Investigating the Potential of River Sediment Bacteria for Trichloroethylene Bioremediation
Abstract
:1. Introduction
2. Materials and Methods
2.1. River Sediment Sampling and Isolation of TCE-Degrading Microorganisms
2.2. Screening of Sediment Bacteria for TCE Degradation under Batch Culture
2.3. Optimization of TCE Degradation Condition for Bacillus proteolyticus SAN8
2.4. GCMS Analysis of TCE
3. Results and Discussion
3.1. Screening and Identification of TCE-Degrading Bacteria Isolated from River Sediment
3.2. Time-Dependent Degradation of TCE by Bacillus proteolyticus SAN8
3.3. Investigating the Influence of Different Factors on TCE Biodegradation
3.3.1. Effect of pH on TCE Degradation
3.3.2. Impact of Temperature and TCE Concentration on Bioremediation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Xie, M.; Zhao, N.; Wang, Y.; Lin, Q.; Zhu, Y.; Chao, Y.; Ni, Z.; Qiu, R. Enhanced trichloroethylene biodegradation: The mechanism and influencing factors of combining microorganism and carbon-iron materials. Sci. Total Environ. 2023, 878, 162720. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Man, Q.; Niu, H.; Lyu, H.; Song, H.; Li, R.; Ren, G.; Zhu, F.; Peng, C.; Li, B.; et al. Recent advances and trends of trichloroethylene biodegradation: A critical review. Front. Microbiol. 2022, 13, 1053169. [Google Scholar] [CrossRef]
- Lee, H.-C.; Chen, S.-C.; Sheu, Y.-T.; Yao, C.-L.; Lo, K.-H.; Kao, C.-M. Bioremediation of trichloroethylene-contaminated groundwater using green carbon-releasing substrate with ph control capability. Environ. Pollut. 2024, 348, 123768. [Google Scholar] [CrossRef]
- Baskaran, D.; Sinharoy, A.; Pakshirajan, K.; Rajamanickam, R. Gas-phase trichloroethylene removal by Rhodococcus opacus using an airlift bioreactor and its modeling by artificial neural network. Chemosphere 2020, 247, 125806. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Kitamura, G.; Tian, X.; Suzuki, I.; Kobayashi, T.; Shimizu, T.; Inoue, D.; Ike, M. Temperature dependence of sequential chlorinated ethenes dechlorination and the dynamics of dechlorinating microorganisms. Chemosphere 2022, 287, 131989. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; He, J. Reductive dechlorination of high concentrations of chloroethenes by a dehalococcoides mccartyi strain 11g. FEMS Microbiol. Ecol. 2018, 95, fiy209. [Google Scholar] [CrossRef]
- Chheda, D.; Sorial, G.A. Evaluation of co-metabolic removal of trichloroethylene in a biotrickling filter under acidic conditions. J. Environ. Sci. 2017, 57, 54–61. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Zhao, L.; Li, Z.; Yi, X.; Guo, T.; Cao, X. Enhanced trichloroethylene biodegradation: Roles of biochar-microbial collaboration beyond adsorption. Sci. Total Environ. 2021, 792, 148451. [Google Scholar] [CrossRef]
- Siggins, A.; Thorn, C.; Healy, M.G.; Abram, F. Simultaneous adsorption and biodegradation of trichloroethylene occurs in a biochar packed column treating contaminated landfill leachate. J. Hazard. Mater. 2021, 403, 123676. [Google Scholar] [CrossRef]
- Tachachartvanich, P.; Sangsuwan, R.; Ruiz, H.S.; Sanchez, S.S.; Durkin, K.A.; Zhang, L.; Smith, M.T. Assessment of the endocrine-disrupting effects of trichloroethylene and its metabolites using in vitro and in silico approaches. Environ. Sci. Technol. 2018, 52, 1542–1550. [Google Scholar] [CrossRef]
- Shukla, A.K.; Upadhyay, S.N.; Dubey, S.K. Current trends in trichloroethylene biodegradation: A review. Crit. Rev. Biotechnol. 2014, 34, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Gurav, R.; Lyu, H.; Ma, J.; Tang, J.; Liu, Q.; Zhang, H. Degradation of n-alkanes and pahs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environ. Sci. Pollut. Res. Int. 2017, 24, 11392–11403. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-H.; Chen, C.-C.; Sheu, Y.-T.; Tsang, D.C.W.; Lo, K.-H.; Kao, C.-M. Growth inhibition of sulfate-reducing bacteria for trichloroethylene dechlorination enhancement. Environ. Res. 2020, 187, 109629. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-J.; Liu, P.-W.G.; Hsu, Y.-S.; Whang, L.-M.; Lin, T.-F.; Hung, W.-N.; Cho, K.-C. Application of molecular biological tools for monitoring efficiency of trichloroethylene remediation. Chemosphere 2019, 233, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Gafni, A.; Siebner, H.; Bernstein, A. Potential for co-metabolic oxidation of tce and evidence for its occurrence in a large-scale aquifer survey. Water Res. 2020, 171, 115431. [Google Scholar] [CrossRef]
- Niño de Guzmán, G.T.; Hapeman, C.J.; Millner, P.D.; Torrents, A.; Jackson, D.; Kjellerup, B.V. Presence of organohalide-respiring bacteria in and around a permeable reactive barrier at a trichloroethylene-contaminated superfund site. Environ. Pollut. 2018, 243, 766–776. [Google Scholar] [CrossRef]
- Koner, S.; Chen, J.-S.; Hsu, B.-M.; Rathod, J.; Huang, S.-W.; Chien, H.-Y.; Hussain, B.; Chan, M.W.Y. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for biolog ecoplate-based biostimulation strategy. J. Hazard. Mater. 2022, 424, 127266. [Google Scholar] [CrossRef]
- Li, S.-W.; He, H.; Zeng, R.J.; Sheng, G.-P. Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere 2017, 168, 293–299. [Google Scholar] [CrossRef]
- Logan, N.A.; Bacillus, P.D.V. Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2015; pp. 1–163. [Google Scholar]
- Srinivasan, S.; Park, G.; Yang, H.; Hwang, S.; Bae, Y.; Jung, Y.-A.; Kim, M.K.; Lee, M. Gordonia caeni sp. Nov., isolated from sludge of a sewage disposal plant. Int. J. Syst. Evol. Microbiol. 2012, 62, 2703–2709. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Lai, Q.; Zeng, R.; Ye, D.; Xu, J.; Shao, Z. Proposal of nine novel species of the Bacillus cereus group. Int. J. Syst. Evol. Microbiol. 2017, 67, 2499–2508. [Google Scholar] [CrossRef]
- Dutta, N.; Thomsen, K.; Ahring, B.K. Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the santa susana field laboratory. Chemosphere 2022, 298, 134115. [Google Scholar] [CrossRef] [PubMed]
- Janssen, D.B.; Scheper, A.; Dijkhuizen, L.; Witholt, B. Degradation of halogenated aliphatic compounds by xanthobacter autotrophicus gj10. Appl. Environ. Microbiol. 1985, 49, 673–677. [Google Scholar] [CrossRef]
- Futamata, H.; Harayama, S.; Watanabe, K. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl. Environ. Microbiol. 2001, 67, 4671–4677. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.-L.; Tseng, C.-Y.; Chen, T.-W.; Lo, Y.-H.; Chang, S.-C. Microbiome reengineering by heat selection for rapid biodegradation of trichloroethylene with minimal vinyl chloride formation. Water Air Soil. Pollut. 2021, 232, 121. [Google Scholar] [CrossRef]
- Cheng, C.; Shang-Guan, W.; He, L.; Sheng, X. Effect of exopolysaccharide-producing bacteria on water-stable macro-aggregate formation in soil. Geomicrobiol. J. 2020, 37, 738–745. [Google Scholar] [CrossRef]
- Gurav, R.; Bhatia, S.K.; Choi, T.-R.; Cho, D.H.; Kim, B.C.; Kim, S.H.; Jung, H.J.; Kim, H.J.; Jeon, J.-M.; Yoon, J.-J. Lignocellulosic hydrolysate based biorefinery for marine exopolysaccharide production and application of the produced biopolymer in environmental clean-up. Bioresour. Technol. 2022, 359, 127499. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurav, R.; Ji, C.; Hwang, S. Investigating the Potential of River Sediment Bacteria for Trichloroethylene Bioremediation. Water 2024, 16, 2941. https://doi.org/10.3390/w16202941
Gurav R, Ji C, Hwang S. Investigating the Potential of River Sediment Bacteria for Trichloroethylene Bioremediation. Water. 2024; 16(20):2941. https://doi.org/10.3390/w16202941
Chicago/Turabian StyleGurav, Ranjit, Chang Ji, and Sangchul Hwang. 2024. "Investigating the Potential of River Sediment Bacteria for Trichloroethylene Bioremediation" Water 16, no. 20: 2941. https://doi.org/10.3390/w16202941
APA StyleGurav, R., Ji, C., & Hwang, S. (2024). Investigating the Potential of River Sediment Bacteria for Trichloroethylene Bioremediation. Water, 16(20), 2941. https://doi.org/10.3390/w16202941