Reductive Sequestration of Chromate with Pyrite-Loaded nZVI@biochar Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of nZVI@biochar
2.3. Preparation of FeS- or Pyrite-Loaded nZVI@biochar
2.4. Remediation Experiments
2.5. Characterization
2.6. Analytical Methods
3. Results and Discussion
3.1. Characterization of Composites
3.2. Aqueous Cr(VI) Removal
3.3. Effect of Different Conditions on Cr(VI) Removal
3.4. Mechanisms of Cr(VI) Removal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darrie, G. Commercial Extraction Technology and Process Waste Disposal in the Manufacture of Chromium chemicals From Ore. Environ. Geochem. Health 2001, 23, 187–193. [Google Scholar] [CrossRef]
- Barnhart, J. Occurrences, Uses, and Properties of Chromium. Regul. Toxicol. Pharmacol. 1997, 26, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.A.; Testa, S.M. Overview of chromium (VI) in the environment: Background and history. In Chromium Handbook; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Chandra, P.; Kulshreshtha, K. Chromium accumulation and toxicity in aquatic vascular plants. Bot. Rev. 2004, 70, 313–327. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef]
- Costa, M. Toxicity and Carcinogenicity of Cr(VI) in Animal Models and Humans. Crit. Rev. Toxicol. 1997, 27, 431–442. [Google Scholar] [CrossRef]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.; He, D.; Dong, H. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Bao, J.; Lu, C.; Werner, D. Reductive sequestration of chromate by hierarchical FeS@Fe(0) particles. Water Res. 2016, 102, 73–81. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, W.; Cai, Z.; Han, B.; Qian, T.; Zhao, D. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 2016, 100, 245–266. [Google Scholar] [CrossRef]
- Melitas, N.; Chuffe-Moscoso, O.; Farrell, J. Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects. Environ. Sci. Technol. 2001, 35, 3948–3953. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.; Lo, I.M.C. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef]
- Tripathi, M.; Pathak, S.; Singh, R.; Singh, P.; Singh, P.K.; Shukla, A.K.; Maurya, S.; Kaur, S.; Thakur, B. A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. Toxics 2024, 12, 657. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, R.; Kalia, A.; Sikka, R.; Chaitra, P. Nano Modifications of Biochar to Enhance Heavy Metal Adsorption from Wastewaters: A Review. ACS Omega 2022, 7, 45825–45836. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Feng, Q.; Yang, H.; Alam, E.; Gao, B.; Gu, D. Modified biochar supported Ag/Fe nanoparticles used for removal of cephalexin in solution: Characterization, kinetics and mechanisms. Coll. Surf. A Physicochem. Eng. Asp. 2017, 517, 63–71. [Google Scholar] [CrossRef]
- Yang, M.; Du, Z.; Bao, H.; Zhang, X.; Liu, Q.; Guo, W.; Ngo, H.-H.; Nghiem, L.D. Experimental and Theoretical Insight of Perfluorooctanoic Acid Destruction by Alkaline Hydrothermal Treatment Enhanced with Zero-Valent Iron in Biochar. ACS ES&T Water 2023, 3, 1286–1293. [Google Scholar]
- Yang, M.; Zhang, X.; Yang, Y.; Liu, Q.; Nghiem, L.D.; Guo, W.; Ngo, H.H. Effective destruction of perfluorooctanoic acid by zero-valent iron laden biochar obtained from carbothermal reduction: Experimental and simulation study. Sci. Total Environ. 2022, 805, 150326. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Lan, Y.; Tratnyek, P.G.; Johnson, R.L.; Filip, J.; O’Carroll, D.M.; Nunez Garcia, A.; Agrawal, A. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation. Environ. Sci. Technol. 2017, 51, 13070–13085. [Google Scholar] [CrossRef]
- Yu, F.; Jia, C.; Wu, X.; Sun, L.; Shi, Z.; Teng, T.; Lin, L.; He, Z.; Gao, J.; Zhang, S.; et al. Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation. Nat. Commun. 2023, 14, 4975. [Google Scholar] [CrossRef]
- Fan, D.; Anitori, R.P.; Tebo, B.M.; Tratnyek, P.G.; Lezama Pacheco, J.S.; Kukkadapu, R.K.; Engelhard, M.H.; Bowden, M.E.; Kovarik, L.; Arey, B.W. Reductive sequestration of pertechnetate ((9)(9)TcO(4)(-)) by nano zerovalent iron (nZVI) transformed by abiotic sulfide. Environ. Sci. Technol. 2013, 47, 5302–5310. [Google Scholar] [CrossRef]
- Su, Y.; Adeleye, A.S.; Keller, A.A.; Huang, Y.; Dai, C.; Zhou, X.; Zhang, Y. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal. Water Res. 2015, 74, 47–57. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Zhu, C.; Dionysiou, D.D.; Zhao, G.; Fang, G.; Zhou, D. New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: Role of sulfur conversion in sulfate radical generation. Water Res. 2018, 142, 208–216. [Google Scholar] [CrossRef]
- Ling, C.; Liu, X.; Li, M.; Wang, X.; Shi, Y.; Qi, J.; Zhao, J.; Zhang, L. Sulphur vacancy derived anaerobic hydroxyl radical generation at the pyrite-water interface: Pollutants removal and pyrite self-oxidation behavior. Appl. Catal. B Environ. 2021, 290, 120051. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, X.; Wang, Z.; Li, S.; Zhao, J.; Liang, G.; Xie, X. Mechanistic insights into removal of norfloxacin from water using different natural iron ore–biochar composites: More rich free radicals derived from natural pyrite-biochar composites than hematite-biochar composites. Appl. Catal. B Environ. 2019, 255, 117752. [Google Scholar] [CrossRef]
- Bartlett, R.; James, B. Behavior of Chromium in Soils: III. Oxidation 1979, 8, 31–35. [Google Scholar]
- Borges, S.d.S.; Korn, M.; da Costa Lima, J.L.F. Chromium(III) Determination with 1,5-Diphenylcarbazide Based on the Oxidative Effect of Chlorine Radicals Generated from CCl4 Sonolysis in Aqueous Solution. Anal. Sci. 2002, 18, 1361–1366. [Google Scholar]
- Tang, J.; Zhao, B.; Lyu, H.; Li, D. Development of a novel pyrite/biochar composite (BM-FeS(2)@BC) by ball milling for aqueous Cr(VI) removal and its mechanisms. J. Hazard. Mater. 2021, 413, 125415. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, C.; Li, H.; Shu, Z.; Luo, Y.; Yang, H.; Chen, Q.; Xu, W.; Zhang, W.; Tan, X. Efficient Cr(VI) removal by pyrite/porous biochar: Critical role of potassium salt and sulphur. Environ. Pollut. 2024, 346, 123641. [Google Scholar] [CrossRef]
- Zhao, Y.; Moore, O.W.; Xiao, K.Q.; Otero-Farina, A.; Banwart, S.A.; Wu, F.C.; Peacock, C.L. Behavior and Fate of Chromium and Carbon during Fe(II)-Induced Transformation of Ferrihydrite Organominerals. Environ. Sci. Technol. 2023, 57, 17501–17510. [Google Scholar] [CrossRef]
- Zhao, Y.; Otero-Fariña, A.; Xiao, K.-Q.; Moore, O.W.; Banwart, S.A.; Ma, F.-J.; Gu, Q.-B.; Peacock, C.L. The mobility and fate of Cr during aging of ferrihydrite and ferrihydrite organominerals. Geochim. Cosmochim. Acta 2023, 347, 58–71. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Y.; Chen, J.; Liu, Z.; Wang, Z.; Na, P. Enhanced Cr(vi) removal from aqueous solutions using Ni/Fe bimetallic nanoparticles: Characterization, kinetics and mechanism. RSC Adv. 2014, 4, 50699–50707. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Yin, H.; Jin, S.; Liu, F.; Chen, H. Mechanism study of humic acid functional groups for Cr(VI) retention: Two-dimensional FTIR and 13C CP/MAS NMR correlation spectroscopic analysis. Environ. Pollut. 2017, 225, 86–92. [Google Scholar] [CrossRef]
- Hu, S.; Lu, Y.; Peng, L.; Wang, P.; Zhu, M.; Dohnalkova, A.C.; Chen, H.; Lin, Z.; Dang, Z.; Shi, Z. Coupled Kinetics of Ferrihydrite Transformation and As(V) Sequestration under the Effect of Humic Acids: A Mechanistic and Quantitative Study. Environ. Sci. Technol. 2018, 52, 11632–11641. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Fu, F.; Ye, C.; Tang, B. Behaviors and fate of adsorbed Cr(VI) during Fe(II)-induced transformation of ferrihydrite-humic acid co-precipitates. J. Hazard. Mater. 2020, 392, 122272. [Google Scholar] [CrossRef]
- Gao, W.; Yan, J.; Qian, L.; Han, L.; Chen, M. Surface catalyzing action of hematite (α-Fe2O3) on reduction of Cr(VI) to Cr(III) by citrate. Environ. Technol. Innov. 2018, 9, 82–90. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, X.; Tao, X.; Yao, C.; Tsang, D.C.W.; Cao, X. Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(VI) reduction. J. Hazard. Mater. 2019, 378, 120705. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Du, J.; Xing, B. Goethite catalyzed Cr(VI) reduction by tartaric acid via surface adsorption. Ecotoxicolo. Environ. Safety 2019, 171, 594–599. [Google Scholar] [CrossRef]
- Amonette, J.E.; Rai, D. Identification of Noncrystalline (Fe,Cr)(Oh)3 by Infrared Spectroscopy. Clays Clay Miner. 1990, 38, 129–136. [Google Scholar] [CrossRef]
- Singh, B.; Sherman, D.M.; Gilkes, R.J.; Wells, M.A.; Mosselmans, J.F.W. Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): Mechanism from extended X-ray absorption fine structure spectroscopy. Clay Miner. 2002, 37, 639–649. [Google Scholar] [CrossRef]
- Tang, Y.; Michel, F.M.; Zhang, L.; Harrington, R.; Parise, J.B.; Reeder, R.J. Structural Properties of the Cr(III)−Fe(III) (Oxy)hydroxide Compositional Series: Insights for a Nanomaterial “Solid Solution”. Chem. Mater. 2010, 22, 3589–3598. [Google Scholar] [CrossRef]
- Dai, C.; Zuo, X.; Cao, B.; Hu, Y. Homogeneous and Heterogeneous (Fex, Cr1-x)(OH)3 Precipitation: Implications for Cr Sequestration. Environ. Sci. Technol. 2016, 50, 1741–1749. [Google Scholar] [CrossRef]
- He, J.; Tang, J.; Zhang, Z.; Wang, L.; Liu, Q.; Liu, X. Magnetic ball-milled FeS@biochar as persulfate activator for degradation of tetracycline. Chem. Eng. J. 2021, 404, 126997. [Google Scholar] [CrossRef]
Sample | Mass Fraction (%) | Molar Fraction (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
C | N | O | Si | P | S | Fe | S | Fe | |
S-nZVI@BC | 84.98 | 0.63 | 11.24 | 2.44 | 0.09 | 0.24 | 0.37 | 0.10 | 0.08 |
FeSx-nZVI@BC (1:4) | 70.23 | 0 | 17.8 | 3.29 | 0.01 | 2.98 | 5.68 | 1.28 | 1.40 |
FeSx-nZVI@BC (1:1) | 53.43 | 0 | 9.82 | 2.01 | 0.06 | 18.49 | 16.19 | 9.61 | 4.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Feng, Y.; Zhao, Y.; Wang, X. Reductive Sequestration of Chromate with Pyrite-Loaded nZVI@biochar Composites. Water 2024, 16, 2883. https://doi.org/10.3390/w16202883
Sun M, Feng Y, Zhao Y, Wang X. Reductive Sequestration of Chromate with Pyrite-Loaded nZVI@biochar Composites. Water. 2024; 16(20):2883. https://doi.org/10.3390/w16202883
Chicago/Turabian StyleSun, Min, Yuechuan Feng, Yao Zhao, and Xingrun Wang. 2024. "Reductive Sequestration of Chromate with Pyrite-Loaded nZVI@biochar Composites" Water 16, no. 20: 2883. https://doi.org/10.3390/w16202883
APA StyleSun, M., Feng, Y., Zhao, Y., & Wang, X. (2024). Reductive Sequestration of Chromate with Pyrite-Loaded nZVI@biochar Composites. Water, 16(20), 2883. https://doi.org/10.3390/w16202883