Estimation of Free-Product PCE Distribution in Thick Multilayered Aquifers as Possible Long-Term Pollution Sources for Shallow and Deep Groundwaters, Using High-Precision Numerical Simulations
Abstract
:1. Introduction
2. Hydrogeological Features and PCE Contamination at the Study Area
2.1. Mathematical Setup and Governing Equations
2.2. Hydrogeological Parameters of the Numerical Model
3. Three-Dimensional Numerical Results
3.1. Geological and Geometric Layers Found Characters
3.2. Numerical Results of the Upstream Scenario of the Parma Alluvial Aquifer
Calculation of the Distribution of PCE Mass in the Upstream Aquifer Scenario
3.3. Numerical Results of the Downstream Scenario of Parma Alluvial Aquifer
Calculation of the Residual PCE Mass in the Downstream Aquifer Scenario
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mackay, D.M.; Cherry, J.A. Groundwater contamination: Pump-and-treat remediation. Environ. Sci. Technol. 1989, 23, 630–636. [Google Scholar] [CrossRef]
- Doherty, R.E. A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the United States. Part 1—Historical background, carbon tetrachloride and tetrachloroethylene. Environ. Forensics 2000, 1, 69–81. [Google Scholar] [CrossRef]
- Mercer, J.W.; Cohen, R.M. A review of immiscible fluids in the subsurface: Properties, models, characterization and remediation. J. Contam. Hydrol. 1990, 6, 107–163. [Google Scholar] [CrossRef]
- Henschler, D. Toxicity of chlorinated organic compounds: Effects of the introduction of chlorine in organic molecules. Angew. Chem. 1994, 33, 1920–1935. [Google Scholar] [CrossRef]
- Volpe, A.; Del Moro, G.; Rossetti, S.; Tandoi, V.; Lopez, A. Remediation of PCE-contaminated groundwater from an industrial site in southern Italy: A laboratory-scale study. Process Biochem. 2007, 42, 1498–1505. [Google Scholar] [CrossRef]
- Guyton, K.Z.; Hogan, K.A.; Scott, C.S.; Cooper, G.S.; Bale, A.S.; Kopylev, L.; Barone, S., Jr.; Makris, S.L.; Glenn, B.; Subramanian, R.P.; et al. Human health effects of tetrachloroethylene: Key findings and scientific issues. Environ. Health Perspect. 2014, 122, 325–334. [Google Scholar] [CrossRef]
- Thomas, J.; Haseman, J.K.; Goodman, J.I.; Ward, J.M.; Loughran, T.P., Jr.; Spencer, P.J. A review of a large granular lymphocytic leukemia in Fisher 344 rats as an initial step toward evaluating the implication of the endpoint to human cancer risk assessment. Toxicol. Sci. 2007, 99, 3–19. [Google Scholar] [CrossRef]
- Lash, L.H.; Parker, J.C. Hepatic and renal toxicities associated with perchloroethylene. Pharmacol. Rev. 2001, 53, 177–208. [Google Scholar]
- Lyman, W.; Reehl, W.; Rosenblatt, D. Handbook of Chemical Properties Estimation Methods-Environmental Behavior of Organic Compound; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
- Mackay, D.; Roberts, P.; Cherry, J. Transport of organic contaminants in groundwater. Environ. Sci. Technol. 1985, 19, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.; Lenhard, R.; Kuppusamy, T. A parametric model for constitutive properties governing multiphase flow in porous media. Water Resour. Res. 1987, 23, 618–624. [Google Scholar] [CrossRef]
- Kueper, B.; Frind, E. An overview of immiscible fingering in porous media. J. Contam. Hydrol. 1988, 2, 95–110. [Google Scholar] [CrossRef]
- Kueper, B.; Abbott, W.; Farquhar, G. Experimental observations of multiphase flow in heterogeneous porous media. J. Contam. Hydrol. 1989, 5, 83–95. [Google Scholar] [CrossRef]
- Parker, J. Multiphase flow and transport in porous media. Rev. Geophys. AGU 1989, 27, 311–328. [Google Scholar] [CrossRef]
- Razzagh, S.; Sadeghfam, S.; Nadiri, A.A.; Busico, G.; Ntona, M.M.; Kazakis, N. Formulation of Shannon entropy model averaging for groundwater level prediction using artificial intelligence models. Int. J. Environ. Sci. Technol. 2022, 19, 6203–6220. [Google Scholar] [CrossRef]
- Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Modeling groundwater and surface water interaction: An overview of current status and future challenges. Sci. Total Environ. 2022, 846, 157355. [Google Scholar] [CrossRef]
- Fjordbøge, A.S.; Janniche, G.S.; Jørgensen, T.H.; Grosen, B.; Wealthall, G.; Christensen, A.G.; Kerrn-Jespersen, H.; Broholm, M.M. Integrity of clay till aquitards to DNAPL migration: Assessment using current and emerging characterization tools. Groundw. Monit. Remediat. 2017, 37, 45–61. [Google Scholar] [CrossRef]
- Cherry, J.; Parker, B.; Bradbury, K.; Eaton, T.; Gotkowitz, M.; Hart, D.; Borchardt, M.A. Contaminant Transport Through Aquitards: A State of the Science Review; International Water Association: London, UK, 2006; pp. 16–26. ISBN 1583214984. [Google Scholar]
- O’Hara, S.K.; Parker, B.L.; Jørgensen, P.R.; Cherry, J.A. Trichloroethene DNAPL flow and mass distribution in naturally fractured clay: Evidence of aperture variability. Water Resour. Res. 2000, 36, 135–147. [Google Scholar] [CrossRef]
- Jørgensen, P.R.; Broholm, K.; Sonnenborg, T.O.; Arvin, E. DNAPL transport through macroporous, clayey till columns. Groundwater 1998, 36, 651–660. [Google Scholar] [CrossRef]
- Parker, B.L.; McWhorter, D.B.; Cherry, J.A. Diffusive loss of non-aqueous phase organic solvents from idealized fracture networks in geologic media. Groundwater 1997, 35, 1077–1088. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y. Modeling the Simultaneous Effects of Particle Size and Porosity in Simulating Geo-Materials. Materials 2022, 15, 1576. [Google Scholar] [CrossRef]
- Sun, J. Hard particle force in a soft fracture. Sci. Rep. 2019, 9, 3065. [Google Scholar] [CrossRef] [PubMed]
- Feo, A.; Celico, F. High-resolution shock-capturing numerical simulations of three-phase immiscible fluids from the unsaturated to the saturated zone. Sci. Rep. 2021, 11, 5212. [Google Scholar] [CrossRef]
- Feo, A.; Celico, F. Investigating the migration of immiscible contaminant fluid flow in homogeneous and heterogeneous aquifers with high-precision numerical simulations. PLoS ONE 2022, 17, e0266486. [Google Scholar] [CrossRef]
- Feo, A.; Celico, F.; Zanini, A. Migration of DNAPL in Saturated Porous Media: Validation of High-Resolution Shock-Capturing Numerical Simulations Through a Sandbox Experiment. Water 2023, 15, 1471. [Google Scholar] [CrossRef]
- Feo, A.; Pinardi, R.; Artoni, A.; Celico, F. Three-Dimensional High-Precision Numerical Simulations of Free-Product DNAPL Extraction in Potential Emergency Scenarios: A Test Study in a PCE-Contaminated Alluvial Aquifer (Parma, Northern Italy). Sustainability 2023, 15, 9166. [Google Scholar] [CrossRef]
- Feo, A.; Medico, F.L.; Rizzo, P.; Morticelli, M.G.; Pinardi, R.; Rotigliano, E.; Celico, F. How to Predict the Efficacy of Free-Product DNAPL Pool Extraction Using 3D High-Precision Numerical Simulations: An Interdisciplinary Test Study in South-Western Sicily (Italy). Hydrology 2023, 10, 143. [Google Scholar] [CrossRef]
- Feo, A.; Pinardi, R.; Scanferla, E.; Celico, F. How to Minimize the Environmental Contamination Caused by Hydrocarbon Releases by Onshore Pipelines: The Key Role of a Three-Dimensional Three-Phase Fluid Flow Numerical Model. Water 2023, 15, 1900. [Google Scholar] [CrossRef]
- Kurganov, A.; Tadmor, E. New high-resolution central scheme for non-linear conservation laws and convection-diffusion equations. J. Comput. Phys. 2000, 160, 241–282. [Google Scholar] [CrossRef]
- Lax, P.; Wendroff, B. Systems of conservation laws. Commun. Pure Appl. Math. 1960, 3, 217–237. [Google Scholar] [CrossRef]
- Hou, T.Y.; LeFloch, P.G. Why nonconservative schemes converge to wrong solutions: Error analysis. Math. Comput. 1994, 62, 497–530. [Google Scholar] [CrossRef]
- Allen, G.; Goodale, T.; Lanfermann, G.; Radke, T.; Rideout, D.; Thornburg, J. Cactus Users’ Guide. 2011. Available online: http://www.cactuscode.org/documentation/UsersGuide.pdf (accessed on 1 January 2023).
- Goodale, T.; Allen, G.; Lanfermann, G.; Massó, J.; Radke, T.; Seidel, E.; Shalf, J. The Cactus Framework and Toolkit: Design and Applications. In Vector and Parallel Processing—VECPAR’2002, Proceedings of the 5th International Converence, Porto, Portugal, 26–28 June 2002; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2003; Available online: http://edoc.mpg.de/3341 (accessed on 1 January 2023).
- Schnetter, E.; Hawley, S.H.; Hawke, I. Evolutions in 3D numerical relativity using fixed mesh refinement. Class. Quantum Gravity 2004, 21, 1465–1488. [Google Scholar] [CrossRef]
- Schnetter, E.; Diener, P.; Dorband, E.N.; Tiglio, M. A multi-block infrastructure for three-dimensional time-dependent numerical relativity. Class. Quantum Gravity 2006, 23, S553–S578. [Google Scholar] [CrossRef]
- Zanini, A.; Petrella, E.; Sanangelantoni, A.M.; Angelo, L.; Ventosi, B.; Viani, L.; Rizzo, R.; Remelli, S.; Bartoli, M.; Bolpagni, R.; et al. Groundwater characterisation from an ecological and human perspective: An interdisciplinary approach in the Functional Urban Area of Parma, Italy. Rend. Lincei 2019, 30, 93–108. [Google Scholar] [CrossRef]
- Zanini, A.; Ghirardi, M.; Emiliani, R. A multidisciplinary approach to evaluate the effectiveness of natural attenuation at a contaminated site. Hydrology 2021, 8, 101. [Google Scholar] [CrossRef]
- Feo, A.; Pinardi, R.; Artoni, A.; Celico, F. Integrity of fine-grained layers to DNAPL migration in multilayered aquifers: Assessment in a pce-contaminated alluvial system, using high-precision simulations. Ital. J. Eng. Geol. Environ. 2024, 127–134. [Google Scholar] [CrossRef]
- Geologico, S. Sismico e dei Suoli Regione, Emilia-Romagna. Riserve Idriche Sotterranee Della Regione Emilia-Romagna; Archivio Cartografico: Bologna, Italy, 1998; p. 120. [Google Scholar]
- Di Dio, G.; Martini, A.; Lasagna, S.; Zanzucchi, G. Note Illustrative Della Carta Geologica d’Italia alla Scala 1:50.000. Foglio 199 Parma Sud. Servizio Geologico, Sismico e dei Suoli Della Regione Emilia-Romagna, APAT—Servizio Geologico d’Italia; S.EL.CA.: Firenze, Italy, 2005. [Google Scholar]
- Salvador, A. International Stratigraphic Guide. A Guide to Stratigraphic Classification, Terminology and Procedure; The International Union of Geological Sciences and the Geological Society of America: Beijing, China, 1994; p. 214. [Google Scholar]
- Conti, P.; Cornamusini, G.; Carmignani, L. An outline of the geology of the Northern Apennines (Italy), with Geological Map at 1:250,000 scale. Ital. J. Geosci. 2019, 139, 149–194. [Google Scholar] [CrossRef]
- Pinardi, R.; Feo, A.; Ruffini, A.; Celico, F. Purpose-Designed Hydrogeological Maps for Wide Interconnected Surface–Groundwater Systems: The Test Example of Parma Alluvial Aquifer and Taro River Basin (Northern Italy). Hydrology 2023, 10, 127. [Google Scholar] [CrossRef]
- Iacumin, P.; Venturelli, G.; Selmo, E. Isotopic features of rivers and groundwater of the Parma Province (Northern Italy) and their relationships with precipitation. J. Geochem. Explor. 2009, 102, 56–62. [Google Scholar] [CrossRef]
- Severini, E.; Ducci, L.; Sutti, A.; Robottom, S.; Sutti, S.; Celico, F. River–Groundwater Interaction and Recharge Effects on Microplastics Contamination of Groundwater in Confined Alluvial Aquifers. Water 2022, 14, 1913. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater Book; Prentice Hall: Hoboken, NJ, USA, 1979. [Google Scholar]
- Van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Absolute permeability (gravel and sand) | 5.102 × 10−12 m2 | |
Absolute permeability (silt and clay) | 5.102 × 10−14 m2 | |
Rock compressibility | 4.35 × 10−7 Pa−1 | |
Porosity | 0.37 | |
Water viscosity | 10−3 kg/(ms) | |
Water density | 103 kg/m3 | |
DNAPL viscosity | 0.844 × 10−3 kg/(ms) | |
DNAPL density | 1643 kg/m3 | |
Air viscosity | 1.8 × 10−5 kg/(ms) | |
Air density | 1.225 kg/m3 | |
Van Genuchten | ||
Irreducible wetting phase saturation | 0.045 | |
Surface tension air–water | 7.199 × 10−2 N/m | |
Interfacial tension non-aqueous–water | 4.44 × 10−2 N/m | |
Capillary pressure air–water at zero saturation | 676.55 Pa | |
Capillary pressure air–non-aqueous at zero saturation | 259.83 Pa |
Upstream Area | |||
---|---|---|---|
Layer | Prevalent Lithologies | Thickness (Average Value in m) | Inclination (°) |
A1 | Silt and clay | 8.8 | 0.34 |
G1 | Gravel and sand | 49.1 | 1.29 |
A2 | Silt and clay | 9.3 | 1.58 |
G2 | Gravel and sand | 14.3 | 1.5 |
A3 | Silt and clay | 21.0 | 1.65 |
G3 | Gravel and sand | 36.0 | 1.72 |
Downstream Area | |||
---|---|---|---|
Layer | Prevalent Lithologies | Thickness (Average Value in m) | Inclination (°) |
A1 | Silt and clay | 16.8 | 0.19 |
G1 | Gravel and sand | 31.9 | 0.09 |
A2 | Silt and clay | 4.3 | 0.2 |
G2 | Gravel and sand | 13.7 | 0.09 |
A3 | Silt and clay | 11.5 | 0.17 |
G3 | Gravel and sand | 25.1 | 0.57 |
Upstream Aquifer Scenario | |||
---|---|---|---|
z Altitude (m. a.s.l) | Type of Layer | Mass in kg of PCE After 2094 Days | Percentage of Contaminant Trapped (%) |
46 < z < 52 | - | 0.0 | 0.00 |
36 < z < 46 | Silt and clay | 1749.6 | 35.88 |
−14 < z < 36 | Gravel and sand | 1519.6 | 31.25 |
−22 < z < −14 | Silt and clay | 1282.2 | 26.34 |
−50 < z < −22 | Gravel and sand | 302.4 | 6.33 |
−58 < z < −50 | Silt and clay | 9.53 | 0.20 |
−90 < z < −58 | Gravel and sand | 0.0 | 0.00 |
−102 < z < −90 | - | 0.0 | 0.00 |
Downstream Aquifer Scenario | |||
---|---|---|---|
z Altitude (m a.s.l.) | Type of Layer | Mass in kg of PCE After 2585 Days | Percentage of Contaminant Trapped (%) |
39 < z < 47 | - | 0.0 | 0.00 |
23 < z < 39 | Silt and clay | 2093.8 | 43.06 |
−9 < z < 23 | Gravel and sand | 739.3 | 15.20 |
−13 < z < −9 | Silt and clay | 534.2 | 10.98 |
−27 < z < −13 | Gravel and sand | 771.4 | 15.86 |
−31 < z < −27 | Silt and clay | 625.4 | 12.86 |
−49 < z < −31 | Gravel and sand | 99.2 | 2.04 |
−71 < z < −49 | - | 0.0 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feo, A.; Pinardi, R.; Artoni, A.; Celico, F. Estimation of Free-Product PCE Distribution in Thick Multilayered Aquifers as Possible Long-Term Pollution Sources for Shallow and Deep Groundwaters, Using High-Precision Numerical Simulations. Water 2024, 16, 3053. https://doi.org/10.3390/w16213053
Feo A, Pinardi R, Artoni A, Celico F. Estimation of Free-Product PCE Distribution in Thick Multilayered Aquifers as Possible Long-Term Pollution Sources for Shallow and Deep Groundwaters, Using High-Precision Numerical Simulations. Water. 2024; 16(21):3053. https://doi.org/10.3390/w16213053
Chicago/Turabian StyleFeo, Alessandra, Riccardo Pinardi, Andrea Artoni, and Fulvio Celico. 2024. "Estimation of Free-Product PCE Distribution in Thick Multilayered Aquifers as Possible Long-Term Pollution Sources for Shallow and Deep Groundwaters, Using High-Precision Numerical Simulations" Water 16, no. 21: 3053. https://doi.org/10.3390/w16213053
APA StyleFeo, A., Pinardi, R., Artoni, A., & Celico, F. (2024). Estimation of Free-Product PCE Distribution in Thick Multilayered Aquifers as Possible Long-Term Pollution Sources for Shallow and Deep Groundwaters, Using High-Precision Numerical Simulations. Water, 16(21), 3053. https://doi.org/10.3390/w16213053