The Evolution of Potable Water Security: A Temporal Analysis of Key Indices and Trends
Abstract
:1. Introduction
2. Methodology
2.1. Heatmap Generation Process
2.1.1. Identification of Indices
2.1.2. Defining the Key Characteristics
2.1.3. Scoring Process
2.1.4. Data Input
2.1.5. Heatmap Visualization
3. Results
3.1. Comparing and Critically Analyzing Major Water Security Indices, 1980s–1990s
3.2. Comparing and Critically Analyzing Major Water Security Indices, 2000s–2010s
3.3. Comparing and Critically Analyzing Major Water Security Indices, 2010s–2020s
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nounkeu, C.D.; Dharod, J.M. Status on the Scale Development to Measure Water Insecurity Experiences at the Household Level: A Narrative Review. Adv. Nutr. Int. Rev. J. 2019, 10, 864–875. [Google Scholar] [CrossRef] [PubMed]
- Dinka, M.O. Safe Drinking Water: Concepts, Benefits, Principles and Standards. In Water Challenges of an Urbanizing World; Glavan, M., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Srinivasan, V.; Konar, M.; Sivapalan, M. A dynamic framework for water security. Water Secur. 2017, 1, 12–20. [Google Scholar] [CrossRef]
- Visser-Quinn, A.; Beevers, L.; Lau, T.; Gosling, R. Mapping future water scarcity in a water abundant nation: Near-term projections for Scotland. Clim. Risk Manag. 2021, 32, 100302. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Jones, E.R.; Flörke, M.; Franssen, W.H.P.; Hanasaki, N.; Wada, Y.; Yearsley, J.R. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 2021, 16, 024020. [Google Scholar] [CrossRef]
- Grillos, T.; Zarychta, A.; Nuñez, J.N. Water scarcity & procedural justice in Honduras: Community-based management meets market-based policy. World Dev. 2021, 142, 105451. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Belle, J.A.; Olusola, A.O.; Busayo, E.T.; Ololade, O.O. Spatial assessment of drought disasters, vulnerability, severity and water shortages: A potential drought disaster mitigation strategy. Nat. Hazards 2021, 105, 2735–2754. [Google Scholar] [CrossRef]
- Orimoloye, I.; Ololade, O.; Mazinyo, S.; Kalumba, A.; Ekundayo, O.; Busayo, E.; Akinsanola, A.; Nel, W. Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon 2019, 5, e02148. [Google Scholar] [CrossRef]
- Petruzzello, M. Water Scarcity. Encyclopedia Britannica. Available online: https://www.britannica.com/topic/water-scarcity (accessed on 13 September 2024).
- UN, W. The United Nations World Water Development Report 2018. Technol. Water Treat. 2018, 4, 34. [Google Scholar]
- Ismail, Z.; Go, Y.I. Fog-to-Water for Water Scarcity in Climate-Change Hazards Hotspots: Pilot Study in Southeast Asia. Glob. Chall. 2021, 5, 2000036. [Google Scholar] [CrossRef]
- Alobireed, A. Global Water Desalination: A Comparison between Saudi Arabia and The United States of America. Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, PA, USA, 2021. Available online: http://d-scholarship.pitt.edu/id/eprint/40982 (accessed on 13 September 2024).
- Egbueri, J.C.; Agbasi, J.C. Data-driven soft computing modeling of groundwater quality parameters in southeast Nigeria: Comparing the performances of different algorithms. Environ. Sci. Pollut. Res. 2022, 29, 38346–38373. [Google Scholar] [CrossRef]
- Persson, L.; Almroth, B.M.C.; Collins, C.D.; Cornell, S.; de Wit, C.A.; Diamond, M.L.; Fantke, P.; Hassellöv, M.; MacLeod, M.; Ryberg, M.W.; et al. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Environ. Sci. Technol. 2022, 56, 1510–1521. [Google Scholar] [CrossRef] [PubMed]
- Wwap, U. WWAP (United Nations World Water Assessment Programme); Unesco: Paris, France, 2017. [Google Scholar]
- Baba, A.; Gündüz, O. Effect of Geogenic Factors on Water Quality and Its Relation to Human Health around Mount Ida, Turkey. Water 2017, 9, 66. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbágy, E.G.; Brizuela, A.B.; Jackson, R.B. The hydrologic consequences of land cover change in central Argentina. Agric. Ecosyst. Environ. 2012, 154, 2–11. [Google Scholar] [CrossRef]
- Schwärzel, K.; Zhang, L.; Montanarella, L.; Wang, Y.; Sun, G. How afforestation affects the water cycle in drylands: A process-based comparative analysis. Glob. Chang. Biol. 2020, 26, 944–959. [Google Scholar] [CrossRef]
- Stringer, L.C.; Mirzabaev, A.; Benjaminsen, T.A.; Harris, R.M.; Jafari, M.; Lissner, T.K.; Stevens, N.; der Pahlen, C.T.-V. Climate change impacts on water security in global drylands. One Earth 2021, 4, 851–864. [Google Scholar] [CrossRef]
- Dasgupta, A.; Sen, D.S. Terrestrial water system and hydrological cycle alteration antecedent to adverse climate change in indian sub-continent a literature review. Asian J. Sci. Technol. 2021, 12, 11939–11945. [Google Scholar]
- Nolte, A.; Eley, M.; Schöniger, M.; Gwapedza, D.; Tanner, J.; Mantel, S.K.; Scheihing, K. Hydrological modelling for assessing spatio-temporal groundwater recharge variations in the water-stressed Amathole Water Supply System, Eastern Cape, South Africa. Hydrol. Process. 2021, 35, e14264. [Google Scholar] [CrossRef]
- Enderlein, R.; Bernardini, F. Nature for water: Ecosystem services and water management. Nat. Resour. Forum 2005, 29, 253–255. [Google Scholar] [CrossRef]
- Tsegaye, S.; Gallagher, K.C.; Missimer, T.M. Coping with future change: Optimal design of flexible water distribution systems. Sustain. Cities Soc. 2020, 61, 102306. [Google Scholar] [CrossRef]
- Burak, S.; Mat, H. Municipal water demand and efficiency analysis: Case studies in Turkey. Water Policy 2009, 12, 695–706. [Google Scholar] [CrossRef]
- Young, S.L.; Boateng, G.O.; Jamaluddine, Z.; Miller, J.D.; Frongillo, E.A.; Neilands, T.B.; Collins, S.M.; Wutich, A.; Jepson, W.E.; Stoler, J. The Household Water InSecurity Experiences (HWISE) Scale: Development and validation of a household water insecurity measure for low-income and middle-income countries. BMJ Glob. Health 2019, 4, e001750. [Google Scholar] [CrossRef]
- Wutich, A.; Budds, J.; Eichelberger, L.; Geere, J.; Harris, L.M.; Horney, J.A.; Jepson, W.; Norman, E.; O’Reilly, K.; Pearson, A.L.; et al. Advancing methods for research on household water insecurity: Studying entitlements and capabilities, socio-cultural dynamics, and political processes, institutions and governance. Water Secur. 2017, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rosinger, A.Y.; Young, S.L. The toll of household water insecurity on health and human biology: Current understandings and future directions. WIREs Water 2020, 7, e1468. [Google Scholar] [CrossRef]
- Kansal, M.L.; Gaur, A. Expert System Based Water Sustainability Index. In Proceedings of the World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, Palm Springs, CA, USA, 22–26 May 2011. [Google Scholar]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches: Aspects of vulnerability in semi-arid development. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A.K. Potential influence of climate and variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator. J. Environ. Manag. 2018, 228, 346–362. [Google Scholar] [CrossRef]
- Norman, E.S.; Dunn, G.; Bakker, K.; Allen, D.M.; de Albuquerque, R.C. Water Security Assessment: Integrating Governance and Freshwater Indicators. Water Resour. Manag. 2013, 27, 535–551. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Schwetschenau, S.E.; Schubert, A.; Smith, R.J.; Guikema, S.; Love, N.G.; McElmurry, S.P. Improved Decision-Making: A Sociotechnical Utility-Based Framework for Drinking Water Investment. ACS EST Eng. 2022, 2, 1475–1490. [Google Scholar] [CrossRef]
- Prabha, A.S.; Ram, A.; Irfan, Z.B. Exploring the relative water scarcity across the Indian million-plus urban agglomerations: An application of the Water Poverty Index. HydroResearch 2020, 3, 134–145. [Google Scholar] [CrossRef]
- Sullivan, C.A.; Meigh, J.R.; Giacomello, A.M. The Water Poverty Index: Development and application at the community scale. Nat. Resour. Forum 2003, 27, 189–199. [Google Scholar] [CrossRef]
- Alessa, L.; Kliskey, A.; Lammers, R.; Arp, C.; White, D.; Hinzman, L.; Busey, R. The arctic water resource vulnerability index: An integrated assessment tool for community resilience and vulnerability with respect to freshwater. Environ. Manag. 2008, 42, 523–541. [Google Scholar] [CrossRef] [PubMed]
- Chaves, H.M.L.; Alipaz, S. An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resour. Manag. 2007, 21, 883–895. [Google Scholar] [CrossRef]
- Wagener, T.; Sivapalan, M.; Troch, P.A.; McGlynn, B.L.; Harman, C.J.; Gupta, H.V.; Kumar, P.; Rao, P.S.C.; Basu, N.B.; Wilson, J.S. The future of hydrology: An evolving science for a changing world. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Sullivan, C.; Meigh, J. Targeting attention on local vulnerabilities using an integrated index approach: The example of the climate vulnerability index. Water Sci. Technol. 2005, 51, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Attari, J.; Mojahedi, S. Water Sustainability Index: Application of CWSI for Ahwaz County. In Proceedings of the World Environmental and Water Resources Congress 2009: Great Rivers, Kansas City, MI, USA, 17–21 May 2009; pp. 1–7. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhu, J.W.; Xie, J.C.; Liu, J.L.; Jiang, R.G. Selection of an evaluation index for water ecological civilizations of water-shortage cities based on the grey rough set. IOP Conf. Ser. Earth Environ. Sci. 2017, 82, 012079. [Google Scholar] [CrossRef]
- Garcia, C.A.B.; Silva, I.S.; Mendonça, M.C.S.; Garcia, H.L. Evaluation of Water Quality Indices: Use, Evolution and Future Perspectives. In Advances in Environmental Monitoring and Assessment; Sarvajayakesavalu, S., Ed.; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Asian Development Bank, Asian Water Development Outlook 2020. Available online: https://www.adb.org/publications/asian-water-development-outlook-2020 (accessed on 31 January 2023).
- Shrestha, S.; Aihara, Y.; Bhattarai, A.P.; Bista, N.; Kondo, N.; Futaba, K.; Nishida, K.; Shindo, J. Development of an objective water security index and assessment of its association with quality of life in urban areas of developing countries. SSM-Popul. Health 2018, 6, 276–285. [Google Scholar] [CrossRef]
- Ahmed, A.; Srikanth, R. Application of Geospatial Techniques and the MCDM Method to Optimize Interlinking of Rivers in India. J. Indian Soc. Remote Sens. 2023, 51, 849–863. [Google Scholar] [CrossRef]
- Assefa, Y.T.; Babel, M.S.; Sušnik, J.; Shinde, V.R. Development of a Generic Domestic Water Security Index, and Its Application in Addis Ababa, Ethiopia. Water 2018, 11, 37. [Google Scholar] [CrossRef]
- Moglia, M.; Burn, S.; Tjandraatmadja, G. Vulnerability of water services in Pacific Island countries: Combining methodologies and judgment. Water Sci. Technol. 2009, 60, 1621–1631. [Google Scholar] [CrossRef]
- Howlett, M.P.; Cuenca, J.S. The use of indicators in environmental policy appraisal: Lessons from the design and evolution of water security policy measures. J. Environ. Policy Plan. 2017, 19, 229–243. [Google Scholar] [CrossRef]
- Robinne, F.-N.; Bladon, K.D.; Miller, C.; Parisien, M.-A.; Mathieu, J.; Flannigan, M.D. A spatial evaluation of global wildfire-water risks to human and natural systems. Sci. Total. Environ. 2018, 610–611, 1193–1206. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Sagasta, J. Water Reuse: A Potential Game-Changer for Water Security in the Middle East and North Africa. IWMI. Available online: https://www.iwmi.cgiar.org/blogs/water-reuse-a-potential-game-changer-for-water-security-in-the-middle-east-and-north-africa/ (accessed on 17 October 2024).
- Garrick, D.; Hall, J.W. Water Security and Society: Risks, Metrics, and Pathways. Annu. Rev. Environ. Resour. 2014, 39, 611–639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhargavan, J.; Ayikkara Kizhakkayil, K. The Evolution of Potable Water Security: A Temporal Analysis of Key Indices and Trends. Water 2024, 16, 3023. https://doi.org/10.3390/w16213023
Bhargavan J, Ayikkara Kizhakkayil K. The Evolution of Potable Water Security: A Temporal Analysis of Key Indices and Trends. Water. 2024; 16(21):3023. https://doi.org/10.3390/w16213023
Chicago/Turabian StyleBhargavan, Jasna, and Kasthurba Ayikkara Kizhakkayil. 2024. "The Evolution of Potable Water Security: A Temporal Analysis of Key Indices and Trends" Water 16, no. 21: 3023. https://doi.org/10.3390/w16213023
APA StyleBhargavan, J., & Ayikkara Kizhakkayil, K. (2024). The Evolution of Potable Water Security: A Temporal Analysis of Key Indices and Trends. Water, 16(21), 3023. https://doi.org/10.3390/w16213023