Influence of Chemical Weathering and Microcracks on Permeability Variations in Crystalline Rocks
Abstract
:1. Introduction
2. Study Area and Rock Samples
3. Measurement and Analysis Methods
3.1. Hydrogeological Characteristics
3.1.1. Permeability
3.1.2. Porosity
3.2. P-Wave Velocity
3.3. Chemical Weathering Indices
3.4. Correlation Analysis
3.5. Rock Matrix and Microcrack Distribution
4. Results and Discussion
4.1. Correlation Between Porosity and Permeability
4.2. Correlation Between P-Wave Velocity and Permeability
4.3. Correlation Between Chemical Weathering Indices and Permeability
4.4. Microcrack Effects on Permeability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zharikov, A.V.; Velichkin, V.I.; Malkovsky, V.I.; Shmonov, V.M. Experimental Study of Crystalline-Rock Permeability: Implications for Underground Radioactive Waste Disposal. Water Resour. 2014, 41, 881–895. [Google Scholar] [CrossRef]
- Chen, S.; Yang, C.; Wang, G. Evolution of Thermal Damage and Permeability of Beishan Granite. Appl. Therm. Eng. 2017, 110, 1533–1542. [Google Scholar] [CrossRef]
- Konečný, P.; Kožušníková, A. Characterizing Gas Permeability and Pore Properties of Czech Granitic Rocks. Acta Geodyn. Geomater. 2016, 13, 331–338. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Q.; Zhang, Y.; Xue, L.; Kong, F. Porosity and Wave Velocity Evolution of Granite after High-Temperature Treatment: A Review. Environ. Earth. Sci. 2018, 77, 1–13. [Google Scholar] [CrossRef]
- Montoto San Miguel, M. Characterization of Water Pathways in Low Permeable Rocks at the Rock Matrix Scale: Methodological Review. J. Iber. Geol. 2006, 32, 197–214. [Google Scholar]
- Tsang, C.F.; Neretnieks, I.; Tsang, Y. Hydrologic Issues Associated with Nuclear Waste Repositories. Water Resour. Res. 2015, 51, 6923–6972. [Google Scholar] [CrossRef]
- Cao, X.; Hu, L.; Wang, J.; Wang, J. Regional Groundwater Flow Assessment in a Prospective High-Level Radioactive Waste Repository of China. Water 2017, 9, 551. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Wei, K.; Hu, R.; Zhou, C.; Jing, L. Experimental Characterization and Micromechanical Modeling of Damage-Induced Permeability Variation in Beishan Granite. Int. J. Rock Mech. Min. Sci. 2014, 71, 64–76. [Google Scholar] [CrossRef]
- Delage, P. On the Thermal Impact on the Excavation Damaged Zone around Deep Radioactive Waste Disposal. J. Rock Mech. Geotech. Eng. 2013, 5, 179–190. [Google Scholar] [CrossRef]
- Liu, L.; Xu, W.Y.; Wang, H.L.; Wang, W.; Wang, R.B. Permeability Evolution of Granite Gneiss During Triaxial Creep Tests. Rock Mech. Rock Eng. 2016, 49, 3455–3462. [Google Scholar] [CrossRef]
- Yasuhara, H.; Kinoshita, N.; Ogata, S.; Cheon, D.S.; Kishida, K. Coupled Thermo-Hydro-Mechanical-Chemical Modeling by Incorporating Pressure Solution for Estimating the Evolution of Rock Permeability. Int. J. Rock Mech. Min. Sci. 2016, 86, 104–114. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Wang, Y.; San, J.; Li, Q.; Foster, G. Synthetic Process on Hydroxyl-Containing Polydimethylsiloxane as a Thickener in CO2 Fracturing and Thickening Performance Test. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 1137–1143. [Google Scholar] [CrossRef]
- Li, Q.; Han, Y.; Liu, X.; Ansari, U.; Cheng, Y.; Yan, C. Hydrate as a By-Product in CO2 Leakage during the Long-Term Sub-Seabed Sequestration and Its Role in Preventing Further Leakage. Environ. Sci. Pollut. Res. 2022, 29, 77737–77754. [Google Scholar] [CrossRef] [PubMed]
- Billiotte, J.; Yang, D.; Su, K. Experimental Study on Gas Permeability of Mudstones. Phys. Chem. Earth 2008, 33, S231–S236. [Google Scholar] [CrossRef]
- Xie, M.; Mayer, K.U.; Claret, F.; Alt-Epping, P.; Jacques, D.; Steefel, C.; Chiaberge, C.; Simunek, J. Implementation and Evaluation of Permeability-Porosity and Tortuosity-Porosity Relationships Linked to Mineral Dissolution-Precipitation. Comput. Geosci. 2015, 19, 655–671. [Google Scholar] [CrossRef]
- Kubo, T.; Matsuda, N.; Kashiwaya, K.; Koike, K.; Ishibashi, M.; Tsuruta, T.; Matsuoka, T.; Sasao, E.; Lanyon, G.W. Characterizing the Permeability of Drillhole Core Samples of Toki Granite, Central Japan to Identify Factors Influencing Rock-Matrix Permeability. Eng. Geol. 2019, 259, 105163. [Google Scholar] [CrossRef]
- Nara, Y.; Meredith, P.G.; Yoneda, T.; Kaneko, K. Influence of Macro-Fractures and Micro-Fractures on Permeability and Elastic Wave Velocities in Basalt at Elevated Pressure. Tectonophysics 2011, 503, 52–59. [Google Scholar] [CrossRef]
- Wang, H.; Pan, J.; Wang, S.; Zhu, H. Relationship between Macro-Fracture Density, P-Wave Velocity, and Permeability of Coal. J. Appl. Geophy. 2015, 117, 111–117. [Google Scholar] [CrossRef]
- Gupta, A.S.; Rao, S.K. Weathering Indices and Their Applicability for Crystalline Rocks. Bull. Eng. Geol. Environ. 2001, 60, 201–221. [Google Scholar] [CrossRef]
- Sharma, A.; Rajamani, V. Major Element, REE, and Other Trace Element Behavior in Amphibolite Weathering under Semiarid Conditions in Southern India. J. Geol. 2000, 108, 487–496. [Google Scholar] [CrossRef]
- Ban, J.-D.; Moon, S.-W.; Lee, S.-W.; Lee, J.-G.; Seo, Y.-S. Physical and Chemical Weathering Indices for Biotite Granite and Granitic Weathered Soil in Gyeongju. J. Eng. Geol. 2017, 27, 451–462. [Google Scholar] [CrossRef]
- Jayawardena, U.d.S.; Izawa, E. A New Chemical Index of Weathering for Metamorphic Silicate Rocks in Tropical Regions: A Study from Sri Lanka. Eng. Geol. 1994, 36, 303–310. [Google Scholar] [CrossRef]
- Lee, S.H.; Chung, C.K.; Song, Y.W.; Woo, S.I. Relationship between Chemical Weathering Indices and Shear Strength of Highly and Completely Weathered Granite in South Korea. Appl. Sci. 2021, 11, 911. [Google Scholar] [CrossRef]
- Tijani, M.N.; Okunlola, O.A.; Abimbola, A.F. Lithogenic Concentrations of Trace Metals in Soils and Saprolites over Crystalline Basement Rocks: A Case Study from SW Nigeria. J. Afr. Earth Sci. 2006, 46, 427–438. [Google Scholar] [CrossRef]
- Talabi, A.O. Weathering of Meta-Igneous Rocks in Parts of the Basement Terrain of Southwestern Nigeria: Implications on Groundwater Occurrence. Int. J. Sci. Res. Publ. 2014, 5, 1–17. [Google Scholar]
- Udagedara, D.T.; Oguchi, C.T.; Gunatilake, A.A.J.K. Combination of Chemical Indices and Physical Properties in the Assessment of Weathering Grades of Sillimanite-Garnet Gneiss in Tropical Environment. Bull. Eng. Geol. Environ. 2017, 76, 145–157. [Google Scholar] [CrossRef]
- Chiu, C.F.; Ng, C.W.W. Relationships between Chemical Weathering Indices and Physical and Mechanical Properties of Decomposed Granite. Eng. Geol. 2014, 179, 76–89. [Google Scholar] [CrossRef]
- Dwivedi, R.D.; Goel, R.K.; Prasad, V.V.R.; Sinha, A. Thermo-Mechanical Properties of Indian and Other Granites. Int. J. Rock Mech. Min. Sci. 2008, 45, 303–315. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Kong, L.; Wang, G.; Liu, H. Chemical Weathering Indices and How They Relate to the Mechanical Parameters of Granite Regolith from Southern China. Catena 2022, 216, 106400. [Google Scholar] [CrossRef]
- Sausse, J.; Jacquot, E.; Fritz, B.; Leroy, J.; Lespinasse, M. Evolution of Crack Permeability during Fluid–Rock Interaction. Example of the Brézouard Granite (Vosges, France). Tectonophysics 2001, 336, 199–214. [Google Scholar] [CrossRef]
- Choi, J. Comparative Analysis of the Joint Properties of Granite and Granitic Gneiss by Depth. Econ. Environ. Geol. 2019, 52, 189–197. [Google Scholar] [CrossRef]
- Jo, H.J.; Cheong, A.C.S.; Yi, K.; Li, X.H. Juxtaposition of Allochthonous Terranes in the Central Korean Peninsula: Evidence from Zircon U-Pb Ages and O-Hf Isotopes in Jurassic Granitoids. Chem. Geol. 2018, 484, 136–147. [Google Scholar] [CrossRef]
- Somerton, W.H.; Söylemezoglu, I.M.; Dudley, R.C. Effect of Stress on Permeability of Coal. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1975, 12, 129–145. [Google Scholar] [CrossRef]
- Klinkenberg, L.J. The Permeability of Porous Media to Liquids and Gases. In Proceedings of the Drilling and Production Practice, New York, NY, USA, 1 January 1941; pp. 200–213. [Google Scholar]
- Chittleborough, D.J. Indices of Weathering for Soils and Palaeosols Formed on Silicate Rocks. Aust. J. Earth Sci. 1991, 38, 115–120. [Google Scholar] [CrossRef]
- Ruxton, B.P. Measures of the Degree of Chemical Weathering of Rocks. J. Geol. 1968, 76, 518–527. [Google Scholar] [CrossRef]
- Irfan, T.Y. Mineralogy, Fabric Properties and Classification of Weathered Granites in Hong Kong. Q. J. Eng. Geol. Hydrogeol. 1996, 29, 5–35. [Google Scholar] [CrossRef]
- Sueoka, T. Identification and Classification of Granitic Residual Soils Using Chemical Weathering Index. In Proceedings of the International Conference on Geomechanics in Tropical Soils, Singapore, 12–14 December 1988; Volume 2, pp. 55–61. [Google Scholar]
- Okewale, I.A. Applicability of Chemical Indices to Characterize Weathering Degrees in Decomposed Volcanic Rocks. Catena 2020, 189, 104475. [Google Scholar] [CrossRef]
- Reiche, P. Graphic Representation of Chemical Weathering. J. Sediment. Res. 1943, 13, 58–68. [Google Scholar] [CrossRef]
- Brace, W.F. Permeability of Crystalline and Argillaceous Rocks. Int. J. Rock Mech. Min. Sci. Geomech. 1980, 17, 241–251. [Google Scholar] [CrossRef]
- David, C.; Menéndez, B.; Darot, M. Influence of Stress-Induced and Thermal Cracking on Physical Properties and Microstructure of La Peyratte Granite. Int. J. Rock Mech. Min. Sci. 1999, 36, 433–448. [Google Scholar] [CrossRef]
- Wang, H.; Xu, W.; Shao, J.; Skoczylas, F. The Gas Permeability Properties of Low-Permeability Rock in the Process of Triaxial Compression Test. Mater. Lett. 2014, 116, 386–388. [Google Scholar] [CrossRef]
- Medina, C.R.; Rupp, J.A.; Barnes, D.A. Effects of Reduction in Porosity and Permeability with Depth on Storage Capacity and Injectivity in Deep Saline Aquifers: A Case Study from the Mount Simon Sandstone Aquifer. Int. J. Greenh. Gas Control. 2011, 5, 146–156. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media; Cambridge University Press: Cambridge, England, 1998. [Google Scholar]
- Schön, J.H. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Wyllie, M.R.J.; Gregory, A.R.; Gardner, G.H.F. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics 1958, 23, 459–493. [Google Scholar] [CrossRef]
- Briški, M.; Stroj, A.; Kosović, I.; Borović, S. Characterization of Aquifers in Metamorphic Rocks by Combined Use of Electrical Resistivity Tomography and Monitoring of Spring Hydrodynamics. Geosciences 2020, 10, 137. [Google Scholar] [CrossRef]
- Gu, X.; Rempe, D.M.; Dietrich, W.E.; West, A.J.; Lin, T.C.; Jin, L.; Brantley, S.L. Chemical Reactions, Porosity, and Microfracturing in Shale during Weathering: The Effect of Erosion Rate. Geochim. Cosmochim. Acta 2020, 269, 63–100. [Google Scholar] [CrossRef]
- Dearman, W.R.; Baynes, F.J.; Irfan, T.Y. Engineering Grading of Weathered Granite. Eng. Geol. 1978, 12, 345–374. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.D. The Relationship between Physical and Chemical Weathering Indices of Granites around Seoul, Korea. Bull. Eng. Geol. Environ. 2003, 62, 207–212. [Google Scholar] [CrossRef]
- Worthington, S.R.H.; Davies, G.J.; Alexander, E.C. Enhancement of Bedrock Permeability by Weathering. Earth. Sci. Rev. 2016, 160, 188–202. [Google Scholar] [CrossRef]
- Nishimoto, S.; Yoshida, H. Hydrothermal Alteration of Deep Fractured Granite: Effects of Dissolution and Precipitation. Lithos 2010, 115, 153–162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Jeong, S.; Jang, S.; Lee, J.; Ko, K.; Yang, M. Influence of Chemical Weathering and Microcracks on Permeability Variations in Crystalline Rocks. Water 2024, 16, 3007. https://doi.org/10.3390/w16203007
Park J, Jeong S, Jang S, Lee J, Ko K, Yang M. Influence of Chemical Weathering and Microcracks on Permeability Variations in Crystalline Rocks. Water. 2024; 16(20):3007. https://doi.org/10.3390/w16203007
Chicago/Turabian StylePark, Jinyoung, Seongwoo Jeong, Seonggan Jang, Juyeon Lee, Kyoungtae Ko, and Minjune Yang. 2024. "Influence of Chemical Weathering and Microcracks on Permeability Variations in Crystalline Rocks" Water 16, no. 20: 3007. https://doi.org/10.3390/w16203007
APA StylePark, J., Jeong, S., Jang, S., Lee, J., Ko, K., & Yang, M. (2024). Influence of Chemical Weathering and Microcracks on Permeability Variations in Crystalline Rocks. Water, 16(20), 3007. https://doi.org/10.3390/w16203007