Factors Influencing Water Resource Levels Under the Water Resource Carrying Capacity Framework: A Dynamic Qualitative Comparative Analysis Based on Provincial Panel Data
Abstract
:1. Introduction
2. Methodology
2.1. Comprehensive Score of WRCC Subsystem
2.1.1. WRCC Evaluation System Establishment
2.1.2. Indicator Standardization
2.1.3. Weight Determination
2.1.4. Comprehensive Subsystem Score Determination
2.2. Dynamic QCA Model
2.2.1. Calibration
2.2.2. Necessity Analysis of Individual Condition Subsystem
2.2.3. Sufficiency Analysis of Condition Configurations
3. Case Study Area and Data Sources
4. Results
4.1. The Necessity Analysis Results of Individual Condition Subsystem
4.1.1. Inter-Group Results of Necessity Analysis
4.1.2. Intra-Group Results of Necessity Analysis
4.2. The Sufficiency Analysis Results of Conditin Configurations
4.2.1. Summary of Results of Sufficiency Analysis
4.2.2. Inter-Group Results of Sufficiency Analysis
4.2.3. Intra-Group Results of Sufficiency Analysis
5. Discussion
5.1. Dynamic QCA and WRCC
5.2. Necessity Analysis
5.3. Sufficiency Analysis
5.4. The Particularity of Shanghai and Chongqing
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bidlack, W.R.; Wang, W.; Clemens, R. Water The World’s Most Precious Resource. J. Food Sci. 2004, 69, crh55–crh60. [Google Scholar] [CrossRef]
- Conant, B.; Robinson, C.E.; Hinton, M.J.; Russell, H.A.J. A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. J. Hydrol. 2019, 574, 609–627. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, M.; Xu, W.; Guan, X.; Yan, D. Structure construction, evolution analysis and sustainability evaluation of Water-Ecological-Economic system. Sustain. Cities Soc. 2022, 83, 103966. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Rodríguez Osuna, V.; Cak, A.D.; Bhaduri, A.; Bunn, S.E.; Corsi, F.; Gastelumendi, J.; Green, P.; Harrison, I.; Lawford, R.; et al. Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrol. Hydrobiol. 2018, 18, 317–333. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Shi, W.; Fu, Y. Quantitative evaluation and optimized utilization of water resources-water environment carrying capacity based on nature-based solutions. J. Hydrol. 2019, 568, 96–107. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Brown, J.; Acey, C.S.; Anthonj, C.; Barrington, D.J.; Beal, C.D.; Capone, D.; Cumming, O.; Pullen, F.K.; MacDonald, G.J.; Hicks, B.; et al. The effects of racism, social exclusion, and discrimination on achieving universal safe water and sanitation in high-income countries. Lancet Glob. Health 2023, 11, e606–e614. [Google Scholar] [CrossRef]
- Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Yu, M.; Wang, C.; Liu, Y.; Olsson, G.; Wang, C. Sustainability of mega water diversion projects: Experience and lessons from China. Sci. Total Environ. 2018, 619–620, 721–731. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, C.; Qi, Z.; Meng, F.; Liang, X. Development tendency analysis for the water resource carrying capacity based on system dynamics model and the improved fuzzy comprehensive evaluation method in the Changchun city, China. Ecol. Indic. 2021, 122, 107232. [Google Scholar] [CrossRef]
- Yang, X.; Sun, B.; Lei, S.; Li, F.; Qu, Y. A bibliometric analysis and review of water resources carrying capacity using rené descartes’s discourse theory. Front. Earth Sci. 2022, 10, 970582. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yang, G.; Xu, H.L. Evaluation of Water Resources Carrying Capacity Based on Fuzzy Comprehensive Evaluation on River Basin in Arid Zone. Adv. Mater. Res. 2010, 113–116, 488–494. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, C. Threshold analysis of regional water resources development and utilization. J. Water Resour. 1997, 8, 73–79. [Google Scholar]
- Wang, T.; Jian, S.; Wang, J.; Yan, D. Dynamic interaction of water–economic–social–ecological environment complex system under the framework of water resources carrying capacity. J. Clean. Prod. 2022, 368, 133132. [Google Scholar] [CrossRef]
- Qin, W.; Wei, L.I. Research Progress and Prospect of Regional Resources and Environment Carrying Capacity Evaluation. Ecol. Environ. Sci. 2020, 29, 1487–1498. [Google Scholar] [CrossRef]
- Peng, T.; Deng, H. Comprehensive evaluation on water resource carrying capacity in karst areas using cloud model with combination weighting method: A case study of Guiyang, southwest China. Environ. Sci. Pollut. Res. 2020, 27, 37057–37073. [Google Scholar] [CrossRef]
- Wang, S.; Sun, X.; Zhong, S. Exploring the Multiple Paths to Improve the Construction Level of Digital Government: Qualitative Comparative Analysis Based on the WSR Framework. Sustainability 2023, 15, 9891. [Google Scholar] [CrossRef]
- Al-Kalbani, M.S.; Price, M.F.; Abahussain, A.; Ahmed, M.; O’Higgins, T. Vulnerability Assessment of Environmental and Climate Change Impacts on Water Resources in Al Jabal Al Akhdar, Sultanate of Oman. Water 2014, 6, 3118–3135. [Google Scholar] [CrossRef]
- Lijuan, D.; Yong, X.U. Review of Research Progress in Carrying Capacity of Water Resources. Res. Soil Water Conserv. 2015, 22, 341–348. [Google Scholar]
- Wang, Z.; Fu, X. Scheme simulation and predictive analysis of water environment carrying capacity in Shanxi Province based on system dynamics and DPSIR model. Ecol. Indic. 2023, 154, 110862. [Google Scholar] [CrossRef]
- Ragin, C.C. The Comparative Method: Moving beyond Qualitative and Quantitative Strategies; University of California Press: Berkeley, CA, USA, 1987. [Google Scholar]
- Jang, J. Analysis of the Relationships between Early Childhood Policies and National Happiness Level: Application of Fuzzy Set Qualitative Comparative Analysis Method. Korean Comp. Gov. Rev. 2013, 17, 73–94. [Google Scholar] [CrossRef]
- Greckhamer, T.; Furnari, S.; Fiss, P.C.; Aguilera, R.V. Studying configurations with qualitative comparative analysis: Best practices in strategy and organization research. Strateg. Organ. 2018, 16, 482–495. [Google Scholar] [CrossRef]
- Seny Kan, A.K.; Adegbite, E.; El Omari, S.; Abdellatif, M. On the use of qualitative comparative analysis in management. J. Bus. Res. 2016, 69, 1458–1463. [Google Scholar] [CrossRef]
- Hsieh, M. An Empirical Study of Education Divide Diminishment through Online Learning Courses. EURASIA J. Math. Sci. Technol. Educ. 2017, 13, 3189–3208. [Google Scholar] [CrossRef]
- Sergis, S.; Sampson, D.G.; Giannakos, M.N. Supporting school leadership decision making with holistic school analytics: Bridging the qualitative-quantitative divide using fuzzy-set qualitative comparative analysis. Comput. Hum. Behav. 2018, 89, 355–366. [Google Scholar] [CrossRef]
- Fang, Z. Determinants of Local Governments’ Information Disclosure: A Dynamic QCA Analysis Based on Provincial Panel Data. J. Intell. 2023, 42, 133–141. [Google Scholar]
- Garcia-Castro, R.; Ariño, M.A. A General Approach to Panel Data Set-Theoretic Research. J. Adv. Manag. Sci. Inf. Syst. 2016, 2, 63–76. [Google Scholar] [CrossRef]
- Goodell, J.W.; Kumar, S.; Lahmar, O.; Pandey, N. A bibliometric analysis of cultural finance. Int. Rev. Financ. Anal. 2023, 85, 102442. [Google Scholar] [CrossRef]
- Li, R.; Jin, W. The role of the Yangtze River Protection Law in the emergence of adaptive water governance in China. Ecol. Soc. 2023, 28, 32. [Google Scholar] [CrossRef]
- Chen, P. Effects of the entropy weight on TOPSIS. Expert. Syst. Appl. 2021, 168, 114186. [Google Scholar] [CrossRef]
- Ragin, C.C.; Strand, S.I. Using Qualitative Comparative Analysis to Study Causal Order: Comment on Caren and Panofsky (2005). Sociol. Methods Res. 2008, 36, 431–441. [Google Scholar] [CrossRef]
- Rihoux, B.; Ragin, C.C. Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques; Sage Publications: Thousand Oaks, CA, USA, 2009; Volume 51. [Google Scholar]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Haibo, T.; Ziteng, F.; Du, Y. Technical Management Capability, Attention Allocation, and Local Government Website Construction: A Configuration Analysis Based on TOE Framework. Manag. World 2019, 35, 81–94. [Google Scholar]
- Chen, L.; Li, Y.; Fan, D. How do emerging multinationals configure political connections across institutional contexts? Glob. Strateg. J. 2018, 8, 447–470. [Google Scholar] [CrossRef]
- Ren, C.; Guo, P.; Li, M.; Li, R. An innovative method for water resources carrying capacity research—Metabolic theory of regional water resources. J. Environ. Manag. 2016, 167, 139–146. [Google Scholar] [CrossRef]
- Yunzhou, D.; Liangding, J. Configuration perspective and qualitative comparative analysis (QCA): A New Path for Management Research. Manag. World 2017, 6, 155–167. [Google Scholar]
- Zhang, Z.; Ou, G.; Elshkaki, A.; Liu, R. Evaluation of Regional Carrying Capacity under Economic-Social-Resource-Environment Complex System: A Case Study of the Yangtze River Economic Belt. Sustainability 2022, 14, 7117. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, L.; Zhang, C.; Zhu, J.Q. Comprehensive evaluation of water ecological environment in watersheds: A case study of the Yangtze River Economic Belt, China. Environ. Sci. Pollut. Res. 2023, 30, 30727–30740. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y. Primary Evaluation of the Economic Losses Caused by Water Pollution in Shanghai by Classification Approach. Arch. Environ. Prot. 2013, 39, 67–74. [Google Scholar] [CrossRef]
- Wang, Z.; Duan, P.; Akamatsu, T.; Chen, Y.; An, X.; Yuan, J.; Lei, P.; Li, J.; Zhou, L.; Liu, M.; et al. Riverside underwater noise pollution threaten porpoises and fish along the middle and lower reaches of the Yangtze River, China. Ecotoxicol. Environ. Safe 2021, 226, 112860. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, Z.; Li, D.; Zhang, M. Evaluation of Common Prosperity Level and Regional Difference Analysis along the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2022, 19, 11851. [Google Scholar] [CrossRef] [PubMed]
- Avoyan, E. Collaborative Governance for Innovative Environmental Solutions: Qualitative Comparative Analysis of Cases from Around the World. Environ. Manag. 2023, 71, 670–684. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Xu, T.; Ju, T.; Xia, B. Explaining the alienation of megaproject environmental responsibility behavior: A fuzzy set qualitative comparative analysis study in China. Eng. Constr. Archit. Manag. 2022, 30, 2794–2813. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, W.; Sheng, S. Understanding the structure and determinants of economic linkage network: The case of three major city clusters in Yangtze River Economic belt. Front. Environ. Sci. 2023, 10, 1073395. [Google Scholar] [CrossRef]
- Meirong, Z.; Rui, L. Exploration of High Quality Development Path for Manufacturing Enterprises: Based on NCA and Dynamic QCA Methods. Financ. Account. Mon. 2024, 45, 123–128. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Wang, Y. Comprehensive evaluation and influencing factors of urban agglomeration water resources carrying capacity. J. Clean. Prod. 2021, 288, 125097. [Google Scholar] [CrossRef]
- Gong, G.; Zhao, Y. Ecology versus economic development: Effects of China’s Yangtze River Economic Belt strategy. Int. Stud. Econ. 2024, 19, 330–352. [Google Scholar] [CrossRef]
- Sun, F.; Miao, C.; Li, S.; Shen, J.; Huang, X.; Zhang, S. Dynamic Evaluation of Water Resources Management Performance in the Yangtze River Economic Belt. Sustainability 2024, 16, 649. [Google Scholar] [CrossRef]
- Gallart, F.; Llorens, P.; Latron, J.; Cid, N.; Rieradevall, M.; Prat, N. Validating alternative methodologies to estimate the regime of temporary rivers when flow data are unavailable. Sci. Total Environ. 2016, 565, 1001–1010. [Google Scholar] [CrossRef]
- De Filippis, G.; Foglia, L.; Giudici, M.; Mehl, S.; Margiotta, S.; Negri, S.L. Seawater intrusion in karstic, coastal aquifers: Current challenges and future scenarios in the Taranto area (southern Italy). Sci. Total Environ. 2016, 573, 1340–1351. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Segurado, P.; Jauch, E.; Ferreira, M.T. Riparian responses to extreme climate and land-use change scenarios. Sci. Total Environ. 2016, 569–570, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Surendran, U.; Jayakumar, M.; Marimuthu, S. Low cost drip irrigation: Impact on sugarcane yield, water and energy saving in semiarid tropical agro ecosystem in India. Sci. Total Environ. 2016, 573, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Friesen, J.; Rodriguez Sinobas, L.; Foglia, L.; Ludwig, R. Environmental and socio-economic methodologies and solutions towards integrated water resources management. Sci. Total Environ. 2017, 581–582, 906–908. [Google Scholar] [CrossRef] [PubMed]
- Kungolos, A.; Di Nardo, A.; Mallios, Z.; Manakou, V.; Emmanouil, C. Effective environmental management within the context of sustainability and economic development: A special issue from the 13th International Conference on Protection and Restoration of the Environment (PREXIII), 3–8 July 2016, Mykonos island, Greece. Environ. Sci. Pollut. Res. 2018, 25, 26695–26698. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, J.; You, X. A study on spatio-temporal coordination and driving forces of urban land and water resources utilization efficiency in the Yangtze River Economic Belt. J. Water Clim. Chang. 2023, 14, 272–288. [Google Scholar] [CrossRef]
- Tian, P.; Wu, H.; Yang, T.; Jiang, F.; Zhang, W.; Zhu, Z.; Yue, Q.; Liu, M.; Xu, X. Evaluation of urban water ecological civilization: A case study of three urban agglomerations in the Yangtze River Economic Belt, China. Ecol. Indic. 2021, 123, 107351. [Google Scholar] [CrossRef]
- Yan, X.; Chen, H. Evaluation on Water Resource Carrying Capacity Based on BP Model—A Case Study in Guanzhong District. In Proceedings of the 2011 International Conference on Ecological Protection of Lakes-Wetlands-Watershed and Application of 3S Technology (EPLWW3S 2011), Nanchang, China, 25–26 June 2011. [Google Scholar]
- Gao, Y.; Zhang, H.M.; Xu, G.W.; Su, H.M.; Zhang, Y. Sustainable Utilization Evaluation on Water Resources Base on Matter Element Analysis in Huaibei City. Adv. Mater. Res. 2012, 610–613, 2671–2674. [Google Scholar] [CrossRef]
- Gao, H.; Sun, L. Grey Clustering Evaluation of Water Resources Carrying Capacity Based on Triangle Whitening Weight Function. IOP Conf. Ser. Earth Environ. Sci. 2018, 208, 12101. [Google Scholar] [CrossRef]
- Tang, B.; Hu, Y.; Li, H.; Yang, D.; Liu, J. Research on comprehensive carrying capacity of Beijing–Tianjin–Hebei region based on state-space method. Nat. Hazards 2016, 84, 113–128. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Wang, X.; Yang, L. The study of water resources carrying capacity in kaifeng city based on support vector machines. In Proceedings of the International Conference on Informational Technology and Environmental System Science, Jiaozuo, China, 15–17 May 2008. [Google Scholar]
- Zhang, Z.; Lu, W.X.; Zhao, Y.; Song, W.B. Development tendency analysis and evaluation of the water ecological carrying capacity in the Siping area of Jilin Province in China based on system dynamics and analytic hierarchy process. Ecol. Model. 2014, 275, 9–21. [Google Scholar] [CrossRef]
- Chi, M.; Zhang, D.; Fan, G.; Zhang, W.; Liu, H. Prediction of water resource carrying capacity by the analytic hierarchy process-fuzzy discrimination method in a mining area. Ecol. Indic. 2019, 96, 647–655. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, D.; Wang, Z. Evaluation of Region Water Resources Carrying Capacity Based on Set Pair Analysis Technology. In Proceedings of the 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Dalian, China, 12–14 October 2008; pp. 1–4. [Google Scholar]
- Wang, W.; Zeng, W. Optimizing the Regional Industrial Structure Based on the Environmental Carrying Capacity: An Inexact Fuzzy Multi-Objective Programming Model. Sustainability 2013, 5, 5391–5415. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.S. The Time-Series Study of Xiangjiang River Water Carrying Capacity Based on the Ecological Footprint of Water Resource—The ChangZhuTan Region, for Example. Adv. Mater. Res. 2012, 518–523, 4362–4370. [Google Scholar] [CrossRef]
- Wang, C.; Hou, Y.; Xue, Y. Water resources carrying capacity of wetlands in Beijing: Analysis of policy optimization for urban wetland water resources management. J. Clean. Prod. 2017, 161, 1180–1191. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Wei, T.; Zeng, Y.; Zhang, B. Analysis of sustainable utilization of water resources in karst region based on the ecological footprint model—Liupanshui city case. J. Water Supply Res. Technol. Aqua 2018, 67, 566–575. [Google Scholar] [CrossRef]
- Dai, D.; Sun, M.; Xu, X.; Lei, K. Assessment of the water resource carrying capacity based on the ecological footprint: A case study in Zhangjiakou City, North China. Environ. Sci. Pollut. Res. 2019, 26, 11000–11011. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, H.; Mu, H.; Luo, J.; Bao, X.; Bian, J.; Delgado Martín, J. Risk assessment of water resources and environmental carrying capacity in Yinchuan city. Hum. Ecol. Risk Assess. 2019, 25, 120–131. [Google Scholar] [CrossRef]
- Wang, S.; Xu, L.; Yang, F.; Wang, H. Assessment of water ecological carrying capacity under the two policies in Tieling City on the basis of the integrated system dynamics model. Sci. Total Environ. 2014, 472, 1070–1081. [Google Scholar] [CrossRef]
- Yang, J.; Lei, K.; Khu, S.; Meng, W.; Qiao, F. Assessment of water environmental carrying capacity for sustainable development using a coupled system dynamics approach applied to the Tieling of the Liao River Basin, China. Environ. Earth Sci. 2015, 73, 5173–5183. [Google Scholar] [CrossRef]
- Song, X. Evaluation of water resources carrying capacity based on system dynamics model. In Proceedings of the 3rd International Conference on Economic, Business Management and Education Innovation (EBMEI), Prague, Czech Republic, 10–11 May 2016. [Google Scholar]
- Fang, H. Application of System Dynamics and WCCI in Water Resources Evaluation: Taking Pakistan as an Example. In Proceedings of the 2nd International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2018), Qingdao, China, 30–31 March 2018; Advances in Engineering Research. Atlantis Press: Dordrecht, The Netherlands, 2018; Volume 149, pp. 14–19. [Google Scholar]
- Sun, B.; Yang, X. Simulation of Water Resources Carrying Capacity in Xiong’an New Area Based on System Dynamics Model. Water 2019, 11, 1085. [Google Scholar] [CrossRef]
- Chen, N.X.; Qu, J.H.; Xu, J.X.; Li, Z.P.; Yang, L. Evaluation of Groundwater Environment Carrying Capacity Based on Catastrophe Theory. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Song, F.; Yang, X.; Wu, F. Catastrophe progression method based on M-K test and correlation analysis for assessing water resources carrying capacity in Hubei province. J. Water Clim. Chang. 2020, 11, 556–567. [Google Scholar] [CrossRef]
- Cheng, K.; Fu, Q.; Meng, J.; Li, T.X.; Pei, W. Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model. Water Resour. Manag. 2018, 32, 2767–2781. [Google Scholar] [CrossRef]
- Lu, F.; Xu, J.; Wang, Z. Application of GA optimized wavelet neural networks for carrying capacity of water resources prediction. In Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; pp. 308–311. [Google Scholar]
- Jianjun, W. Comprehensive evaluation and analysis method for carrying capacity of water resource based on Neural Network. In Proceedings of the International Conference on Intelligent Computation Technology & Automation, Nanchang, China, 14–15 June 2015; pp. 305–308. [Google Scholar]
- Gulishengmu, A.; Yang, G.; Tian, L.; Pan, Y.; Huang, Z.; Xu, X.; Gao, Y.; Li, Y. Analysis of Water Resource Carrying Capacity and Obstacle Factors Based on GRA-TOPSIS Evaluation Method in Manas River Basin. Water 2023, 15, 236. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, Z.; Wang, Y. Water resource carrying capacity and obstacle factors in the Yellow River basin based on the RBF neural network model. Environ. Sci. Pollut. Res. 2023, 30, 22743–22759. [Google Scholar] [CrossRef]
- Zhi, X.; Anfuding, G.; Yang, G.; Gong, P.; Wang, C.; Li, Y.; Li, X.; Li, P.; Liu, C.; Qiao, C.; et al. Evaluation of the Water Resource Carrying Capacity on the North Slope of the Tianshan Mountains, Northwest China. Sustainability 2022, 14, 1905. [Google Scholar] [CrossRef]
Condition Variable | High-Level Water Resource Subsystem | Low-Level Water Resource Subsystem | ||||||
---|---|---|---|---|---|---|---|---|
Consensus | Coverage Summarization | Inter-Group Consistency Adjustment Distance | Intra-Group Consistency Adjustment Distance | Consensus | Coverage Summarization | Inter-Group Consistency Adjustment Distance | Intra-Group Consistency Adjustment Distance | |
Robust ecological environment subsystem | a | b | ||||||
0.763 | 0.806 | 0.2107 | 0.2598 | 0.483 | 0.51 | 0.2870 | 0.5668 | |
Fragile ecological environment subsystem | c | d | ||||||
0.536 | 0.509 | 0.3779 | 0.4745 | 0.816 | 0.775 | 0.1708 | 0.3197 | |
Robust social subsystem | e | f | ||||||
0.672 | 0.692 | 0.1235 | 0.3841 | 0.629 | 0.648 | 0.0618 | 0.5014 | |
Fragile social subsystem | g | h | ||||||
0.6580 | 0.6390 | 0.1453 | 0.3502 | 0.701 | 0.681 | 0.0690 | 0.4033 | |
Robust economic subsystem | i | j | ||||||
0.699 | 0.678 | 0.0981 | 0.3427 | 0.657 | 0.638 | 0.0654 | 0.4432 | |
Fragile economic subsystem | k | l | ||||||
0.627 | 0.646 | 0.0836 | 0.4481 | 0.669 | 0.69 | 0.0436 | 0.4832 |
Situation | Causal Combination Situation | Year | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |||
a | Robust ecological environment subsystem and high-level water resource subsystem | Inter-group consistency | 0.634 | 0.496 | 0.638 | 0.681 | 0.696 | 0.83 | 0.863 | 0.954 | 0.905 | 0.854 |
Inter-group coverage | 0.834 | 0.898 | 0.819 | 0.896 | 0.882 | 0.853 | 0.765 | 0.739 | 0.659 | 0.852 | ||
b | Robust ecological environment subsystem and low-level water resource subsystem | Inter-group consistency | 0.297 | 0.3 | 0.396 | 0.454 | 0.468 | 0.608 | 0.592 | 0.617 | 0.611 | 0.598 |
Inter-group coverage | 0.766 | 0.537 | 0.673 | 0.564 | 0.544 | 0.443 | 0.487 | 0.524 | 0.491 | 0.342 | ||
c | Fragile ecological environment subsystem and high-level water resource subsystem | Inter-group consistency | 0.822 | 0.744 | 0.746 | 0.668 | 0.64 | 0.458 | 0.421 | 0.386 | 0.301 | 0.34 |
Inter-group coverage | 0.374 | 0.518 | 0.482 | 0.565 | 0.567 | 0.623 | 0.527 | 0.478 | 0.412 | 0.596 | ||
d | Fragile ecological environment subsystem and low-level water resource subsystem | Inter-group consistency | 0.936 | 0.943 | 0.894 | 0.916 | 0.898 | 0.798 | 0.714 | 0.693 | 0.575 | 0.741 |
Inter-group coverage | 0.834 | 0.649 | 0.766 | 0.73 | 0.731 | 0.768 | 0.829 | 0.943 | 0.87 | 0.744 | ||
e | Robust social subsystem and high-level water resource subsystem | Inter-group consistency | 0.795 | 0.633 | 0.71 | 0.635 | 0.679 | 0.691 | 0.768 | 0.731 | 0.606 | 0.543 |
Inter-group coverage | 0.573 | 0.675 | 0.659 | 0.688 | 0.701 | 0.807 | 0.719 | 0.691 | 0.594 | 0.809 | ||
g | Fragile social subsystem and high-level water resource subsystem | Inter-group consistency | 0.866 | 0.641 | 0.706 | 0.697 | 0.612 | 0.612 | 0.551 | 0.588 | 0.653 | 0.72 |
Inter-group coverage | 0.55 | 0.609 | 0.565 | 0.683 | 0.644 | 0.718 | 0.641 | 0.566 | 0.603 | 0.798 |
Situation | Causal Combination Situation | Regions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shanghai | Jiangsu | Zhejiang | Anhui | Jiangxi | Hubei | Hunan | Chongqing | Sichuan | Guizhou | Yunnan | |||
a | Robust ecological environment subsystem and high-level water resource subsystem | Intra-group consistency | 0.827 | 0.922 | 0.985 | 1 | 0.755 | 0.635 | 0.381 | 1 | 0.636 | 0.861 | 0.84 |
Intra-group coverage | 0.9 | 0.612 | 0.868 | 0.503 | 0.998 | 0.831 | 1 | 0.505 | 0.937 | 0.816 | 0.899 | ||
b | Robust ecological environment subsystem and low-level water resource subsystem | Intra-group consistency | 0.079 | 0.097 | 1 | 0.593 | 1 | 0.251 | 0.701 | 0.97 | 0.79 | 0.709 | 0.903 |
Intra-group coverage | 1 | 1 | 0.193 | 0.957 | 0.116 | 0.737 | 0.4 | 0.761 | 0.531 | 0.789 | 0.389 | ||
c | Fragile ecological environment subsystem and high-level water resource subsystem | Intra-group consistency | 1 | 1 | 0.085 | 0.915 | 0.331 | 0.799 | 0.772 | 0.527 | 0.681 | 0.777 | 0.428 |
Intra-group coverage | 0.086 | 0.067 | 1 | 0.412 | 1 | 0.322 | 0.922 | 0.92 | 0.876 | 0.694 | 0.917 | ||
d | Fragile ecological environment subsystem and low-level water resource subsystem | Intra-group consistency | 0.992 | 0.962 | 0.319 | 0.692 | 0.981 | 0.942 | 1 | 0.369 | 0.906 | 0.835 | 0.764 |
Intra-group coverage | 0.985 | 0.995 | 0.826 | 1 | 0.26 | 0.853 | 0.26 | 1 | 0.532 | 0.876 | 0.658 | ||
e | Robust social subsystem and high-level water resource subsystem | Intra-group consistency | 0.562 | 1 | 0.795 | 1 | 0.329 | 0.902 | 0.567 | 0.44 | 0.918 | 0.425 | 0.918 |
Intra-group coverage | 0.89 | 0.064 | 0.984 | 0.334 | 1 | 0.714 | 0.98 | 1 | 0.941 | 0.873 | 0.894 | ||
f | Robust social subsystem and low-level water resource subsystem | Intra-group consistency | 0.054 | 0.993 | 1 | 0.898 | 0.983 | 0.515 | 1 | 0.283 | 1 | 0.415 | 1 |
Intra-group coverage | 1 | 0.98 | 0.272 | 0.964 | 0.262 | 0.913 | 0.376 | 1 | 0.468 | 1 | 0.392 | ||
g | Fragile social subsystem and high-level water resource subsystem | Intra-group consistency | 1 | 0.688 | 0.412 | 0.892 | 0.757 | 0.89 | 0.639 | 1 | 0.481 | 1 | 0.376 |
Intra-group coverage | 0.083 | 0.863 | 1 | 0.732 | 0.998 | 0.45 | 1 | 0.473 | 1 | 0.593 | 1 | ||
h | Fragile social subsystem and low-level water resource subsystem | Intra-group consistency | 0.994 | 0.051 | 0.941 | 0.379 | 1 | 0.839 | 0.946 | 1 | 0.874 | 0.947 | 0.73 |
Intra-group coverage | 0.963 | 1 | 0.502 | 1 | 0.116 | 0.95 | 0.322 | 0.735 | 0.829 | 0.659 | 0.781 | ||
i | Robust economic subsystem and high-level water resource subsystem | Intra-group consistency | 0.608 | 1 | 0.639 | 1 | 0.444 | 0.775 | 0.408 | 0.498 | 1 | 0.92 | 0.964 |
Intra-group coverage | 0.986 | 0.066 | 1 | 0.366 | 1 | 0.671 | 1 | 1 | 0.732 | 0.826 | 0.884 | ||
j | Robust economic subsystem and low-level water resource subsystem | Intra-group consistency | 0.053 | 0.964 | 1 | 0.822 | 1 | 0.505 | 0.894 | 0.32 | 1 | 0.871 | 1 |
Intra-group coverage | 1 | 0.982 | 0.343 | 0.965 | 0.198 | 0.979 | 0.477 | 1 | 0.334 | 0.917 | 0.369 | ||
k | Fragile economic subsystem and high-level water resource subsystem | Intra-group consistency | 1 | 0.724 | 0.58 | 0.904 | 0.644 | 0.976 | 0.787 | 1 | 0.09 | 0.908 | 0.312 |
Intra-group coverage | 0.083 | 0.565 | 1 | 0.613 | 1 | 0.468 | 0.972 | 0.486 | 1 | 0.857 | 1 | ||
l | Fragile economic subsystem and low-level water resource subsystem | Intra-group consistency | 0.999 | 0.082 | 1 | 0.46 | 1 | 0.83 | 1 | 1 | 0.198 | 0.835 | 0.685 |
Intra-group coverage | 0.967 | 1 | 0.378 | 1 | 0.136 | 0.892 | 0.269 | 0.756 | 1 | 0.925 | 0.885 |
Ecological Environment Subsystem | Social Subsystem | Economic Subsystem | Output | Number of Cases in Configuration | Consistency | PRI |
---|---|---|---|---|---|---|
1 | 0 | 1 | 1 | 4 | 0.954 | 0.852 |
1 | 1 | 0 | 1 | 2 | 0.943 | 0.848 |
1 | 1 | 1 | 1 | 25 | 0.912 | 0.807 |
0 | 0 | 1 | 0 | 4 | 0.902 | 0.671 |
0 | 1 | 0 | 0 | 6 | 0.866 | 0.612 |
1 | 0 | 0 | 0 | 24 | 0.859 | 0.673 |
0 | 1 | 1 | 0 | 22 | 0.649 | 0.320 |
0 | 0 | 0 | 0 | 23 | 0.641 | 0.319 |
Model | Ecological Environment—Social Subsystem or Ecological Environment—Economic Subsystem | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Configuration | Consistency | PRI | Coverage | Unique Coverage | Inter-Group Consistency Adjustment Distance | Intra-Group Consistency Adjustment Distance | Consistency Summary | PRI Summary | Coverage Summary | ||||
Ecological environment—social subsystem | 0.913 | 0.823 | 0.556 | 0.043 | 0.0908 | 0.1958 | 0.902 | 0.802 | 0.631 | ||||
Cases | 30 | 60 | 22 | 23 | 24 | 25 | 26 | 27 | |||||
28 | 29 | 36 | 37 | 38 | 39 | 40 | 86 | ||||||
87 | 88 | 89 | 90 | 104 | 105 | 106 | 107 | ||||||
108 | 109 | 110 | |||||||||||
Ecological environment—economic subsystem | 0.901 | 0.787 | 0.588 | 0.075 | 0.0945 | 0.1958 | |||||||
Cases | 21 | 96 | 97 | 98 | 22 | 23 | 24 | 25 | |||||
26 | 27 | 28 | 29 | 36 | 37 | 38 | 39 | ||||||
40 | 86 | 87 | 88 | 89 | 90 | 104 | 105 | ||||||
106 | 107 | 108 | 109 | 110 |
Condition Variable | Ecological Environment Subsystem—Social Subsystem Model or Ecological Environment—Economic Subsystem | |
---|---|---|
Ecological Environment—Social Subsystem Model | Ecological Environment—Economic Subsystem | |
Ecological environment subsystem | ⬤ | ⬤ |
Social subsystem | ⬤ | |
Economic subsystem | ⬤ |
Yangtze River Delta Urban Agglomeration | Middle Yangtze Urban Agglomeration | Chengdu Chongqing Urban Agglomeration | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Shanghai | Jiangsu | Zhejiang | Anhui | Jiangxi | Hubei | Hunan | Chongqing | Sichuan | Guizhou | Yunnan | |
Coverage of Configuration 1 | 0.492 | 0.922 | 0.795 | 1 | 0.329 | 0.58 | 0.327 | 0.44 | 0.636 | 0.36 | 0.767 |
Average geographical coverage of configuration one | 0.8023 | 0.412 | 0.5508 | ||||||||
Coverage of Configuration 2 | 0.586 | 0.922 | 0.639 | 1 | 0.444 | 0.5 | 0.269 | 0.498 | 0.636 | 0.811 | 0.812 |
Average geographical coverage of configuration 2 | 0.7868 | 0.40433 | 0.6893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, Y.; Li, Z.; Zhang, W.; Yuan, Y. Factors Influencing Water Resource Levels Under the Water Resource Carrying Capacity Framework: A Dynamic Qualitative Comparative Analysis Based on Provincial Panel Data. Water 2024, 16, 3006. https://doi.org/10.3390/w16203006
Li Z, Wu Y, Li Z, Zhang W, Yuan Y. Factors Influencing Water Resource Levels Under the Water Resource Carrying Capacity Framework: A Dynamic Qualitative Comparative Analysis Based on Provincial Panel Data. Water. 2024; 16(20):3006. https://doi.org/10.3390/w16203006
Chicago/Turabian StyleLi, Zehua, Yanfeng Wu, Zhijun Li, Wenguang Zhang, and Yuxiang Yuan. 2024. "Factors Influencing Water Resource Levels Under the Water Resource Carrying Capacity Framework: A Dynamic Qualitative Comparative Analysis Based on Provincial Panel Data" Water 16, no. 20: 3006. https://doi.org/10.3390/w16203006
APA StyleLi, Z., Wu, Y., Li, Z., Zhang, W., & Yuan, Y. (2024). Factors Influencing Water Resource Levels Under the Water Resource Carrying Capacity Framework: A Dynamic Qualitative Comparative Analysis Based on Provincial Panel Data. Water, 16(20), 3006. https://doi.org/10.3390/w16203006