Ecological Environment Assessment System in River–Riparian Areas Based on a Protocol for Hydromorphological Quality Evaluation
Abstract
:1. Introduction
2. Methodology
2.1. New Index System
2.2. Comprehensive Evaluation Method
3. Results
3.1. Parameter Acquisition
3.2. Evaluation Result
4. Discussion
4.1. Comparison and Validation of the Method
4.2. Hydromorphological Assessment Aspects
4.3. Complexity of the Hydromorphological Assessment
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- González del Tánago, M.; Martínez-Fernández, V.; Aguiar, F.C.; Bertoldi, W.; Dufour, S.; García de Jalón, D.; Garófano-Gómez, V.; Mandzukovski, D.; Rodríguez-González, P.M. Improving river hydromorphological assessment through better integration of riparian vegetation: Scientific evidence and guidelines. J. Environ. Manag. 2021, 292, 112730. [Google Scholar] [CrossRef] [PubMed]
- Kiraga, M.J.; Markiewicz, A. A proposed quantitative method for assessing the impact of river regulation on its hydromorphological status. J. Water Land Dev. 2023, 57, 98–106. [Google Scholar] [CrossRef]
- Brooker, M.P. The Ecological Effects of Channelization. Geogr. J. 2016, 151, 63–69. [Google Scholar] [CrossRef]
- Schmutz, S.; Sendzimir, J. Challenges in Riverine Ecosystem Management. In River Ecosystem Management: Science for Governing Towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 1, pp. 1–18. [Google Scholar]
- Zhou, T.; Endreny, T. The straightening of a river meander leads to extensive losses in flow complexity and ecosystem services. Water J. 2020, 12, 1680. [Google Scholar] [CrossRef]
- Lan, D.; Rui-Hong, Y. New grassland riparian zone delineation method for calculating ecological water demand to guide management goals. River Res. Appl. 2020, 36, 1838–1851. [Google Scholar] [CrossRef]
- Nilsson, C.; Berggren, K. Alterations of riparian ecosystems caused by river regulation. Bioscience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Singh, R.; Tiwari, A.K.; Singh, G.S. Managing riparian zones for river health improvement: An integrated approach. Landsc. Ecol. Eng. 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Aranda, J.Á.; Beneyto, C.; Sánchez-Juny, M.; Bladé, E. Efficient design of road drainage systems. Water 2021, 13, 1661. [Google Scholar] [CrossRef]
- Pal, S.; Talukdar, S.; Ghosh, R. Damming effect on habitat quality of riparian corridor. Ecol. Indic. 2020, 114, 106300. [Google Scholar] [CrossRef]
- Kiss, T.; Nagy, J.; Fehérváry, I.; Vaszkó, C. (Mis) management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Sci. Total Environ. 2019, 686, 931–945. [Google Scholar] [CrossRef]
- Rowiński, P.M.; Västilä, K.; Aberle, J.; Järvelä, J.; Kalinowska, M.B. How vegetation can aid in coping with river management challenges: A brief review. Ecohydrol. Hydrobiol. 2018, 18, 345–354. [Google Scholar] [CrossRef]
- Zaharia, L.; Ioana-Toroimac, G.; Moroşanu, G.A.; Gălie, A.C.; Moldoveanu, M.; Čanjevac, I.; Belleudy, P.; Plantak, M.; Buzjak, N.; Bočić, N.; et al. Review of national methodologies for rivers’ hydromorphological assessment: A comparative approach in France, Romania, and Croatia. J. Environ. Manag. 2018, 217, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Burgos, E.; Bardina, M.; Sola, C.; Real, M.; Capela, J.; Munné, A. Hydromorphological Methodologies to Assess Ecological Status in Mediterranean Rivers: Applied Approach to the Catalan River Basin District. In Handbook of Environmental Chemistry; Damia, B., Andrey G., K., Eds.; Springer: Cham, Switzerland, 2015; Volume 42, pp. 221–248. [Google Scholar]
- Fry, J.; Steiner, F.R.; Green, D.M. Riparian evaluation and site assessment in Arizona. Landsc. Urban Plan. 1994, 28, 179–199. [Google Scholar] [CrossRef]
- Bjorkland, R.; Pringle, C.M.; Newton, B. A stream visual assessment protocol (SVAP) for riparian landowners. Environ. Monit. Assess. 2001, 68, 99–125. [Google Scholar] [CrossRef]
- Munné, A.; Prat, N.; Solà, C.; Bonada, N.; Rieradevall, M. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat. Conserv. Mar. Freshw. Ecosyst. 2003, 13, 147–163. [Google Scholar] [CrossRef]
- Ducros, C.M.J.; Joyce, C.B. Field-based evaluation tool for riparian buffer zones in agricultural catchments. Environ. Manag. 2003, 32, 252–267. [Google Scholar] [CrossRef]
- Del Tánago, M.G.; De Jalón, D.G. Attributes for assessing the environmental quality of riparian zones. Limnetica 2006, 25, 389–402. [Google Scholar] [CrossRef]
- González del Tánago, M.; García de Jalón, D. Riparian Quality Index (RQI): A methodology for characterising and assessing the environmental conditions of riparian zones. Limnetica 2001, 30, 235–254. [Google Scholar] [CrossRef]
- Macfarlane, W.W.; Gilbert, J.T.; Gilbert, J.D.; Saunders, W.C.; Hough-Snee, N.; Hafen, C.; Wheaton, J.M.; Bennett, S.N. What are the Conditions of Riparian Ecosystems? Identifying Impaired Floodplain Ecosystems across the Western U.S. Using the Riparian Condition Assessment (RCA) Tool. Environ. Manag. 2018, 62, 548–570. [Google Scholar] [CrossRef]
- Majumdar, A.; Avishek, K. Riparian Zone Assessment and Management: An Integrated Review Using Geospatial Technology. Water Air Soil Pollut. 2023, 234, 319. [Google Scholar] [CrossRef]
- Pace, G.; Gutiérrez-Cánovas, C.; Henriques, R.; Carvalho-Santos, C.; Cássio, F.; Pascoal, C. Remote sensing indicators to assess riparian vegetation and river ecosystem health. Ecol. Indic. 2022, 144, 109519. [Google Scholar] [CrossRef]
- Segura-Méndez, F.J.; Pérez-Sánchez, J.; Senent-Aparicio, J. Evaluating the riparian forest quality index (QBR) in the Luchena River by integrating remote sensing, machine learning and GIS techniques. Ecohydrol. Hydrobiol. 2023, 23, 469–483. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Buijse, A.D.; Gurnell, A.M.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2015, 73, 2079–2100. [Google Scholar] [CrossRef]
- Raven, P.J.; Holmes, N.T.H.; Charrier, P.; Dawson, F.H.; Naura, M.; Boon, P.J. Towards a harmonized approach for hydromorphological assessment of rivers in Europe: A qualitative comparison of three survey methods. Aquat. Conserv. Mar. Freshw. Ecosyst. 2002, 12, 405–424. [Google Scholar] [CrossRef]
- Šípek, V.; Matoušková, M.; Dvořák, M. Comparative analysis of selected hydromorphological assessment methods. Environ. Monit. Assess. 2010, 169, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Kamp, U.; Binder, W.; Hölzl, K. River habitat monitoring and assessment in Germany. Environ. Monit. Assess. 2007, 127, 209–226. [Google Scholar] [CrossRef]
- Stefanidis, K.; Kouvarda, T.; Latsiou, A.; Papaioannou, G.; Gritzalis, K.; Dimitriou, E. A Comparative Evaluation of Hydromorphological Assessment Methods Applied in Rivers of Greece. Hydrology 2022, 9, 43. [Google Scholar] [CrossRef]
- Northern Ireland Envi Agency. River Hydromorphology Assessment Technique (RHAT) Training Manual—Version 2. 2014. Available online: https://www.daera-ni.gov.uk/sites/default/files/publications/doe/water-guidance-river-hydromorphology-assessment-technique-training-manual-version-2-2014.pdf (accessed on 10 March 2014).
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). Geomorphology 2013, 180–181, 96–108. [Google Scholar] [CrossRef]
- Catalan Water Agency. Protocol d’Avaluació de la Qualitat Biològica. 2006. Available online: https://aca.gencat.cat/web/.content/20_Aigua/05_seguiment_i_control/01_protocols/03_Protocol_rius.pdf (accessed on 4 April 2006).
- Ramos-Fuertes, A.; Marti-Cardona, B.; Bladé, E.; Dolz, J. Envisat/ASAR Images for the Calibration of Wind Drag Action in the Doñana Wetlands 2D Hydrodynamic Model. Remote Sens. 2013, 6, 379–406. [Google Scholar] [CrossRef]
- Duo, L.; Castellet, E.B.; Juny, M.S.; Ramos, M.S. Delineation of riparian areas based on the application of two-dimension hydraulic modelling. Sci. Total Environ. 2024, 920, 170809. [Google Scholar] [CrossRef]
- Raven, P.J.; Holmes, N.T.H.; Dawson, F.H.; Everard, M. Quality assessment using River Habitat Survey data. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 477–499. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Ayan, B.; Abacıoğlu, S.; Basilio, M.P. A Comprehensive Review of the Novel Weighting Methods for Multi-Criteria Decision-Making. Information 2023, 14, 285. [Google Scholar] [CrossRef]
- Paradowski, B.; Shekhovtsov, A.; Sałabun, W.; Bączkiewicz, A.; Kizielewicz, B. Similarity analysis of methods for objective determination of weights in multi-criteria decision support systems. Symmetry 2021, 13, 1874. [Google Scholar] [CrossRef]
- Singh, M.; Pant, M. A review of selected weighing methods in MCDM with a case study. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 126–144. [Google Scholar] [CrossRef]
- Adalı, E.A.; Işık, A.T. Critic and Maut Methods for the Contract Manufacturer Selection Problem. Eur. Proc. Multidiscip. Sci. 2017, 5, 93. [Google Scholar] [CrossRef]
- Deng, H.; Yeh, C.H.; Willis, R.J. Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res. 2000, 27, 963–973. [Google Scholar] [CrossRef]
- Zoraghi, N.; Amiri, M.; Talebi, G.; Zowghi, M. A fuzzy MCDM model with objective and subjective weights for evaluating service quality in hotel industries. J. Ind. Eng. Int. 2013, 9, 38. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of Entropy Weight Method in Decision-Making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Determination of objective weights using a new method based on the removal effects of criteria (Merec). Symmetry 2021, 13, 525. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A modified critic method to estimate the objective weights of decision criteria. Symmetry 2021, 13, 973. [Google Scholar] [CrossRef]
- Mukhametzyanov, I.Z. Specific character of objective methods for determining weights of criteria in MCDM problems: Entropy, CRITIC, SD. Decis. Mak. Appl. Manag. Eng. 2021, 4, 76–105. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, F. A group-decision-making framework for evaluating urban flood resilience: A case study in yangtze river. Sustainability 2021, 13, 665. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Xing, L.; Xue, M.; Hu, M. Dynamic simulation and assessment of the coupling coordination degree of the economy–resource–environment system: Case of Wuhan City in China. J. Environ. Manag. 2019, 230, 474–487. [Google Scholar] [CrossRef]
- Kan, D.; Yao, W.; Lyu, L.; Huang, W. Temporal and Spatial Difference Analysis and Impact Factors of Water Ecological Civilization Level: Evidence from Jiangxi Province, China. Land 2022, 11, 1459. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Peng, B.; Sheng, X.; Wei, G. Does environmental protection promote economic development? From the perspective of coupling coordination between environmental protection and economic development. Environ. Sci. Pollut. Res. Int. 2020, 27, 39135–39148. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, R.; Wang, F.; Huang, H.; Wang, J. Investigation on spatial and temporal variation of coupling coordination between socioeconomic and ecological environment: A case study of the Loess Plateau, China. Ecol. Indic. 2022, 136, 108667. [Google Scholar] [CrossRef]
- Ye, Y.; Qiu, H. Environmental and social benefits, and their coupling coordination in urban wetland parks. Urban For. Urban Green 2021, 60, 127043. [Google Scholar] [CrossRef]
- Cui, X.; Fang, C.; Liu, H.; Liu, X.; Li, Y. Dynamic simulation of urbanization and eco-environment coupling: Current knowledge and future prospects. J. Geogr. Sci. 2020, 30, 333–352. [Google Scholar] [CrossRef]
- Asaeedi, S.; Didehvar, F.; Mohades, A. α-Concave hull, a generalization of convex hull. Theor. Comput. Sci. 2017, 702, 48–59. [Google Scholar] [CrossRef]
- Durmaz, E.; Akan, Ş.; Bakir, M. Service quality and financial performance analysis in low-cost airlines: An integrated multi-criteria quadrant application. Int. J. Econ. Bus. Res. 2020, 20, 168–191. [Google Scholar] [CrossRef]
- Krishnan, A.R.; Hamid, R.; Kasim, M.M. An Unsupervised Technique to Estimate λ0-Fuzzy Measure Values and Its Application to Multi-criteria Decision Making. In Proceedings of the 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA), Bangkok, Thailand, 27 May 2020. [Google Scholar]
- Vujicic, M.; Papic, M.; Blagojevic, M. Comparative analysis of objective techniques for criteria weighing in two MCDM methods on example of an air conditioner selection. Tehnika 2017, 72, 422–429. [Google Scholar] [CrossRef]
- Lai, Z.; Ge, D.; Xia, H.; Yue, Y.; Wang, Z. Coupling coordination between environment, economy and tourism: A case study of China. PLoS ONE 2020, 15, e0228426. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Y.; Wang, R. Coupling and Coordination Relationship between Economic and Ecologic-Environmental Developments in China’s Key State-Owned Forest Areas. Sustainability 2022, 14, 15899. [Google Scholar] [CrossRef]
- Peng, S.; Jin, Y. Study on the Coupling and Coordination Relationship between Urbanization and Ecological Environment in the Yangtze River Economic Belt of China. IOP Conf. Ser. Mater. Sci. Eng. 2019, 562, 012110. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y. Analysis on the coupling coordination degree between regional economy and old-age service—A case study of Sichuan province. J. Phys. Conf. Ser. 2021, 1774, 012022. [Google Scholar] [CrossRef]
- Kan, D.; Yao, W.; Liu, X.; Lyu, L.; Huang, W. Study on the Coordination of New Urbanization and Water Ecological Civilization and Its Driving Factors: Evidence from the Yangtze River Economic Belt, China. Int. J. Environ. Res. Public Health 2022, 19, 9998. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Li, C. Coupling coordination and spatio-temporal pattern evolution between ecological protection and high-quality development in the Yellow River Basin. Heliyon 2023, 9, e21089. [Google Scholar] [CrossRef]
- Department of Territory and Sustainability of the Government of Catalonia, Catalan Water Agency. Qualitat Hidromorfològica dels Rius del Districte de Conca Fluvial de Catalunya. 2012. Available online: https://aca.gencat.cat/web/.content/10_ACA/J_Publicacions/07-estudis-informes/06_PSIC_QualitatHidromorf_Rius_2007_2012.pdf (accessed on 10 March 2014).
- Rinaldi, M.; Belletti, B.; Bussettini, M.; Comiti, F.; Golfieri, B.; Lastoria, B.; Marchese, E.; Nardi, L.; Surian, N. New tools for the hydromorphological assessment and monitoring of European streams. J. Environ. Manag. 2017, 202, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Norris, R.H.; Thoms, M.C. What is river health? Freshw. Biol. 1999, 41, 197–209. [Google Scholar] [CrossRef]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Gorrod, E.J.; Bedward, M.; Keith, D.A.; Ellis, M.V. Systematic underestimation resulting from measurement error in score-based ecological indices. Biol. Conserv. 2013, 157, 266–276. [Google Scholar] [CrossRef]
- Cinelli, M.; Kadziński, M.; Gonzalez, M.; Słowiński, R. How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega 2020, 96, 102261. [Google Scholar] [CrossRef]
- Odu, G.O. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. 2019, 23, 1449–1457. [Google Scholar] [CrossRef]
Category | Method | Focus | Result |
---|---|---|---|
Physical habitat assessment | On-site Survey [27,28] | Channels, banks, floodplains, longitudinal profile, bank structure, erosion, substratum type | Field-based results, expert-agreed scoring classes |
Overview Survey [27,28] | Plan view, vegetation, bank stability, migration barriers, river abstraction | Mapping-based results, expert-agreed scoring classes | |
Riparian habitat assessment | Habitat Quality Assessment (HQA) [2,19] | Substrate, water flow, erosion, sediment characteristics, vegetation types, channel, and riparian zone structure | Software-based results, expert-agreed scoring classes |
Habitat Modification Score (HMS) [2,19] | Modification score for habitat quality | Software-based results, expert-agreed scoring classes | |
Morphological assessment | SYRAH-CE [13] | Pressures on river water bodies in sediment load, flow, and morphology | Expert judgment scoring classes |
Morphological Quality Index (MQI) [31] | Geomorphological features, channel artificiality, channel adjustment, continuity, pattern, cross-section, substrate, vegetation | Scenario-based scoring system | |
Hydrological regime alteration assessment | HYMO-HR [13] | Hydrological regime, river continuity, morphological regime, channel geometry, substrate, vegetation, bank structure, floodplain interactions | Scenario-based scoring system |
HYMO-RO [13] | Hydrological regime, river continuity, longitudinal and lateral connectivity, channel geometry, substrate, bank structure, floodplain interactions | Scenario-based scoring system |
Aspects | Protocol |
---|---|
Hydrological flow regime | Compliance with Maintenance Flows |
Indicators of Hydrologic Alteration (IHA) | |
River continuity | River Connectivity Index |
Fish Communities | |
Morphological condition | Morphological Characterization Parameters |
Channelization Level of the Riverbed | |
River Habitat Index (RHI) | |
Naturalness of Land Uses on Riverbanks | |
Riparian Forest Quality Index (QBR) | |
Fluvial Vegetation Index |
Aspects | Parameters | Physical Meaning | |
---|---|---|---|
Morphological Characterization | Arp | Simulated riparian area | |
SI | Sinuosity index, which is the ratio of the length of the thalweg to the length of the valley | ||
S0 | Channel gradient | ||
Pant | Proportion of the riparian area that is anthropogenically modified | ||
River Connectivity | Vertical | Gw | The mean value of groundwater level changes during a flood event |
Dw | Mean value of the initial groundwater depth | ||
Transversal | F | Flood disturbance (Sample standard deviation of the product of the proportion of the floodplain area to the riparian area and the probability of occurrence of different floods) | |
END | Channelization level | ||
Longitudinal | B | The density of structures crossing the river that form a barrier to longitudinal connectivity | |
Vegetation Coverage | Ab | The area of woody and herbaceous vegetation adjacent to the bush inside of the natural levee along the river channel | |
Abl | The area of bare land inside of the natural levee along the river channel |
Sub-Reach | Morphological Characterization | River Connectivity | Vegetation Coverage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Arp (km2) | SI | S0 | Pant (%) | Gw (m) | Dw (m) | F | END | B | Ab (km2) | Abl (km2) | |
1 | 0.229 | 1.001 | 0.003 | 50.49 | 0.281 | 2.223 | 0.058 | 0.400 | 0 | 0.039 | 0.010 |
2 | 0.593 | 1.001 | 0.003 | 18.28 | 1.306 | 3.148 | 0.028 | 0.288 | 0 | 0.062 | 0.006 |
3 | 0.563 | 1.036 | 0.005 | 5.08 | 1.564 | 3.571 | 0.026 | 0.031 | 0 | 0.050 | 0.008 |
4 | 0.415 | 1.001 | 0.002 | 1.70 | 1.549 | 3.139 | 0.030 | 0 | 0 | 0.044 | 0.004 |
5 | 0.551 | 1.522 | 0.004 | 2.09 | 1.674 | 3.866 | 0.023 | 0.010 | 1 | 0.041 | 0.030 |
6 | 0.594 | 1.385 | 0.002 | 1.16 | 1.289 | 3.895 | 0.017 | 0 | 0 | 0.042 | 0.070 |
7 | 0.283 | 1.001 | 0.003 | 0 | 0.98 | 4.091 | 0.074 | 0 | 0 | 0.085 | 0.038 |
8 | 0.261 | 1.066 | 0.003 | 0.19 | 0.272 | 4.453 | 0.108 | 0.142 | 0 | 0.076 | 0.066 |
9 | 0.424 | 1.057 | 0.003 | 4.12 | 0.052 | 3.575 | 0.044 | 0.104 | 0 | 0.070 | 0.040 |
10 | 0.214 | 1.043 | 0.002 | 9.23 | 0.195 | 3.080 | 0.040 | 0.149 | 0 | 0.062 | 0.040 |
Parameters | Arp | SI | S0 | Pant | Gw | Dw | F | END | B | Ab | Abl |
---|---|---|---|---|---|---|---|---|---|---|---|
Standard deviation | 0.411 | 0.355 | 0.278 | 0.307 | 0.399 | 0.284 | 0.310 | 0.344 | 0.316 | 0.352 | 0.366 |
Information content | 2.132 | 2.021 | 1.853 | 1.828 | 2.047 | 1.447 | 1.710 | 1.684 | 2.356 | 1.934 | 2.093 |
Weight | 10.10% | 9.58% | 8.78% | 8.66% | 9.70% | 6.86% | 8.10% | 7.98% | 11.16% | 9.16% | 9.92% |
Sub-Reach | Morphological Characterization | River Connectivity | Vegetation Coverage | C * | T * | D * | Level of Coordination | Coupling Coordination Degree |
---|---|---|---|---|---|---|---|---|
1 | 0.133 | 0.522 | 0.424 | 0.858 | 0.355 | 0.552 | 6 | Barely maladjusted recession |
2 | 0.563 | 0.679 | 0.716 | 0.995 | 0.642 | 0.799 | 8 | Intermediate coupling coordination |
3 | 0.489 | 0.838 | 0.560 | 0.973 | 0.653 | 0.797 | 8 | Intermediate coupling coordination |
4 | 0.616 | 0.884 | 0.522 | 0.975 | 0.714 | 0.835 | 9 | Good coupling coordination |
5 | 0.795 | 0.632 | 0.310 | 0.929 | 0.634 | 0.768 | 8 | Intermediate coupling coordination |
6 | 0.872 | 0.822 | 0.031 | 0.490 | 0.694 | 0.583 | 6 | Barely maladjusted recession |
7 | 0.462 | 0.660 | 0.760 | 0.979 | 0.603 | 0.768 | 8 | Intermediate coupling coordination |
8 | 0.477 | 0.400 | 0.454 | 0.997 | 0.439 | 0.662 | 7 | Primary coupling coordination |
9 | 0.564 | 0.605 | 0.569 | 1 | 0.583 | 0.763 | 8 | Intermediate coupling coordination |
10 | 0.400 | 0.640 | 0.479 | 0.981 | 0.518 | 0.713 | 8 | Intermediate coupling coordination |
Sub-Reach | Method Proposed in This Paper | MQI | ||
---|---|---|---|---|
Score | Class | Score | Class | |
1 | 0.552 | Barely maladjusted recession | 0.701 | Good |
2 | 0.799 | Intermediate coupling coordination | 0.826 | Good |
3 | 0.797 | Intermediate coupling coordination | 0.847 | Good |
4 | 0.835 | Good coupling coordination | 0.965 | High |
5 | 0.768 | Intermediate coupling coordination | 0.813 | Good |
6 | 0.583 | Barely maladjusted recession | 0.840 | Good |
7 | 0.768 | Intermediate coupling coordination | 0.958 | High |
8 | 0.662 | Primary coupling coordination | 0.931 | High |
9 | 0.763 | Intermediate coupling coordination | 0.868 | High |
10 | 0.713 | Intermediate coupling coordination | 0.924 | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duo, L.; Sánchez-Juny, M.; Bladé i Castellet, E. Ecological Environment Assessment System in River–Riparian Areas Based on a Protocol for Hydromorphological Quality Evaluation. Water 2024, 16, 3025. https://doi.org/10.3390/w16213025
Duo L, Sánchez-Juny M, Bladé i Castellet E. Ecological Environment Assessment System in River–Riparian Areas Based on a Protocol for Hydromorphological Quality Evaluation. Water. 2024; 16(21):3025. https://doi.org/10.3390/w16213025
Chicago/Turabian StyleDuo, Lan, Martí Sánchez-Juny, and Ernest Bladé i Castellet. 2024. "Ecological Environment Assessment System in River–Riparian Areas Based on a Protocol for Hydromorphological Quality Evaluation" Water 16, no. 21: 3025. https://doi.org/10.3390/w16213025
APA StyleDuo, L., Sánchez-Juny, M., & Bladé i Castellet, E. (2024). Ecological Environment Assessment System in River–Riparian Areas Based on a Protocol for Hydromorphological Quality Evaluation. Water, 16(21), 3025. https://doi.org/10.3390/w16213025