Exploring Optimal Pretreatment Approaches for Enhancing Biohydrogen and Biochar Production from Azolla filiculoides Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Sludge
2.2. Azolla filiculoides Sampling and Pretreatment Scenarios
2.3. Batch Biohydrogen Production Assays
2.4. Analysis and Calculations
2.5. Preparation and Characterization of Biochar Produced from BHP Digestate
3. Results and Discussion
3.1. Effect of Different Pretreatment Approaches for Enhancing Hydrolysis of Azolla filiculoides
3.2. Effect of Different Pretreatments on BHP
3.3. Metabolites of the BHP of Azolla filiculoides
3.4. Digestate Valorization for Biochar Production
3.5. Outlook
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Usman, I.M.T.; Ho, Y.-C.; Baloo, L.; Lam, M.-K.; Sujarwo, W. A comprehensive review on the advances of bioproducts from biomass towards meeting net zero carbon emissions (NZCE). Bioresour. Technol. 2022, 366, 128167. [Google Scholar]
- Aniza, R.; Chen, W.-H.; Kwon, E.E.; Bach, Q.-V.; Hoang, A.T. Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review. Energy Convers. Manag. X 2024, 22, 100538. [Google Scholar] [CrossRef]
- Eloffy, M.G.; Elgarahy, A.M.; Saber, A.N.; Hammad, A.; El-Sherif, D.M.; Shehata, M.; Mohsen, A.; Elwakeel, K.Z. Biomass-to-Sustainable Biohydrogen: Insights into the Production Routes, and Technical Challenges. Chem. Eng. J. Adv. 2022, 12, 100410. [Google Scholar] [CrossRef]
- Mahmoud, M.; Parameswaran, P.; Torres, C.I.; Rittmann, B.E. Relieving the Fermentation Inhibition Enables High Electron Recovery from Landfill Leachate in a Microbial Electrolysis Cell. RSC Adv. 2016, 6, 6658–6664. [Google Scholar] [CrossRef]
- Mahmoud, M.; El-Kalliny, A.S.; Squadrito, G. Stacked Titanium Dioxide Nanotubes Photoanode Facilitates Unbiased Hydrogen Production in a Solar-Driven Photoelectrochemical Cell Powered with a Microbial Fuel Cell Treating Animal Manure Wastewater. Energy Convers. Manag. 2022, 254, 115225. [Google Scholar] [CrossRef]
- Yang, Y.; Bu, J.; Tiong, Y.W.; Xu, S.; Zhang, J.; He, Y.; Zhu, M.; Tong, Y.W. Enhanced Thermophilic Dark Fermentation of Hydrogen Production from Food Waste by Fe-Modified Biochar. Environ. Res. 2023, 244, 117946. [Google Scholar] [CrossRef]
- Mahmoud, M.; Torres, C.I.; Rittmann, B.E. Changes in Glucose Fermentation Pathways as a Response to the Free Ammonia Concentration in Microbial Electrolysis Cells. Environ. Sci. Technol. 2017, 51, 13461–13470. [Google Scholar] [CrossRef]
- Nguyen, P.K.T.; Kim, J.; Das, G.; Yoon, H.H. Optimization of Simultaneous Dark Fermentation and Microbial Electrolysis Cell for Hydrogen Production from Macroalgae Using Response Surface Methodology. Biochem. Eng. J. 2021, 171, 108029. [Google Scholar] [CrossRef]
- Dahiya, S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives. Bioresour. Technol. 2021, 321, 124354. [Google Scholar] [CrossRef]
- Łukajtis, R.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P.; Przyjazny, A.; Kamiński, M. Hydrogen Production from Biomass Using Dark Fermentation. Renew. Sustain. Energy Rev. 2018, 91, 665–694. [Google Scholar] [CrossRef]
- Bundhoo, M.A.Z.; Mohee, R. Inhibition of dark fermentative bio-hydrogen production: A review. Int. J. Hydrogen Energy 2016, 41, 6713–6733. [Google Scholar] [CrossRef]
- Muradov, N.; Taha, M.; Miranda, A.F.; Kadali, K.; Gujar, A.; Rochfort, S.; Stevenson, T.; Ball, A.S.; Mouradov, A. Dual Application of Duckweed and Azolla Plants for Wastewater Treatment and Renewable Fuels and Petrochemicals Production. Biotechnol. Biofuels 2014, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- El-Shafai, S.A.; Abdelfattah, I.; Nasr, F.A.; Fawzy, M.E. Lemna Gibba and Azolla Filiculoides for Sewage Treatment and Plant Protein Production. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1869–1876. [Google Scholar]
- Chen, G.; Zhao, K.; Li, W.; Yan, B.; Yu, Y.; Li, J.; Zhang, Y.; Xia, S.; Cheng, Z.; Lin, F. A review on bioenergy production from duckweed. Biomass Bioenergy 2022, 161, 106468. [Google Scholar] [CrossRef]
- Sońta, M.; Rekiel, A.; Batorska, M. Use of Duckweed (Lemna L.) in Sustainable Livestock Production and Aquaculture—A Review. Ann. Anim. Sci. 2019, 19, 257–271. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V. Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 2014, 240, 24–37. [Google Scholar] [CrossRef]
- Nagarajan, D.; Chang, J.S.; Lee, D.J. Pretreatment of Microalgal Biomass for Efficient Biohydrogen Production—Recent Insights and Future Perspectives. Bioresour. Technol. 2020, 302, 122871. [Google Scholar] [CrossRef]
- El-Qelish, M.; Chatterjee, P.; Dessì, P.; Kokko, M.; El-Gohary, F.; Abo-Aly, M.; Rintala, J. Bio-Hydrogen Production from Sewage Sludge: Screening for Pretreatments and Semi-Continuous Reactor Operation. Waste Biomass Valorization 2020, 11, 4225–4234. [Google Scholar] [CrossRef]
- Miranda, A.F.; Biswas, B.; Ramkumar, N.; Singh, R.; Kumar, J.; James, A.; Roddick, F.; Lal, B.; Subudhi, S.; Bhaskar, T.; et al. Aquatic Plant Azolla as the Universal Feedstock for Biofuel Production. Biotechnol. Biofuels 2016, 9, 221. [Google Scholar] [CrossRef]
- Mahmoud, M.; Parameswaran, P.; Torres, C.I.; Rittmann, B.E. Fermentation Pre-Treatment of Landfill Leachate for Enhanced Electron Recovery in a Microbial Electrolysis Cell. Bioresour. Technol. 2014, 151, 151–158. [Google Scholar] [CrossRef]
- Wang, R.; Duan, X.; Wang, S.; Ren, N.; Ho, S.-H. Production, Properties, and Catalytic Applications of Sludge Derived Biochar for Environmental Remediation. Water Res. 2020, 187, 116390. [Google Scholar]
- Díaz, B.; Sommer-Márquez, A.; Ordoñez, P.E.; Bastardo-González, E.; Ricaurte, M.; Navas-Cárdenas, C. Synthesis methods, properties, and modifications of biochar-based materials for wastewater treatment: A Review. Resources 2024, 13, 8. [Google Scholar] [CrossRef]
- Manyà, J.J. Pyrolysis for Biochar Purposes: A Review to Establish Current Knowledge Gaps and Research Needs. Environ. Sci. Technol. 2012, 46, 7939–7954. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K. Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 16, ISBN 1402023030. [Google Scholar]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Owen, W.F.; Stuckey, D.C.; Healy, J.B.; Young, L.Y.; McCarty, P.L. Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Water Res. 1979, 13, 485–492. [Google Scholar] [CrossRef]
- Elgarahy, A.M.; Maged, A.; Elwakeel, K.Z.; El-gohary, F. Tuning Cationic/Anionic Dyes Sorption from Aqueous Solution onto Green Algal Biomass for Biohydrogen Production. Environ. Res. 2023, 216, 114522. [Google Scholar] [CrossRef]
- American Public Health Association; Water Environment Federation. Standard Methods for the Examination of Water and Wastewater; A Joint Publication of the American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF): Alexandria, VA, USA, 2017. [Google Scholar]
- Parameswaran, P.; Torres, C.I.; Lee, H.-S.; Rittmann, B.E.; Krajmalnik-Brown, R. Hydrogen consumption in microbial electrochemical systems (MXCs): The role of homo-acetogenic bacteria. Bioresour. Technol. 2011, 102, 263–271. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Mu, Y.; Yu, H.Q.; Wang, G. A Kinetic Approach to Anaerobic Hydrogen-Producing Process. Water Res. 2007, 41, 1152–1160. [Google Scholar] [CrossRef]
- Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, 1st ed.; John Wiley and Sons: Hoboken, NJ, USA, 1978; p. 653. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Naqvi, M.; Chen, W.H.; Ceylan, S.; Rashid, H.; Ahmad, J.; Taqvi, S.A.; et al. Pyrolysis of High Ash Sewage Sludge: Kinetics and Thermodynamic Analysis Using Coats-Redfern Method. Renew. Energy 2019, 131, 854–860. [Google Scholar] [CrossRef]
- Zhao, X.; Moates, G.K.; Wilson, D.R.; Ghogare, R.J.; Coleman, M.J.; Waldron, K.W. Steam Explosion Pretreatment and Enzymatic Saccharification of Duckweed (Lemna minor) Biomass. Biomass Bioenergy 2015, 72, 206–215. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Chen, Z.; Wei, W.; Mannina, G.; Ni, B.-J. Advances in pretreatment strategies to enhance the biodegradability of waste activated sludge for the conversion of refractory substances. Bioresour. Technol. 2022, 362, 127804. [Google Scholar] [CrossRef] [PubMed]
- Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.W.; Zhang, Z.; Pan, J. A Critical Review on Livestock Manure Biorefinery Technologies: Sustainability, Challenges, and Future Perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033. [Google Scholar] [CrossRef]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A Comprehensive Review on Operating Parameters and Different Pretreatment Methodologies for Anaerobic Digestion of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Cai, Y.; He, Y.; He, K.; Gao, H.; Ren, M.; Qu, G. Degradation Mechanism of Lignocellulose in Dairy Cattle Manure with the Addition of Calcium Oxide and Superphosphate. Environ. Sci. Pollut. Res. 2019, 26, 33683–33693. [Google Scholar] [CrossRef]
- Passos, F.; Ortega, V.; Donoso-Bravo, A. Thermochemical Pretreatment and Anaerobic Digestion of Dairy Cow Manure: Experimental and Economic Evaluation. Bioresour. Technol. 2017, 227, 239–246. [Google Scholar] [CrossRef]
- Carrère, H.; Sialve, B.; Bernet, N. Improving Pig Manure Conversion into Biogas by Thermal and Thermo-Chemical Pretreatments. Bioresour. Technol. 2009, 100, 3690–3694. [Google Scholar] [CrossRef]
- Estevam, R.; Franci Gonçalves, R.; Oss, R.N.; Sampaio, I.C.F.; Cassini, S.T. Effects of Different Thermal and Thermochemical Pretreatments on the Anaerobic Digestion of Algal Biomass Cultivated in Urban Wastewater and Collected with and without Chemical Coagulants. Algal Res. 2024, 78, 103417. [Google Scholar] [CrossRef]
- Camargo, F.P.; Rabelo, C.A.B.S.; Duarte, I.C.S.; Silva, E.L.; Varesche, M.B.A. Biogas from Lignocellulosic Feedstock: A Review on the Main Pretreatments, Inocula and Operational Variables Involved in Anaerobic Reactor Efficiency. Int. J. Hydrogen Energy 2023, 48, 20613–20632. [Google Scholar] [CrossRef]
- Menon, A.; Ren, F.; Wang, J.Y.; Giannis, A. Effect of Pretreatment Techniques on Food Waste Solubilization and Biogas Production during Thermophilic Batch Anaerobic Digestion. J. Mater. Cycles Waste Manag. 2016, 18, 222–230. [Google Scholar] [CrossRef]
- Pal, D.; Banerjee, S.; Chandra, S.; Das, D.; Pandit, S.; Roy, A.; Hasan, M.; Khandaker, M.U.; Alreshidi, M.A. The Generation of Biohydrogen from Pretreated Algal Biomass in Batch Fermentation Mode. Int. J. Hydrogen Energy, 2024; in press. [Google Scholar] [CrossRef]
- Zhao, K.; Song, G.; Lu, C.; Wang, J.; Liu, R.; Hu, C. Ultrasonication as Anaerobic Digestion Pretreatment to Improve Sewage Sludge Methane Production: Performance and Microbial Characterization. J Environ. Sci. 2024, 146, 15–27. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, Y.; Tao, J.; Luo, J.; Xie, W.; Zhou, X.; Yang, L.; Ye, Y. Enhancement of Methane Production from Anaerobic Co-Digestion of Food Waste and Dewatered Sludge by Thermal, Ultrasonic and Alkaline Technologies Integrated with Protease Pretreatment. Bioresour. Technol. 2024, 411, 131357. [Google Scholar] [CrossRef]
- An, X.; Xu, Y.; Dai, X. Biohythane Production from Two-Stage Anaerobic Digestion of Food Waste: A Review. J. Environ. Sci. 2024, 139, 334–349. [Google Scholar] [CrossRef]
- Ananthi, V.; Ramesh, U.; Balaji, P.; Kumar, P.; Govarthanan, M.; Arun, A. A Review on the Impact of Various Factors on Biohydrogen Production. Int. J. Hydrogen Energy 2024, 52, 33–45. [Google Scholar] [CrossRef]
- El-Qelish, M.; El-Shafai, S.A.; Azouz, R.A.; Rashad, E.; Elgarahy, A.M. From seashells to sustainable energy: Trailblazing the utilization of Anadara uropigimelana shells for sustainable biohydrogen production from leftover cooking oil. J. Environ. Chem. Eng. 2024, 12, 111914. [Google Scholar] [CrossRef]
- Nalakath, H.; Keskin, T.; Yazgin, O. Biohydrogen Production from Autoclaved Fruit and Vegetable Wastes by Dry Fermentation under Thermophilic Condition. Int. J. Hydrogen Energy 2018, 44, 18776–18784. [Google Scholar] [CrossRef]
- Bouchareb, E.M.; Derbal, K.; Bedri, R.; Slimani, K. Improving Biohydrogen Production by Dark Fermentation of Milk Processing Wastewater by Physicochemical. Appl. Biochem. Biotechnol. 2024, 196, 2741–2756. [Google Scholar] [CrossRef]
- Jain, R.; Panwar, N.L.; Jain, S.K.; Gupta, T.; Agarwal, C.; Meena, S.S. Bio-Hydrogen Production through Dark Fermentation: An Overview. Biomass Convers. Biorefin. 2024, 14, 12699–12724. [Google Scholar] [CrossRef]
- Guo, X.M.; Trably, E.; Latrille, E.; Carrere, H.; Steyer, J.-P. Predictive and explicative models of fermentative hydrogen production from solid organic waste: Role of butyrate and lactate pathways. Int. J. Hydrogen Energy 2014, 39, 7476–7485. [Google Scholar] [CrossRef]
- El-Qelish, M.; Chatterjee, P.; Kokko, M.; El-Gohary, F.; Abo-Aly, M.; Rintala, J. Conversion of Boreal Lake Sedimented Pulp Mill Fibre into Biogas: A Two-Stage Hydrogen and Methane Production. Biomass Convers. Biorefin. 2024, 14, 8819–8828. [Google Scholar] [CrossRef]
- Temudo, M.F.; Kleerebezem, R.; van Loosdrecht, M. Influence of the PH on (Open) Mixed Culture Fermentation of Glucose: A Chemostat Study. Biotechnol. Bioeng. 2007, 98, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Villasen, J.; Ferna, F.J. Influence of PH, Temperature and Volatile Fatty Acids on Hydrogen Production by Acidogenic Fermentation. Int. J. Hydrogen Energy 2011, 6, 3–9. [Google Scholar] [CrossRef]
- Ding, H.-B.; Tan, G.-Y.A.; Wang, J.-Y. Caproate Formation in Mixed-Culture Fermentative Hydrogen Production. Bioresour. Technol. 2010, 101, 9550–9559. [Google Scholar] [CrossRef]
- Ordoñez-Frías, E.J.; Muñoz-Páez, K.M.; Buitrón, G. Biohydrogen Production from Fermented Acidic Cheese Whey Using Lactate: Reactor Performance and Microbial Ecology Analysis. Int. J. Hydrogen Energy 2024, 52, 389–403. [Google Scholar] [CrossRef]
- Muradov, N.; Fidalgo, B.; Gujar, A.C.; Garceau, N.; T-Raissi, A. Production and Characterization of Lemna Minor Bio-Char and Its Catalytic Application for Biogas Reforming. Biomass Bioenergy 2012, 42, 123–131. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, A.; Kaur, H.; Gupta, A.; Surasani, V.K.R.; Dhaliwal, S.S. Influence of Different Processing Conditions on Nutritional, Phytochemical, and Physical Properties of Aquatic Fern (Azolla pinnata): A Sustainable Nutrient-Rich Human Food. ACS Food Sci. Technol. 2024, 4, 344–354. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Z.; Liang, Q.; Liu, H. Mechanism and Interaction of Alkaline-Earth Metal Migration Induced Ash Transformation and Carbon Structure Evolution for Single Coal Particle High-Temperature Gasification. Chem. Eng. J. 2024, 495, 153575. [Google Scholar] [CrossRef]
- Yang, Y.; Du, W.; Cui, Z.; Zhao, T.; Wang, X.; Lv, J. Spectroscopic Characteristics of Dissolved Organic Matter during Pig Manure Composting with Bean Dregs and Biochar Amendments. Microchem. J. 2020, 158, 105226. [Google Scholar] [CrossRef]
- Ray, A.; Banerjee, A.; Dubey, A. Characterization of Biochars from Various Agricultural By-Products Using FTIR Spectroscopy, SEM Focused with Image Processing. Int. J. Agric. Environ. Biotechnol. 2020, 13, 423–430. [Google Scholar] [CrossRef]
- Passaro, R.; Ghisellini, P.; Ulgiati, S. Circular Economy Model, Principles and Just Transition Perspectives. In Circular Economy for Social. Transformation: Multiple Paths to Achieve Circularity. 2024. Available online: https://just2ce.eu/wp-content/uploads/2024/02/D1_1-JUST2CE-Final-Version.pdf (accessed on 21 October 2024).
- Xie, T.; Sadasivam, B.Y.; Reddy, K.R.; Wang, C.; Spokas, K. Review of the Effects of Biochar Amendment on Soil Properties and Carbon Sequestration. J. Hazard. Toxic Radioact. Waste 2016, 20, 4015013. [Google Scholar] [CrossRef]
- Hemalatha, M.; Sarkar, O.; Venkata Mohan, S. Self-Sustainable Azolla-Biorefinery Platform for Valorization of Biobased Products with Circular-Cascading Design. Chem. Eng. J. 2019, 373, 1042–1053. [Google Scholar] [CrossRef]
- Sayago, U.F.C.; Gómez-Caicedo, M.I.; Mercado Suárez, Á.L. Design of a Sustainable System for Wastewater Treatment and Generation of Biofuels Based on the Biomass of the Aquatic Plant Eichhornia Crassipes. Sci. Rep. 2024, 14, 11068. [Google Scholar] [CrossRef]
- Naik, S.P.; Mohanakrishna, G. Sustainable Duckweed Biomass Valorization for Dark Fermentative Hydrogen Production: Process Evaluation under Meso- and Thermophilic Operations. Process Saf. Environ. Prot. 2024, 190, 604–615. [Google Scholar] [CrossRef]
- Mu, D.; Liu, H.; Lin, W.; Shukla, P.; Luo, J. Simultaneous Biohydrogen Production from Dark Fermentation of Duckweed and Waste Utilization for Microalgal Lipid Production. Bioresour. Technol. 2020, 302, 122879. [Google Scholar] [CrossRef]
- Sarma, M.K.; Ramkumar, N.; Subudhi, S. Biohydrogen Production from Aquatic Plant and Algae Biomass by Enterobacter Cloacae Strain DT-1. Chem. Eng. Technol. 2023, 46, 234–241. [Google Scholar] [CrossRef]
- Karthikeya, K.; Sarma, M.K.; Ramkumar, N.; Subudhi, S. Exploring Optimal Strategies for Aquatic Macrophyte Pre-Treatment: Sustainable Feedstock for Biohydrogen Production. Biomass Bioenergy 2020, 140, 105678. [Google Scholar] [CrossRef]
- Song, W.; Ding, L.; Liu, M.; Cheng, J.; Zhou, J.; Li, Y.-Y. Improving Biohydrogen Production through Dark Fermentation of Steam-Heated Acid Pretreated Alternanthera Philoxeroides by Mutant Enterobacter Aerogenes ZJU1. Sci. Total Environ. 2020, 716, 134695. [Google Scholar] [CrossRef]
- Mthethwa, N.P.; Nasr, M.; Kiambi, S.L.; Bux, F.; Kumari, S. Biohydrogen Fermentation from Pistia Stratiotes (Aquatic Weed) Using Mixed and Pure Bacterial Cultures. Int. J. Hydrogen Energy 2019, 44, 17720–17731. [Google Scholar] [CrossRef]
Parameter | Control | Alkali | Autoclaving | Ultrasonication |
---|---|---|---|---|
TCOD (g/L) | 61.20 ± 1.3 | 61.90 ± 1.45 | 62.40 ± 1.55 | 62.00 ± 1.10 |
SCOD (g/L) | 5.95 ± 0.11 | 9.50 ± 0.19 | 9.96 ± 0.21 | 11.72 ± 0.18 |
PCOD (g/L) | 55.25 ± 1.19 | 52.41 ± 1.26 | 52.44 ± 1.34 | 50.28 ± 0.92 |
COD solubilization | - | 59.58 | 67.39 | 96.97 |
Lignin (g/L) | 5.88 | 4.50 | 4.10 | 3.85 |
Lignin removal (%) | - | 23.47 | 30.27 | 34.52 |
Cellulose (g/L) | 11.90 | 8.43 | 8.01 | 7.36 |
Cellulose removal (%) | - | 29.16 | 32.69 | 38.15 |
Hemicellulose (g/L) | 2.10 | 1.50 | 1.10 | 1.10 |
Hemicellulose removal (%) | - | 28.57 | 47.62 | 47.62 |
Gompertz Parameters | Control | Alkali | Autoclaving | Ultrasonication |
---|---|---|---|---|
P (mL-H2) | 250.50 | 398.00 | 414.50 | 439.50 |
Rmax (mL-H2/day) | 56.00 | 54.50 | 62.50 | 67.50 |
λ (d) | 1.00 | 1.00 | 1.00 | 1.00 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 |
Yield (mL-H2/g-TS) | 50.1 | 79.6 | 82.9 | 87.9 |
H2 increase (%) | - | 58.9 | 65.5 | 75.4 |
Substrate | Inoculum | Operational Conditions | Substrate Pretreatment | Yield | Reference |
---|---|---|---|---|---|
Dried biomass of Azolla filiculoides | Enterobacter cloacae DT-1 | Batch 2 L reactor Initial pH 7.5 37 °C | 1% H2SO4 + autoclaving at 120 °C for 60 min | 2.43 mol H2/mol substrate | [19] |
Dried biomass of Azolla filiculoides | Enterobacter cloacae DT-1 | Batch 2 L reactor Initial pH 7.5 37 °C | Enzymatic saccharification at pH 5 and 50 °C for 24 h | 2.04 mol H2/mol substrate | [19] |
Azolla pinnata | Pretreated anaerobic inoculum | 40 L reactor Initial pH 7.0 25 °C | Acid treatment 2% HCl at 121 °C | 14.6 mL-H2/g | [67] |
Eichhornia crassipes | Pretreated bird manure | 4.0 L reactor Initial pH 6.0 30 °C | 3% (v/v) H2SO4 at 60° C for 12 h | 81.3 mL-H2/g | [68] |
Duckweed biomass | Pretreated activated sludge | Batch 35 °C pH 7.7 | Autoclave at 121 °C, 15 psi for 30 min | 144.04 mL H2/g COD removed | [69] |
Duckweed biomass | Pretreated activated sludge | Batch 50 °C pH 7.7 | Autoclave at 121 °C, 15 psi for 30 min | 381.98 mL H2/g COD removed | [70] |
Duckweed biomass | Pretreated activated sludge | Batch 55 °C pH 7.7 | Autoclave at 121 °C, 15 psi for 30 min | 416.09 mL H2/g COD removed | [70] |
Duckweed | Pretreated anaerobic activated sludge | Batch 35 °C pH of 7.0 | 1% (w/v) H2SO4 + 120 °C for 30 min | 169.30 mL-H2/g | [71] |
Duckweed | Pretreated anaerobic activated sludge | Batch 35 °C pH of 7.0 | 1% (w/v) NaOH + 120 °C for 30 min | 121 mL-H2/g | [71] |
Duckweed | Pretreated anaerobic activated sludge | Batch 35 °C pH of 7.0 | 120 °C for 30 min | 60 mL-H2/g | [71] |
Azolla microphylla | Enterobacter cloacae DT-1 | Batch pH 7.5 37 °C | Enzymatic hydrolysis | 2.1 mole-H2/gVS | [72] |
water hyacinth (Eichhornia crassipes) | Enterobacter cloacae DT-1 | Batch pH 7.5 37 °C | Enzymatic hydrolysis | 1.42 mole-H2/gVS | [72] |
Spirulina sp. | Enterobacter cloacae DT-1 | Batch pH 7.5 37 °C | Enzymatic hydrolysis | 2.16 mole-H2/gVS | [72] |
Scenedesmus sp. | Enterobacter cloacae DT-1 | Batch pH 7.5 37 °C | Enzymatic hydrolysis | 2.0 mole-H2/gVS | [72] |
Eichhornia crassipes | Enterobacter cloacae DT-1 | Batch pH 7.5 37 °C | Acid hydrolysis—diluted H2SO4 | 25 mmol-H2/L | [73] |
Azolla microphylla | Enterobacter cloacae DT-1 | Batch pH 7.5 37 °C | Acid hydrolysis—diluted H2SO4 | 12 mmol-H2/L | [73] |
Alternanthera philoxeroides | Enterobacter aerogenes ZJU1 | pH 6.0 37 °C | 1.0 v/v% H2SO4, 135 °C for 15 min | 62.2 mL-H2/gVS | [74] |
Pistia stratiotes | Pretreated anaerobic activated sludge | Batch pH 5.5 25 °C | 1% (w/v) of 2.5 H2SO4 for 45 min | 2.3 mol-H2/mol-glucose | [74] |
Azolla filiculoides | Pretreated anaerobic activated sludge | Batch pH 6.5 37 °C | Ultrasonication | 107.9 mL-H2/gVS | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Qelish, M.; El-Shafai, S.A.; Mahmoud, M. Exploring Optimal Pretreatment Approaches for Enhancing Biohydrogen and Biochar Production from Azolla filiculoides Biomass. Water 2024, 16, 3048. https://doi.org/10.3390/w16213048
El-Qelish M, El-Shafai SA, Mahmoud M. Exploring Optimal Pretreatment Approaches for Enhancing Biohydrogen and Biochar Production from Azolla filiculoides Biomass. Water. 2024; 16(21):3048. https://doi.org/10.3390/w16213048
Chicago/Turabian StyleEl-Qelish, Mohamed, Saber A. El-Shafai, and Mohamed Mahmoud. 2024. "Exploring Optimal Pretreatment Approaches for Enhancing Biohydrogen and Biochar Production from Azolla filiculoides Biomass" Water 16, no. 21: 3048. https://doi.org/10.3390/w16213048
APA StyleEl-Qelish, M., El-Shafai, S. A., & Mahmoud, M. (2024). Exploring Optimal Pretreatment Approaches for Enhancing Biohydrogen and Biochar Production from Azolla filiculoides Biomass. Water, 16(21), 3048. https://doi.org/10.3390/w16213048