Predicting the Deformation of a Concrete Dam Using an Integration of Long Short-Term Memory (LSTM) Networks and Kolmogorov–Arnold Networks (KANs) with a Dual-Stage Attention Mechanism
Abstract
:1. Introduction
2. Models for the Deformation Monitoring of Concrete Dams
2.1. Hydrostatic–Seasonal–Time (HST)
2.2. Long Short-Term Memory (LSTM)
2.3. Attention Mechanism
2.4. Kolmogorov–Arnold Networks (KANs)
2.5. LSTM-KAN with a Dual-Stage Attention Mechanism
- Step 1:
- Identify the input variable x and the output variable y based on the HST model.
- Step 2:
- Normalize the data to a range between 0 and 1, then split the data into training and test sets in a 7:3 ratio.
- Step 3:
- Configure the DA-LSTM-KAN model parameters. The root-mean-square error (RMSE) is selected as the loss function.
- Step 4:
- Train the model using the training dataset and optimize the parameters until the loss value converges.
- Step 5:
- Evaluate the robustness of the trained model using the test dataset.
- Step 6:
- Apply the finalized model for predicting the displacement of the concrete dam.
3. Case Study
4. Results and Discussion
4.1. Hyperparameter Adjustment
4.2. Performance Comparison
4.3. Interpretability Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhong, W.; Li, Y.; Wen, L. A deep learning prediction model of DenseNet-LSTM for concrete gravity dam deformation based on feature selection. Eng. Struct. 2023, 295, 116827. [Google Scholar] [CrossRef]
- Wei, B.; Chen, L.; Li, H.; Yuan, D.; Wang, G. Optimized prediction model for concrete dam displacement based on signal residual amendment. Appl. Math. Model. 2020, 78, 20–36. [Google Scholar] [CrossRef]
- Mata, J.; Tavares de Castro, A.; Sá da Costa, J. Constructing statistical models for arch dam deformation. Struct. Control Health Monit. 2014, 21, 423–437. [Google Scholar] [CrossRef]
- Wang, S.; Gu, C.; Liu, Y.; Gu, H.; Xu, B.; Wu, B. Displacement observation data-based structural health monitoring of concrete dams: A state-of-art review. Structures 2024, 68, 107072. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Sun, L.; Khailah, E.Y.; Wang, J.; Lu, W. A critical review of statistical model of dam monitoring data. J. Build. Eng. 2023, 80, 108106. [Google Scholar] [CrossRef]
- Penot, I.; Daumas, B.; Fabre, J.P. Monitoring behaviour. Int. Water Power Dam Constr. 2005, 57, 24–27. [Google Scholar]
- Léger, P.; Leclerc, M. Hydrostatic, temperature, time-displacement model for concrete dams. J. Eng. Mech. 2007, 133, 267–277. [Google Scholar] [CrossRef]
- Tatin, M.; Briffaut, M.; Dufour, F.; Simon, A.; Fabre, J.P. Statistical modelling of thermal displacements for concrete dams: Influence of water temperature profile and dam thickness profile. Eng. Struct. 2018, 165, 63–75. [Google Scholar] [CrossRef]
- Hu, J.; Ma, F. Statistical modelling for high arch dam deformation during the initial impoundment period. Struct. Control Health Monit. 2020, 27, e2638. [Google Scholar] [CrossRef]
- Deng, N.; Wang, J.G.; Szostak-Chrzanowski, A. Dam deformation analysis using the partial least squares method. In Proceedings of the 13th FIG Int. Symp. on Deformation Measurements and Analysis & 4th IAG Symp. on Geodesy for Geotechnical and Structural Engineering, Lisbon, Portugal, 12–15 May 2008. [Google Scholar]
- Mata, J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Eng. Struct. 2011, 33, 903–910. [Google Scholar] [CrossRef]
- Kao, C.; Loh, C. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct. Control Health Monit. 2013, 20, 282–303. [Google Scholar] [CrossRef]
- Dai, B.; Gu, C.; Zhao, E.; Qin, X. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Struct. Control Health Monit. 2018, 25, e2170. [Google Scholar] [CrossRef]
- Li, X.; Wen, Z.; Su, H. An approach using random forest intelligent algorithm to construct a monitoring model for dam safety. Eng. Comput. 2021, 37, 39–56. [Google Scholar] [CrossRef]
- Liu, M.; Wen, Z.; Zhou, R.; Su, H. Bayesian optimization and ensemble learning algorithm combined method for deformation prediction of concrete dam. In Structures; Elsevier: Amsterdam, The Netherlands, 2023; Volume 54, pp. 981–993. [Google Scholar]
- Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet support vector machine-based prediction model of dam deformation. Mech. Syst. Signal Process. 2018, 110, 412–427. [Google Scholar] [CrossRef]
- Lin, C.; Li, T.; Chen, S.; Liu, X.; Lin, C.; Liang, S. Gaussian process regression-based forecasting model of dam deformation. Neural Comput. Appl. 2019, 31, 8503–8518. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.; Liu, Y.; Wu, B. A spatial association-coupled double objective support vector machine prediction model for diagnosing the deformation behaviour of high arch dams. Struct. Health Monit. 2022, 21, 945–964. [Google Scholar] [CrossRef]
- Kang, F.; Liu, J.; Li, J.; Li, S. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Struct. Control Health Monit. 2017, 24, e1997. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Li, Y.; Wen, L.; Sun, X. AF-OS-ELM-MVE: A new online sequential extreme learning machine of dam safety monitoring model for structure deformation estimation. Adv. Eng. Inform. 2024, 60, 102345. [Google Scholar] [CrossRef]
- Cai, Z.; Yu, J.; Chen, W.; Wang, J.; Wang, X.; Guo, H. Improved extreme learning machine-based dam deformation prediction considering the physical and hysteresis characteristics of the deformation sequence. J. Civ. Struct. Health Monit. 2022, 12, 1173–1190. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, S.F. Multi-scale dam deformation prediction based on empirical mode decomposition and genetic algorithm for support vector machines (GA-SVM). Chin. J. Rock Mech. Eng. 2011, 30 (Suppl. S2), 3681–3688. [Google Scholar]
- Chen, Y.; Gu, C.; Shao, C.; Gu, H.; Zheng, D.; Wu, Z.; Fu, X. An approach using adaptive weighted least squares support vector machines coupled with modified ant lion optimizer for dam deformation prediction. Math. Probl. Eng. 2020, 2020, 9434065. [Google Scholar] [CrossRef]
- Su, H.; Wen, Z.; Sun, X.; Li, H. Rough set-support vector machine-based real-time monitoring model of safety status during dangerous dam reinforcement. Int. J. Damage Mech. 2017, 26, 501–522. [Google Scholar] [CrossRef]
- Dai, B.; Gu, H.; Zhu, Y.; Chen, S.; Rodriguez, E.F. On the Use of an Improved Artificial Fish Swarm Algorithm-Backpropagation Neural Network for Predicting Dam Deformation Behavior. Complexity 2020, 2020, 5463893. [Google Scholar] [CrossRef]
- Kang, F.; Li, J.; Dai, J. Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms. Adv. Eng. Softw. 2019, 131, 60–76. [Google Scholar] [CrossRef]
- Li, M.; Shen, Y.; Ren, Q.; Li, H. A new distributed time series evolution prediction model for dam deformation based on constituent elements. Adv. Eng. Inform. 2019, 39, 41–52. [Google Scholar] [CrossRef]
- Wen, Z.; Zhou, R.; Su, H. MR and stacked GRUs neural network combined model and its application for deformation prediction of concrete dam. Expert Syst. Appl. 2022, 201, 117272. [Google Scholar] [CrossRef]
- Sun, S.; Wang, S.; Wei, Y. A new ensemble deep learning approach for exchange rates forecasting and trading. Adv. Eng. Inform. 2020, 46, 101160. [Google Scholar] [CrossRef]
- Xiang, S.; Qin, Y.; Zhu, C.; Wang, Y.; Chen, H. Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction. Eng. Appl. Artif. Intell. 2020, 91, 103587. [Google Scholar] [CrossRef]
- Qu, X.; Yang, J.; Chang, M. A Deep Learning Model for Concrete Dam Deformation Prediction Based on RS-LSTM. J. Sens. 2019, 2019, 4581672. [Google Scholar] [CrossRef]
- Liu, W.; Pan, J.; Ren, Y.; Wu, Z.; Wang, J. Coupling prediction model for long-term displacements of arch dams based on long short-term memory network. Struct. Control Health Monit. 2020, 27, e2548. [Google Scholar] [CrossRef]
- Yang, S.; Han, X.; Kuang, C.; Fang, W.; Zhang, J.; Yu, T. Comparative Study on Deformation Prediction Models of Wuqiangxi Concrete Gravity Dam Based on Monitoring Data. CMES-Comput. Model. Eng. Sci. 2022, 131, 49–72. [Google Scholar] [CrossRef]
- Tian, K.; Yang, J.; Cheng, L. Deep learning model for the deformation prediction of concrete dams under multistep and multifeature inputs based on an improved autoformer. Eng. Appl. Artif. Intell. 2024, 137, 109109. [Google Scholar] [CrossRef]
- Molnar, C.; Casalicchio, G.; Bischl, B. Interpretable machine learning—A brief history, state-of-the-art and challenges. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer International Publishing: Cham, Switzerland, 2020; pp. 417–431. [Google Scholar]
- Zhu, Y.; Gao, Y.; Wang, Z.; Cao, G.; Wang, R.; Lu, S.; Li, W.; Nie, W.; Zhang, Z. A tailings dam long-term deformation prediction method based on empirical mode decomposition and LSTM model combined with attention mechanism. Water 2022, 14, 1229. [Google Scholar] [CrossRef]
- Yang, D.; Gu, C.; Zhu, Y.; Dai, B.; Zhang, K.; Zhang, Z.; Li, B. A concrete dam deformation prediction method based on LSTM with attention mechanism. IEEE Access 2020, 8, 185177–185186. [Google Scholar] [CrossRef]
- Shu, X.; Bao, T.; Li, Y.; Gong, J.; Zhang, K. VAE-TALSTM: A temporal attention and variational autoencoder-based long short-term memory framework for dam displacement prediction. Eng. Comput. 2022, 38, 3497–3512. [Google Scholar] [CrossRef]
- Ren, Q.; Li, M.; Li, H.; Shen, Y. A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism. Adv. Eng. Inform. 2021, 50, 101407. [Google Scholar] [CrossRef]
- Cai, S.; Gao, H.; Zhang, J.; Peng, M. A self-attention-LSTM method for dam deformation prediction based on CEEMDAN optimization. Appl. Soft Comput. 2024, 159, 111615. [Google Scholar] [CrossRef]
- Jas, K.; Dodagoudar, G.R. Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP. Soil Dyn. Earthq. Eng. 2023, 165, 107662. [Google Scholar] [CrossRef]
- Goudjil, K.; Boukhatem, G.; Boulifa, R.; Bekkouche, S.R.; Djihane, D. Prediction and interpretation of limit pressure of clayey soils using ensemble machine learning methods and shapely additive explanations. Stud. Eng. Exact Sci. 2024, 5, e5567. [Google Scholar] [CrossRef]
- Somala, S.N.; Chanda, S.; AlHamaydeh, M.; Mangalathu, S. Explainable XGBoost–SHAP Machine-Learning Model for Prediction of Ground Motion Duration in New Zealand. Nat. Hazards Rev. 2024, 25, 04024005. [Google Scholar] [CrossRef]
- Matin, S.S.; Pradhan, B. Earthquake-induced building-damage mapping using Explainable AI (XAI). Sensors 2021, 21, 4489. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.C.; Wang, W.J.; Mangalathu, S.; Taciroglu, E. Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls. J. Struct. Eng. 2021, 147, 04021173. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Fattahi, H.; Armaghani, D.J.; Khan, N.M.; Afrazi, M.; Asteris, P.G. Predictive Failure Mode Identification in Reinforced Concrete Flat Slabs Using Advanced Ensemble Neural Networks. Preprint 2024. [Google Scholar] [CrossRef]
- Li, B.; Ning, J.; Yang, S.; Zhang, L. Prediction model for high arch dam stress during the operation period using LightGBM with MSSA and SHAP. Adv. Eng. Softw. 2024, 192, 103635. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.; Tegmark, M. Kan: Kolmogorov-arnold networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Kolmogorov, A.N. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1957; Volume 114, pp. 953–956. [Google Scholar]
- Xu, K.; Chen, L.; Wang, S. Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability. arXiv 2024, arXiv:2406.02496. [Google Scholar]
- Hassan, M.M. Bayesian Kolmogorov Arnold Networks (Bayesian_KANs): A Probabilistic Approach to Enhance Accuracy and Interpretability. arXiv 2024, arXiv:2408.02706. [Google Scholar]
- Hochreiter, S. Long Short-Term Memory; Neural Computation MIT-Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Treisman, A.M.; Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12, 97–136. [Google Scholar] [CrossRef]
- Huang, B.; Kang, F.; Li, J.; Wang, F. Displacement prediction model for high arch dams using long short-term memory based encoder-decoder with dual-stage attention considering measured dam temperature. Eng. Struct. 2023, 280, 115686. [Google Scholar] [CrossRef]
- Su, Y.; Weng, K.; Lin, C.; Chen, Z. Dam deformation interpretation and prediction based on a long short-term memory model coupled with an attention mechanism. Appl. Sci. 2021, 11, 6625. [Google Scholar] [CrossRef]
- Song, J.; Yang, Z.; Li, X. Missing data imputation model for dam health monitoring based on mode decomposition and deep learning. J. Civ. Struct. Health Monit. 2024, 14, 1111–1124. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Chen, H.; Zhang, K.; Shu, X.; Chen, Z.; Hu, Y. A large-scale sensor missing data imputation framework for dams using deep learning and transfer learning strategy. Measurement 2021, 178, 109377. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Johnson, J.W. A heuristic method for estimating the relative weight of predictor variables in multiple regression. Multivar. Behav. Res. 2000, 35, 1–19. [Google Scholar] [CrossRef]
Model | Hyperparameter Values |
---|---|
LSTM | epoch = 200, batch_size = 50, time step = 4, hidden size = 30 |
FA-LSTM | epoch = 200, batch_size = 45, time step = 7, attention dimension = 9, hidden size = 210, dropout rate for attention = 0.1 |
TA-LSTM | epoch = 200, batch_size = 64, time step = 3, hidden size = 150, attention dimension = 150, dropout rate for attention = 0.1 |
DA-LSTM | epoch = 200, batch_size = 24, time step = 4, factor attention dimension = 9, hidden size = 130, time attention dimension = 130, dropout rate for attention = 0.1 |
DA-LSTM-KAN | epoch = 200, batch_size = 32, time step = 5, factor attention dimension = 9, hidden size = 100, time attention dimension = 100, dropout rate for attention = 0.1, number of hidden layers in KAN = 3 |
Model | Training Set | Test Set | ||||||
---|---|---|---|---|---|---|---|---|
AEmax | RMSE | AEmean | QR (%) | AEmax | RMSE | AEmean | QR (%) | |
MLR | 0.3547 | 0.2558 | 0.2017 | 87.59 | 0.1277 | 0.3458 | 0.2749 | 61.40 |
LSTM | 0.3015 | 0.2175 | 0.1714 | 91.24 | 0.1022 | 0.2766 | 0.2200 | 80.70 |
FA-LATM | 0.2713 | 0.1957 | 0.1543 | 96.35 | 0.0920 | 0.2490 | 0.1980 | 89.47 |
TA-LATM | 0.2442 | 0.1761 | 0.1389 | 96.35 | 0.0900 | 0.2223 | 0.1831 | 91.23 |
DA-LATM | 0.2198 | 0.1585 | 0.1250 | 97.81 | 0.0318 | 0.2023 | 0.1611 | 89.47 |
DA-LSTM-KAN | 0.1954 | 0.1409 | 0.1111 | 99.27 | 0.0255 | 0.1618 | 0.1289 | 100 |
Model | Training Set | Test Set | ||||||
---|---|---|---|---|---|---|---|---|
AEmax | RMSE | AEmean | QR (%) | AEmax | RMSE | AEmean | QR (%) | |
MLR | 0.1715 | 0.2161 | 0.2146 | 93.51 | 0.2312 | 0.2017 | 0.2009 | 89.47 |
LSTM | 0.3933 | 0.1967 | 0.1532 | 96.75 | 0.2089 | 0.1824 | 0.1817 | 97.37 |
FA-LATM | 0.1454 | 0.1803 | 0.1792 | 100 | 0.1689 | 0.1646 | 0.1633 | 100 |
TA-LATM | 0.1715 | 0.1792 | 0.1783 | 100 | 0.1761 | 0.1658 | 0.1647 | 100 |
DA-LATM | 0.1603 | 0.1656 | 0.1647 | 100 | 0.1723 | 0.1609 | 0.1603 | 100 |
DA-LSTM-KAN | 0.1254 | 0.1524 | 0.1516 | 100 | 0.1518 | 0.1453 | 0.1446 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Liu, X.; Wei, J.; Ai, X.; Li, Z.; He, H. Predicting the Deformation of a Concrete Dam Using an Integration of Long Short-Term Memory (LSTM) Networks and Kolmogorov–Arnold Networks (KANs) with a Dual-Stage Attention Mechanism. Water 2024, 16, 3043. https://doi.org/10.3390/w16213043
Xu R, Liu X, Wei J, Ai X, Li Z, He H. Predicting the Deformation of a Concrete Dam Using an Integration of Long Short-Term Memory (LSTM) Networks and Kolmogorov–Arnold Networks (KANs) with a Dual-Stage Attention Mechanism. Water. 2024; 16(21):3043. https://doi.org/10.3390/w16213043
Chicago/Turabian StyleXu, Rui, Xingyang Liu, Jiahao Wei, Xingxing Ai, Zhanchao Li, and Hairui He. 2024. "Predicting the Deformation of a Concrete Dam Using an Integration of Long Short-Term Memory (LSTM) Networks and Kolmogorov–Arnold Networks (KANs) with a Dual-Stage Attention Mechanism" Water 16, no. 21: 3043. https://doi.org/10.3390/w16213043
APA StyleXu, R., Liu, X., Wei, J., Ai, X., Li, Z., & He, H. (2024). Predicting the Deformation of a Concrete Dam Using an Integration of Long Short-Term Memory (LSTM) Networks and Kolmogorov–Arnold Networks (KANs) with a Dual-Stage Attention Mechanism. Water, 16(21), 3043. https://doi.org/10.3390/w16213043