Exploring Seasonal Changes in Coastal Water Quality: Multivariate Analysis in Odisha and West Bengal Coast of India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Results and Discussion
3.1. Hydrographic Parameters
3.1.1. pH
3.1.2. Salinity
3.1.3. Dissolved Oxygen
3.1.4. Biochemical Oxygen Demand
3.1.5. Nitrite
3.1.6. Nitrate
3.1.7. Ammonia
3.1.8. Total Nitrogen
3.1.9. Inorganic Phosphate
3.1.10. Total Phosphorous
3.1.11. Silicate
3.1.12. Chlorophyll-a
3.2. Multivariate Analysis
3.2.1. Correlation between Variables
3.2.2. Principal Component Analysis
3.2.3. Regression Analysis
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wieneke, F. The Use of Remote Sensing in Coastal Research. GeoJournal 1991, 24, 71–76. [Google Scholar] [CrossRef]
- de Alencar, N.M.P.; Le Tissier, M.; Paterson, S.K.; Newton, A. Circles of Coastal Sustainability: A Framework for Coastal Management. Sustainability 2020, 12, 4886. [Google Scholar] [CrossRef]
- Sudha Rani, N.N.V.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Coastal Vulnerability Assessment Studies over India: A Review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The Rising Tide: Assessing the Risks of Climate Change and Human Settlements in Low Elevation Coastal Zones. Environ. Urban 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Dhiman, R.; Kalbar, P.; Inamdar, A.B. Spatial Planning of Coastal Urban Areas in India: Current Practice versus Quantitative Approach. Ocean Coast. Manag. 2019, 182, 104929. [Google Scholar] [CrossRef]
- Sterzel, T.; Lüdeke, M.K.B.; Walther, C.; Kok, M.T.; Sietz, D.; Lucas, P.L. Typology of Coastal Urban Vulnerability under Rapid Urbanization. PLoS ONE 2020, 15, e0220936. [Google Scholar] [CrossRef]
- Saravanan, S.; Jegankumar, R.; Selvaraj, A.; Jennifer, J.; Parthasarathy, K.S.S. Utility of Landsat Data for Assessing Mangrove Degradation in Muthupet Lagoon, South India. In Coastal Zone Management: Global Perspectives, Regional Processes, Local Issues; Elsevier: Amsterdam, The Netherlands, 2019; pp. 471–484. ISBN 9780128143506. [Google Scholar]
- Chinnasamy, P.; Parikh, A. Remote Sensing-Based Assessment of Coastal Regulation Zones in India: A Case Study of Mumbai, India. Environ. Dev. Sustain. 2021, 23, 7931–7950. [Google Scholar] [CrossRef]
- Tjahjo, D.W.H.; Wiadnyana, N.N.; Purnamaningtyas, S.E.; Arifin, T.; Purbani, D.; Syam, A.R.; Wisha, U.J. Assessment of Water Quality Status, Nutrients, and Phytoplankton Communities in the Coastal Zone of East Aceh Regency, Indonesia. J. Ecol. Eng. 2023, 24, 112–129. [Google Scholar] [CrossRef]
- Shampa, M.T.A.; Shimu, N.J.; Chowdhury, K.M.A.; Islam, M.M.; Ahmed, M.K. A Comprehensive Review on Sustainable Coastal Zone Management in Bangladesh: Present Status and the Way Forward. Heliyon 2023, 9, e18190. [Google Scholar] [CrossRef]
- Tripathy, J.; Mishra, A.; Pandey, M.; Thakur, R.R.; Chand, S.; Rout, P.R.; Shahid, M.K. Advances in Nanoparticles and Nanocomposites for Water and Wastewater Treatment: A Review. Water 2024, 16, 1481. [Google Scholar] [CrossRef]
- Bansal, N. Industrial Development and Challenges of Water Pollution in Coastal Areas: The Case of Surat, India. In Proceedings of the IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2018; Volume 120. [Google Scholar]
- Rafiq, F.; Techetach, M.; Achtak, H.; Boundir, Y.; Kouali, H.; Sisouane, M.; Mandri, B.; Cherifi, O.; Dahbi, A. First Assessment of Domestic and Industrial Effluents Impact on Intertidal Zone of Safi Coastline (West of Morocco): Physicochemical Characteristics and Metallic Trace Contamination. Desalination Water Treat. 2022, 245, 167–177. [Google Scholar] [CrossRef]
- Kumar, B.; Mukherjee, D.P.; Kumar, S.; Mishra, M.; Prakash, D.; Singh, S.K.; Sharma, C.S. Bioaccumulation of Heavy Metals in Muscle Tissue of Fishes from Selected Aquaculture Ponds in East Kolkata Wetlands. Sch. Res. Libr. Ann. Biol. Res. 2011, 2, 125–134. [Google Scholar]
- Dixit, P.R.; Kar, B.; Chattopadhyay, P.; Panda, C.R. Seasonal Variation of the Physicochemical Properties of Water Samples in Mahanadi Estuary, East Coast of India. J. Environ. Prot. 2013, 4, 843–848. [Google Scholar] [CrossRef]
- Häder, D.P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic Pollution of Aquatic Ecosystems: Emerging Problems with Global Implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A.; Hashem, M.; Mostafa, Y.S.; Alhaithloul, H.A.S.; Alghanem, S.M. Linking Effects of Microplastics to Ecological Impacts in Marine Environments. Chemosphere 2021, 264, 128541. [Google Scholar] [CrossRef]
- Shahid, M.K.; Choi, Y. Synthesis of Magnetite Particles for Enhanced Environmental Performance: Comparative Analysis of Three Schemes and Their Applications for Phosphorus Recovery from High-Strength Wastewater. Mater. Chem. Phys. 2024, 317, 129136. [Google Scholar] [CrossRef]
- Herawati, E.Y.; Darmawan, A.; Valina, R.; Khasanah, R.I. Abundance of Phytoplankton and Physical Chemical Parameters as Indicators of Water Fertility in Lekok Coast, Pasuruan Regency, East Java Province, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 934. [Google Scholar]
- Thayer, G.W. Identity and Regulation of Nutrients Limiting Phytoplankton Production in the Shallow Estuaries Near Beaufort, N.C. Oecologia 1974, 14, 75–92. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D.; et al. Human Health and Ocean Pollution. Ann. Glob. Health 2020, 86, 151. [Google Scholar] [CrossRef]
- Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water Contamination by Heavy Metals and Their Toxic Effect on Aquaculture and Human Health through Food Chain. Lett. Appl. NanoBioSci. 2021, 10, 2148–2166. [Google Scholar]
- Ratnam, K.; Jha, D.K.; Prashanthi Devi, M.; Dharani, G. Evaluation of Physicochemical Characteristics of Coastal Waters of Nellore, Southeast Coast of India, by a Multivariate Statistical Approach. Front. Mar. Sci. 2022, 9, 857957. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Whitton, B.A.; Neal, C. Nitrogen and Phosphorus in East Coast British Rivers: Speciation, Sources and Biological Significance. Sci. Total Environ. 1998, 210–211, 79–109. [Google Scholar] [CrossRef]
- Sundaray, S.K.; Panda, U.C.; Nayak, B.B.; Bhatta, D. Multivariate Statistical Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality of the Mahanadi River-Estuarine System (India)—A Case Study. Environ. Geochem. Health 2006, 28, 317–330. [Google Scholar] [CrossRef]
- Vega, M.; Pardo, R.; Barrado, E.; Deba, L. Assessment of Seasonal and Polluting Effects on the Quality of River Water by Exploratory Data Analysis. Water Res. 1998, 32, 3581–3592. [Google Scholar] [CrossRef]
- Upendra, B.; Ciba, M.; Arun, V.; Sreelesh, R.; Anoop Krishnan, K. Appraisal of Coastal Water Quality of Two Hot Spots on Southwest Coast of India: A Case Study of Multi-Year Biogeochemical Observations. In Coasts, Estuaries and Lakes Implications for Sustainable Development; Springer International Publishing: Cham, Switzerland, 2023; pp. 41–62. [Google Scholar]
- Grasshoff, K.; Ehrhardt, M. Methods of Seawater Analysis; Verlag Chemie GmbH: Hoboken, NJ, USA, 1999. [Google Scholar]
- Clesceri, L.S.; Greenberg, A.; Trussell, R. Standard Methods for Examination of Water and Wastewater; American Water Works Association, and Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Riley, J.P.; Chester, R. Introduction to Marine Chemistry; Academic Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Satpathy, K.K.; Mohanty, A.K.; Natesan, U.; Prasad, M.V.R.; Sarkar, S.K. Seasonal Variation in Physicochemical Properties of Coastal Waters of Kalpakkam, East Coast of India with Special Emphasis on Nutrients. Environ. Monit. Assess. 2010, 164, 153–171. [Google Scholar] [CrossRef]
- Panigrahy, P.K.; Das, J.; Das, S.N.; Sahoo, R.K. Evaluation of the Influence of Various Physico-Chemical Parameters on Coastal Water Quality, around Odisha, by Factor Analysis. Indian J. Mar. Sci. 1999, 28, 360–364. [Google Scholar]
- Garnier, J.; Billen, G.; Palfner, L. Understanding the Oxygen Budget and Related Ecological Processes in the River Mosel: The RIVERSTRAHLER Approach; Springer: Berlin/Heidelberg, Germany, 2000; Volume 410. [Google Scholar]
- Aston, S.R. Nutrients, Dissolved Gases, and General Biogeochemistry in Estuaries; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Sillen, L.G. The Physical Chemistry of Sea Water. Lectures at the International Oceanographic Congress in New York, Septemper 1959. In Methodes Sea Water Analysis; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1961. [Google Scholar]
- Kester, D.R.; Pytkowicx, R.M. Determination of the apparent dissociation constants of phosphoric acid in seawater. Limnol. Oceanogr. 1967, 12, 243–252. [Google Scholar] [CrossRef]
- Pal, R.; Reddy, P.M. Distribution of Nutrients Off Malpe, South Kanara Coast. Indian J. Mar. Sci. 1981, 10, 322–326. [Google Scholar]
- Purushothaman, A.; Venugopalan, V.K. Distribution of Dissolved Silicon in the Vellar Estuary. Indian J. Mar. Sci. 1972, 1, 103–105. [Google Scholar]
- Lal, D. Transfer of Chemical Species through Estuaries to Oceans. In Biogeochemistry of Estuarine Sediments: Proceedings of a Unesco/SCOR Workshop, Melreux, Belgium, 29 November–3 December 1976; UNESCO: Paris, France, 1978. [Google Scholar]
- Gouda, R.; Panigrahy, R.C. Seasonal Distribution and Behavior of Silicate in the Rushikulya Estuary, East Coast of India. Indian J. Mar. Sci. 1992, 21, 111–115. [Google Scholar]
- Liss, P.S.; Spencer, C.P. Abiological Processes in the Removal of Silicate from Sea Water. Geochim. Cosmochim. Acta 1970, 34, 1073–1088. [Google Scholar] [CrossRef]
- Sahu, B.K.; Begum, M.; Khadanga, M.K.; Jha, D.K.; Vinithkumar, N.V.; Kirubagaran, R. Evaluation of significant sources influencing the variation of physico-chemical parameters in Port Blair Bay, South Andaman, India by using multivariate statistics. Mar. Pollut. Bull. 2013, 66, 246–251. [Google Scholar] [CrossRef]
- Reghunath, R.; Sreedhara Murthy, T.R.; Raghavan, B.R. The Utility of Multivariate Statistical Techniques in Hydrogeochemical Studies: An Example from Karnataka, India. Water Res. 2002, 36, 2437–2442. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F.; Nakamura, T. Use of Principal Component Analysis, Factor Analysis and Discriminant Analysis to Evaluate Spatial and Temporal Variations in Water Quality of the Mekong River. J. Hydroinform. 2008, 10, 43–56. [Google Scholar] [CrossRef]
- Sârbu, C.; Pop, H.F. Principal Component Analysis versus Fuzzy Principal Component Analysis: A Case Study: The Quality of Danube Water (1985–1996). Talanta 2005, 65, 1215–1220. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, J.M.; Fernandez, L. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Siddha, S.; Sahu, P. A Statistical Approach to Study the Evolution of Groundwater of Vishwamitri River Basin (VRB), Gujarat. J. Geol. Soc. India 2020, 95, 503–506. [Google Scholar] [CrossRef]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Factor Analysis in the Assessment of Groundwater Quality in a Blackfoot Disease Area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Panda, U.C.; Sundaray, S.K.; Rath, P.; Nayak, B.B.; Bhatta, D. Application offactor and cluster analysis for characterization of river and estuarine watersystems—A case study: Mahanadi River (India). J. Hydrol. 2006, 331, 434–445. [Google Scholar] [CrossRef]
- Roy, D.S.; Krishnan, P. Mangrove stands of Andamans vis-à-vis tsunami. Curr. Sci. 2005, 89, 1800–1804. [Google Scholar]
- Shirodkar, P.V.; Mesquita, A.; Pradhan, U.K.; Verlekar, X.N.; Babu, M.T.; Vethamony, P. Factors controlling physic-chemical characteristics in the coastalwaters off Mangalore—A multivariate approach. Environ. Res. 2009, 109, 245–257. [Google Scholar] [CrossRef]
- Simeonova, P.; Simeonov, V.; Andrew, G. Analysis of the Struma river water quality. Cent. Eur. J. Chem. 2003, 2, 121–126. [Google Scholar]
- Simeonov, V.; Simeonova, P.; Tsitouridou, R. Chemometric quality assessmentof surface waters two case studies. Chem. Eng. Ecol. 2004, 11, 449–469. [Google Scholar]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniquesfor the evaluation of spatial and temporal variations in water quality of Gomtiriver (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Sarakar, S.K.; Rudra, R.R.; Nur, M.S.; Das, P.C. Partial least Squares regression for soil salinity mapping in Bangladesh. Ecol. Indic. 2023, 154, 110825. [Google Scholar] [CrossRef]
- Marlin, N.; Damar, A.; Effendi, H. The Horizontal Distribution Chlorophyll-a Phytoplankton as indicator of Tropic state in waters of Meulaboh Bay, West Aceh. J. IImu Pertinian Indones. JIPI 2015, 20, 272–279. [Google Scholar]
- Maslukah, L.; Setiawan, R.Y.; Nurdin, N.; Helmi, M.; Widiaratih, R. Phytoplankton Chlorophyll-a Biomass and the Relationship with Water Quality in Barrang Caddi, Spermonde, Indinesia. Ecol. Eng. Environ. Technol. 2022, 23, 25–33. [Google Scholar] [CrossRef]
- Okbah, M.; Hussein, R.N. Impact of Environmental Conditions on the Phytoplankton Structure in Mediterranean Sea Lagoon, Lake Burullus, Egypt. Water Air Soil Pollut. 2006, 172, 129–150. [Google Scholar] [CrossRef]
Stations | WTEMP | SSC | pH | SALIN | DO | BOD | NO2 | NO3 | NH4 | TN | IP | TP | SiO4 | Chl-a |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | M ± SD | |
Gopalpur | 25.6 ± 0.6 | 10.62 ± 2.75 | 8.17 ± 0.06 | 29.92 ± 1.46 | 6.52 ± 0.41 | 1.20 ± 0.24 | 0.67 ± 0.36 | 1.40 ± 0.42 | 0.25 ± 0.09 | 53.32 ± 11.11 | 6.99 ± 7.63 | 16.02 ± 6.09 | 3.12 ± 2.07 | 1.29 ± 0.60 |
Rushikulya | 26.5 ± 0.3 | 12.04 ± 2.51 | 8.16 ± 0.05 | 29.23 ± 1.29 | 6.38 ± 0.56 | 0.78 ± 0.30 | 0.37 ± 0.14 | 1.47 ± 0.72 | 0.36 ± 0.12 | 36.02 ± 16.69 | 4.83 ± 2.74 | 13.18 ± 4.47 | 17.18 ± 12.03 | 1.49 ± 0.57 |
Chilika | 25.9 ± 1.0 | 12.17 ± 2.82 | 8.14 ± 0.05 | 29.52 ± 1.06 | 7.11 ± 0.56 | 0.67 ± 0.19 | 0.52 ± 0.17 | 1.66 ± 0.83 | 0.35 ± 0.09 | 24.02 ± 9.52 | 5.75 ± 3.40 | 14.44 ± 3.72 | 17.49 ± 13.37 | 1.49 ± 0.65 |
Puri | 28.3 ± 2.1 | 11.14 ± 4.38 | 8.21 ± 0.10 | 26.69 ± 4.52 | 6.88 ± 0.55 | 1.94 ± 0.83 | 0.59 ± 0.45 | 3.70 ± 3.06 | 5.17 ± 8.66 | 69.57 ± 18.17 | 13.13 ± 12.92 | 25.31 ± 24.03 | 15.37 ± 17.88 | 1.68 ± 2.05 |
Konark | 25.5 ± 0.7 | 10.64 ± 2.88 | 8.09 ± 0.04 | 28.63 ± 1.59 | 6.67 ± 0.52 | 1.04 ± 0.25 | 0.55 ± 0.09 | 1.40 ± 0.64 | 0.69 ± 0.16 | 31.03 ± 12.23 | 7.90 ± 4.40 | 14.94 ± 4.84 | 6.88 ± 2.86 | 1.07 ± 0.52 |
Paradip | 27.7 ± 2.7 | 12.12 ± 3.42 | 8.21 ± 0.11 | 25.10 ± 5.22 | 7.01 ± 0.44 | 1.20 ± 0.58 | 0.43 ± 0.21 | 2.70 ± 1.55 | 1.39 ± 1.24 | 54.77 ± 14.76 | 16.73 ± 9.02 | 33.57 ± 18.36 | 8.26 ± 3.20 | 1.24 ± 0.88 |
Mahanadi | 27.5 ± 3.2 | 15.65 ± 8.72 | 8.23 ± 0.11 | 23.28 ± 7.03 | 7.06 ± 0.46 | 1.66± 0.76 | 0.41 ± 0.34 | 3.04 ± 1.68 | 2.06 ± 2.50 | 58.02 ± 22.15 | 38.03 ± 13.77 | 49.20 ± 16.70 | 31.53 ± 27.16 | 1.12 ± 0.88 |
Chandipur | 23.5 ± 1.8 | 40.00 ± 44.26 | 8.22 ± 0.12 | 23.89 ± 1.58 | 7.20 ± 0.32 | 1.98 ± 0.31 | 1.02 ± 0.08 | 3.81 ± 2.55 | 0.75 ± 0.42 | 44.96 ± 5.00 | 7.08 ± 4.07 | 10.21 ± 3.44 | 5.22 ± 1.82 | 1.57 ± 0.23 |
Digha | 26.6 ± 1.8 | 22.49 ± 11.47 | 8.29 ± 0.04 | 24.81 ± 3.02 | 7.56 ± 0.14 | 2.24 ± 0.40 | 0.86 ± 0.35 | 1.58 ± 0.57 | 1.04 ± 0.76 | 46.21 ± 10.71 | 5.37 ± 3.24 | 8.25 ± 3.29 | 43.50 ± 6.79 | 1.55 ± 0.44 |
Sandheads | 26.6 ± 2.6 | 41.22 ± 17.30 | 8.04 ± 0.11 | 16.82 ± 4.18 | 7.44 ± 0.29 | 2.09 ± 1.05 | 0.87 ± 0.46 | 8.88 ± 1.81 | 1.52 ± 1.06 | 76.63 ± 14.27 | 5.06 ± 3.72 | 12.23 ± 5.11 | 14.18 ± 7.79 | 0.88 ± 0.42 |
Saptamukhi | 24.5 ± 0.2 | 19.18 ± 4.71 | 8.02 ± 0.17 | 25.67 ± 0.78 | 6.84 ± 0.45 | 0.79 ± 0.28 | 1.98 ± 0.16 | 4.78 ± 0.18 | 0.36 ± 0.09 | 43.03 ± 11.31 | 4.37 ± 3.54 | 8.75 ± 4.42 | 25.61 ± 26.98 | 1.74 ± 0.03 |
WTEMP | pH | SALIN | DO | BOD | NO2 | NO3 | NH4 | TN | IP | TP | SiO4 | Chl-a | SSC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WTEMP | 1 | |||||||||||||
pH | −0.001 | 1 | ||||||||||||
SALIN | −0.327 ** | −0.009 | 1 | |||||||||||
DO | −0.120 | 0.126 | −0.288 ** | 1 | ||||||||||
BOD | 0.532 ** | −0.288 * | −0.330 ** | −0.307 ** | 1 | |||||||||
NO2 | −0.249 * | −0.117 | −0.170 | −0.102 | 0.113 | 1 | ||||||||
NO3 | 0.246 * | −0.377 ** | −0.568 ** | 0.064 | 0.535 ** | 0.447 ** | 1 | |||||||
NH4 | 0.164 | −0.129 | −0.075 | −0.395 ** | 0.453 ** | 0.372 ** | 0.325 ** | 1 | ||||||
TN | 0.300 ** | −0.194 | −0.428 ** | −0.073 | 0.495 ** | 0.339 ** | 0.542 ** | 0.371 ** | 1 | |||||
IP | −0.033 | 0.157 | −0.030 | −0.152 | 0.101 | 0.081 | −0.159 | 0.307 ** | 0.153 | 1 | ||||
TP | −0.127 | 0.149 | 0.096 | −0.217 | 0.074 | 0.211 | −0.059 | 0.381 ** | 0.104 | 0.864 ** | 1 | |||
SiO4 | −0.448 ** | 0.033 | 0.148 | −0.301 ** | −0.033 | 0.142 | −0.051 | 0.267 * | −0.034 | 0.398 ** | 0.394 ** | 1 | ||
Chl-a | −0.255 * | 0.044 | 0.203 | −0.085 | 0.042 | 0.205 | 0.058 | 0.512 ** | 0.028 | 0.253 * | 0.450 ** | 0.406 ** | 1 | |
SSC | −0.065 | −0.548 ** | −0.332 ** | 0.290 * | 0.195 | 0.445 ** | 0.610 ** | −0.006 | 0.311 ** | −0.112 | −0.144 | −0.046 | −0.092 | 1 |
Variable | 1 | 2 | 3 | 4 |
---|---|---|---|---|
TP | 0.891 | |||
IP | 0.831 | |||
Chl-a | 0.622 | |||
SiO4 | 0.619 | |||
NH4 | 0.535 | |||
WTEMP | 0.837 | |||
BOD | 0.774 | |||
TN | 0.633 | |||
SALIN | −0.592 | 0.547 | ||
SSC | 0.848 | |||
NO3 | 0.511 | 0.737 | ||
NO2 | 0.677 | |||
pH | −0.618 | |||
DO | −0.810 | |||
Eigenvalues | 3.50 | 3.07 | 1.83 | 1.39 |
Variance % | 25.01 | 21.94 | 13.13 | 9.99 |
Cumulative % | 25.01 | 46.96 | 60.09 | 70.09 |
Parameters | R2 Values |
---|---|
Suspended solids | −0.31 |
Chlorophyll-a | 0.0388 |
Dissolved oxygen | −15.422 |
Biochemical oxygen demand | −0.5823 |
Nitrite | −0.2336 |
Nitrate | −0.4778 |
Ammonia | −0.0376 |
Inorganic phosphate | −0.1114 |
Silicate | 0.0142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dixit, P.R.; Akhtar, M.S.; Thakur, R.R.; Chattopadhyay, P.; Kar, B.; Bera, D.K.; Chand, S.; Shahid, M.K. Exploring Seasonal Changes in Coastal Water Quality: Multivariate Analysis in Odisha and West Bengal Coast of India. Water 2024, 16, 2961. https://doi.org/10.3390/w16202961
Dixit PR, Akhtar MS, Thakur RR, Chattopadhyay P, Kar B, Bera DK, Chand S, Shahid MK. Exploring Seasonal Changes in Coastal Water Quality: Multivariate Analysis in Odisha and West Bengal Coast of India. Water. 2024; 16(20):2961. https://doi.org/10.3390/w16202961
Chicago/Turabian StyleDixit, Pravat Ranjan, Muhammad Saeed Akhtar, Rakesh Ranjan Thakur, Partha Chattopadhyay, Biswabandita Kar, Dillip Kumar Bera, Sasmita Chand, and Muhammad Kashif Shahid. 2024. "Exploring Seasonal Changes in Coastal Water Quality: Multivariate Analysis in Odisha and West Bengal Coast of India" Water 16, no. 20: 2961. https://doi.org/10.3390/w16202961
APA StyleDixit, P. R., Akhtar, M. S., Thakur, R. R., Chattopadhyay, P., Kar, B., Bera, D. K., Chand, S., & Shahid, M. K. (2024). Exploring Seasonal Changes in Coastal Water Quality: Multivariate Analysis in Odisha and West Bengal Coast of India. Water, 16(20), 2961. https://doi.org/10.3390/w16202961