Flow Numerical Modelling in Thermal Karst Systems: The Case of Alhama de Aragón and Jaraba Springs
Abstract
:1. Introduction and Objectives
2. Hydrogeology of the Site
3. Methodology
3.1. Conceptual Model
- Hydrothermal system domain boundaries: The definition of hydrothermal system domain boundaries was carried out in order to locate the hydrogeological divide that drains the springs located in the Ebro Basin of Alhama and Jaraba, where the boundary of the Cretaceous hydrothermal aquifer extends into the Duero Basin. There are several works and doctoral theses on the hydrogeology of the Cretaceous carbonate rocks located in the Almazán Basin belonging to the Duero Basin, informing us of a behaviour similar to the system studied here, although they are not such deep aquifers; rather, they are large springs with an extensive recharge area [14] and sometimes quite far from the springs and where the flow goes below the Paleogene and Neogene that confines it [15,16].
- Recharge calculation: Although the modelling has made it possible to estimate recharge in detail, the previous evaluations of [17] based on the hydrometeorological records of the study area were used as indicative starting values. These evaluations have been modified, mainly taking into account the variation in rainfall and evapotranspiration with altitude and the different topographical characteristics of the Jalón and Duero Basin.
3.2. Modelling of Hydrothermal System Flow
3.3. Hydrogeological Parameters
3.4. Outline Conditions
- The higher the altitude, the higher the precipitation, as explained in [19]. Therefore, the northernmost areas of the model, being at a higher altitude, contribute to a higher recharge to the model.
- In addition, there are two poljes of special recharge. The first is Villaseca de Arciel and the head of the Rituerto (considered to be part of the recharge of the Sierra de la Pica and Sierra de Tajahuerce).
- Recharge in the Tertiary of the Duero Basin was considered in the model to be higher than in the Ebro basin. In the Duero Basin, there are flat endorheic areas with lower slopes, which favours recharge and reduces surface runoff. There are also two poljes with periodic flooding.
- Jaraba fault: As explained in [9], the Jaraba fault produces a disconnection in the Cretaceous limestones in a southeasterly direction. This disconnection justifies why there are no thermal water springs in the outcrops of Cretaceous limestone in the town of Ibdes, as these outcrops are at a lower altitude than the Jaraba springs. This edge has been modelled as a no-flow zone.
- Impermeable boundary to the west of the Cretaceous limestone outcrops, corresponding to the end of the Cretaceous limestone aquifer: This boundary was modelled with a no-flow zone.
- Hydrogeological divide boundary to the east of the model: non-zero flow boundary.
- Impermeable boundary to the south, corresponding to the contact with the Sierra del Solorio.
4. Results
4.1. Simulation and Calibration of Groundwater Flow in the Thermal Aquifer
4.2. Piezometric Calibration
4.3. Calibration of Spring Flow Rates
4.4. Transit Time Estimation
4.5. Discussion
4.6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kresic, N.; Stevanovic, Z. Groundwater Hydrology of Springs: Engineering, Theory, Management, and Sustainability; Elsevier: Amsterdam, The Netherlands, 2010; p. 573. [Google Scholar]
- Clemens, T.; Hückinghaus, D.; Sauter, M.; Liedl, R.; Teutsch, G. A combined continuumand discrete network reactive transport model for the simulation of karst development. In Calibration and Reliability in Groundwater Modelling, Proceedings of the ModelCARE 96 Conference, Golden, Colorado, 24 –26 September 1996; International Association of Hydrological Sciences Publication 237; IAHS Publication: Wallingford, UK, 1996; pp. 309–318. [Google Scholar]
- Birk, S. Characterization of Karst Systems by Simulating Aquifer Genesis and Spring Responses: Model Development and Application to Gypsum Karst; Reihe C. Institut und Museum für Geologie und Paläontologie der Universität Tübingen; Tübinger Geowissenschaftliche Arbeiten: Tübingen, Germany, 2002; Volume 60. [Google Scholar]
- Zanini, A.; Feo, A.; Petrella, E.; Celico, F. Groundwater Modelling in Karst Areas. Water 2021, 13, 854. [Google Scholar] [CrossRef]
- Dal Soglio, L.; Danquigny, C.; Mazzilli, N.; Emblanch, C.; Massonnat, G. Modeling the Matrix-Conduit Exchanges in Both the Epikarst and the Transmission Zone of Karst Systems. Water 2020, 12, 3219. [Google Scholar] [CrossRef]
- Anderson, M.P.; Woessner, W.W. Applied Ground Water Modeling: Simulation of Flow and Advective Transport; Academic Press: San Diego, CA, USA, 1992. [Google Scholar]
- Harbaugh, A.W. MODFLOW-2005, the U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; U.S. Geological Survey Techniques and Methods 6-A16; U.S. Geological Survey: Reston, VA, USA, 2005. Available online: www.brr.cr.usgs.gov (accessed on 1 September 2024).
- Shoemaker, W.B.; Kuniansky, E.L.; Birk, S.; Bauer, S.; Swain, E.D. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005; U.S. Geological Survey Techniques and Methods 6-A24; U.S. Geological Survey: Reston, VA, USA, 2008. [Google Scholar]
- Sanz de Ojeda, J.; Elorza, F.J.; Pérez, S. Interdisciplinary research for the delimitation of the catchment areas of large deep karstic aquifers: Origin of the thermal springs of Alhama de Aragón and Jaraba (Spain). Water 2024. under review. [Google Scholar]
- Luo, M.; Wan, L.; Liao, C.; Jakada, H.; Zhou, H. Geographic and transport controls of temperature response in karst springs. J. Hydrol. 2023, 623, 129850. [Google Scholar] [CrossRef]
- Gong, X.; Yang, X.; Luo, Q.; Tang, L. Effects of convective heat transport in modelling the early evolution of conduits in limestone aquifers. Geothermics 2019, 77, 383–394. [Google Scholar] [CrossRef]
- Szijártó, M.; Galsa, A.; Tóth, A.; Mádl-Szónyi, J. Numerical analysis of the potential for mixed thermal convection in the Buda Thermal Karst, Hungary. J. Hydrol. Reg. Stud. 2021, 34, 100783. [Google Scholar] [CrossRef]
- Huerta, P. El Paleógeno de la cuenca de Almazán. Relleno de una cuenca piggyback. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2007. [Google Scholar]
- Pérez Santos, J.J. Hidrogeología del Sistema Kárstico de La Fuentona de Muriel (Soria). Ph.D. Thesis, E.T.S.I. Caminos, Canales y Puertos (UPM), Madrid, Spain, 2007. [Google Scholar] [CrossRef]
- Távara Espinoza, L.C. Hidrogeología del Sistema Acuífero de los Manantiales de Gormaz. Ph.D. Thesis, E.T.S.I. Caminos, Canales y Puertos (UPM), Madrid, Spain, 2011. [Google Scholar] [CrossRef]
- Sanz, E.; Sanz de Ojeda, J.; Rosas, P. Hidrogeología del sistema Kárstico de la Sierra de Hinodejo (Cordillera Ibérica, España). Geogaceta 2022, 72, 7–10. [Google Scholar] [CrossRef]
- Sanz, E.; Yelamos, J.G. Methodology for the study of unexploited aquifers with thermal waters: Application to the aquifer of the Alhama de Aragon Hot Spring. Ground Water 1998, 6, 913–923. [Google Scholar] [CrossRef]
- Llamas, M.R.; Cruces de Abia, J. Conceptual and digital models of ground-water flow in the Tertiary basin of the Tagus river (Spain). In Conference on Hydrogeology of Great Sedimentary Basins, Budapest, 1976; Hungarian Geological Institute: Budapest, Hungary, 1976; pp. 23–24. Available online: http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7720194098 (accessed on 1 September 2024).
- Sanz, E. Las Aguas Subterráneas en Soria; Diputación Provincial de Soria: Soria, Spain, 1999. [Google Scholar]
- I.T.G.E. (Instituto Tecnológico Geominero de España). Informe Hidrogeológico del Subsistema Sierra del Solorio (Sistema Acuífero nº 57). (Inédito). 1980. Available online: https://www.igme.es/ (accessed on 1 September 2024).
- IGME. Estudio de Detalle del Borde Septentrional de la Sierra de Solorio (Sistema Acuífero 57) (Internal Report). 1987. Available online: https://www.igme.es/ (accessed on 1 September 2024).
- CHE (Confederación Hidrográfica del Ebro). Official Website. Inventory of Hydrogeological Water Points. 2023. Available online: https://www.chebro.es/inventario-de-puntos-de-agua (accessed on 1 September 2024).
- ITGE-DGA (Diputación General de Aragón). Estudio de las Aguas Mineromedicinales, Minero-Industriales, Termales y de Bebida Envasadas en la Comunidad Autónoma de Aragón. IGME, 1500 pp. Madrid. Informe Inédito. 1994. Available online: https://www.igme.es/ (accessed on 1 September 2024).
- Tóth, J. Hydraulic continuity in large sedimentary basins. Hydrogeol. J. 1995, 3, 4–16. [Google Scholar] [CrossRef]
- Frumkin, A.; Gvirtzman, H. Cross-formational rising groundwater at an artesian karstic basin: The Ayalon Saline Anomaly, Israel. J. Hydrol. 2006, 318, 316–333. [Google Scholar] [CrossRef]
- Klimchouk, A.B. Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective; Special Paper No. 1; National Cave and Karst Research Institute: Carlsbad, NM, USA, 2007; Available online: https://digitalcommons.usf.edu/kip_monographs/13/ (accessed on 1 September 2024).
- Tóth, J. Springs seen and interpreted in the context of groundwater flow-systems. In Proceedings of the GSA Annual Meeting, Portland, OR, USA, 18–21 October 2009. [Google Scholar]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Underschultz, J.R.; Otto, C.J.; Bartlett, R. Formation fluids in faulted aquifers: Examples from the foothills of Western Canada and the North West Shelf of Australia. In Evaluating Fault and Cap Rock Seals; Boult, P., Kaldi, J., Eds.; AAPG Hedberg Series No. 2; AAPG: Tulsa, OK, USA, 2005; pp. 247–260. [Google Scholar]
- Forster, C.; Smith, L. Groundwater flow systems in mountainous terrain 1: Numerical modelling technique. Water Resour. Res. 1988, 24, 999–1010. [Google Scholar] [CrossRef]
- Forster, C.; Smith, L. Groundwater flow systems in mountainous terrain 2: Controlling factors. Water Resour. Res. 1988, 24, 1011–1023. [Google Scholar] [CrossRef]
- Lopez, D.L.; Smith, L. Fluid flow in fault zones: Analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour. Res. 1995, 31, 1489–1503. [Google Scholar] [CrossRef]
- Lopez, D.L.; Smith, L. Fluid flow in fault zones: Influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime. Water Resour. Res. 1996, 32, 3227–3235. [Google Scholar] [CrossRef]
Alhama de Aragón Piezometer | Embid de Ariza Piezometer | Deza Piezometer | |||
---|---|---|---|---|---|
Calculated Values | Observed Values | Calculated Values | Observed Values | Calculated Values | Observed Values |
670 | 665–667.5 | 791 | 777–773 | 920 | 919–925 |
Springs | Gauged Flows (L/s) | Simulated Flow Rates (L/s) | Deviation | |
---|---|---|---|---|
Maximum | Minimum | |||
Jaraba | 500 | 600 | 609.81 | 2% |
Alhama de Aragón | 434 | 520 | 551.85 | 6% |
Embid de Ariza | 20 | 40 | 42.5 | 6% |
Deza (South) | 120 | 140 | 102.13 | 0% |
Deza (North) | 29.28 | |||
San Roquillo | 5 | 10 | 10 | 0% |
Almazúl | 5 | 10 | 6.37 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz De Ojeda, J.; Elorza, F.J.; Sanz, E. Flow Numerical Modelling in Thermal Karst Systems: The Case of Alhama de Aragón and Jaraba Springs. Water 2024, 16, 3240. https://doi.org/10.3390/w16223240
Sanz De Ojeda J, Elorza FJ, Sanz E. Flow Numerical Modelling in Thermal Karst Systems: The Case of Alhama de Aragón and Jaraba Springs. Water. 2024; 16(22):3240. https://doi.org/10.3390/w16223240
Chicago/Turabian StyleSanz De Ojeda, Joaquín, Francisco Javier Elorza, and Eugenio Sanz. 2024. "Flow Numerical Modelling in Thermal Karst Systems: The Case of Alhama de Aragón and Jaraba Springs" Water 16, no. 22: 3240. https://doi.org/10.3390/w16223240
APA StyleSanz De Ojeda, J., Elorza, F. J., & Sanz, E. (2024). Flow Numerical Modelling in Thermal Karst Systems: The Case of Alhama de Aragón and Jaraba Springs. Water, 16(22), 3240. https://doi.org/10.3390/w16223240