice 1# | Sluice 2# | Sluice 3# | Flood Discharging Tunnel 1# | Flood Discharging Tunnel 2# | Total |
---|---|---|---|---|---|---|
Before optimization | 132 | 132 | 132 | 110 | 149 | 655 |
After optimization | 0 | 0 | 0 | 132 | 132 | 264 |
Mode | Sluice 1# | Sluice 2# | Sluice 3# | Sluice 4# | Sluice 5# | Total |
---|---|---|---|---|---|---|
Before optimization | 55 | 0 | 98 | 134 | 90 | 377 |
After optimization | 65 | 50 | 72 | 50 | 72 | 309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, S.; Qu, T.; Li, J.; Wen, X.; Liu, Y. Joint Optimal Use of Sluices of a Group of Cascade Hydropower Stations under High-Intensity Peak Shaving and Frequency Regulation. Water 2024, 16, 275. https://doi.org/10.3390/w16020275
Mou S, Qu T, Li J, Wen X, Liu Y. Joint Optimal Use of Sluices of a Group of Cascade Hydropower Stations under High-Intensity Peak Shaving and Frequency Regulation. Water. 2024; 16(2):275. https://doi.org/10.3390/w16020275
Chicago/Turabian StyleMou, Shiyu, Tian Qu, Jia Li, Xin Wen, and Yu Liu. 2024. "Joint Optimal Use of Sluices of a Group of Cascade Hydropower Stations under High-Intensity Peak Shaving and Frequency Regulation" Water 16, no. 2: 275. https://doi.org/10.3390/w16020275
APA StyleMou, S., Qu, T., Li, J., Wen, X., & Liu, Y. (2024). Joint Optimal Use of Sluices of a Group of Cascade Hydropower Stations under High-Intensity Peak Shaving and Frequency Regulation. Water, 16(2), 275. https://doi.org/10.3390/w16020275