Predicting Green Water Footprint of Sugarcane Crop Using Multi-Source Data-Based and Hybrid Machine Learning Algorithms in White Nile State, Sudan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Workflow
2.2. Climate Conditions
2.3. Remote Sensing Calculations and Field Measurements
2.3.1. Multi-Temporal Image Analysis
Soil-Adjusted Vegetation Index (SAVI)
Normalized Difference Vegetation Index (NDVI)
The Normalized Difference Water Index (NDWI)
The Enhanced Vegetation Index (EVI)
2.4. Green Water Footprint
2.5. Machine Learning Implementations
2.5.1. Random Forest (RF)
2.5.2. Extreme Gradient Boosting (XGBoost)
2.5.3. Support Vector Regression (SVR)
2.5.4. Hybrid Model Building
2.6. Input Combination and Performance Evaluation of the Models
3. Results and Discussion
3.1. The Spatiotemporal Changes in Climate Variables (2001–2020)
3.2. The Spatiotemporal Changes in Vegetation Indices (2001–2020)
3.3. Evaluation of the Machine Learning Models
3.4. Accuracy and Uncertainty of the Models
3.5. Comparison of the Machine Learning Models
3.6. Response of GWFP to Climate, Crop, and Remote Sensing Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Mohamed, E.S.E. Climate Change, Agricultural Production and Food Security in Sudan. J. Econ. Res. 2022, 3, 1–19. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Yadav, G.; Degu, H.D.; Parvaiz, A.; Singh, M.; Huang, H.-R.; Mustafa, G.; Xu, L.; Li, Y.-R. Impact of agroclimatic variables on proteogenomics in sugar cane (Saccharum spp.) plant productivity. ACS Omega 2022, 7, 22997–23008. [Google Scholar] [CrossRef] [PubMed]
- Hassan Dahab, M.; Kheiry, A.N.; Abdalla, O.A. Energy Use Efficiency of Sugar Cane Production in the Central Clay Plain of Kenana Area. J. Energy Res. Rev. 2022, 10, 18–25. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. The Water Footprint Assessment Manual: Setting the Global Standard; Routledge: London, UK, 2011. [Google Scholar]
- Hoekstra, A.Y. The Water Footprint of Modern Consumer Society; Routledge: London, UK, 2019. [Google Scholar]
- El-Marsafawy, S.M.; Mohamed, A.I. Water footprint of Egyptian crops and its economics. Alex. Eng. J. 2021, 60, 4711–4721. [Google Scholar] [CrossRef]
- Morillo, J.G.; Díaz, J.A.R.; Camacho, E.; Montesinos, P. Linking water footprint accounting with irrigation management in high value crops. J. Clean. Prod. 2015, 87, 594–602. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Gerbens-Leenes, W. The water footprint of global food production. Water 2020, 12, 2696. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Wu, S.R.; Gong, M.; Du, Y.; Wang, J.; Li, Y.; Liu, J. Spatial-temporal assessment of water footprint, water scarcity and crop water productivity in a major crop production region. J. Clean. Prod. 2019, 224, 375–383. [Google Scholar] [CrossRef]
- Cao, X.; Zeng, W.; Wu, M.; Li, T.; Chen, S.; Wang, W. Water resources efficiency assessment in crop production from the perspective of water footprint. J. Clean. Prod. 2021, 309, 127371. [Google Scholar] [CrossRef]
- Quinteiro, P.; Ridoutt, B.G.; Arroja, L.; Dias, A.C. Identification of methodological challenges remaining in the assessment of a water scarcity footprint: A review. Int. J. Life Cycle Assess. 2018, 23, 164–180. [Google Scholar] [CrossRef]
- Naranjo-Merino, C.A.; Ortíz-Rodriguez, O.O.; Villamizar-G, R.A. Assessing green and blue water footprints in the supply chain of cocoa production: A case study in the northeast of Colombia. Sustainability 2017, 10, 38. [Google Scholar] [CrossRef]
- Abdel-Hameed, A.M.; Abuarab, M.E.-S.; Al-Ansari, N.; Mehawed, H.S.; Kassem, M.A.; He, H.; Gyasi-Agyei, Y.; Mokhtar, A. Winter potato water footprint response to climate change in Egypt. Atmosphere 2022, 13, 1052. [Google Scholar] [CrossRef]
- Ray, A.S. Remote sensing in agriculture. Int. J. Environ. Agric. Biotechnol. 2016, 1, 238540. [Google Scholar] [CrossRef]
- Khanal, S.; Kc, K.; Fulton, J.P.; Shearer, S.; Ozkan, E. Remote sensing in agriculture—Accomplishments, limitations, and opportunities. Remote Sens. 2020, 12, 3783. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Saha, D.; Annamalai, M. Machine learning techniques for analysis of hypersectral images to determine quality of food products: A review Current Research in Food Science. IEEE J. 2021, 16, 4566–4578. [Google Scholar]
- Antonopoulos, A.S.; Boutsikou, M.; Simantiris, S.; Angelopoulos, A.; Lazaros, G.; Panagiotopoulos, I.; Oikonomou, E.; Kanoupaki, M.; Tousoulis, D.; Mohiaddin, R.H. Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes. Sci. Rep. 2021, 11, 23596. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Yu, Z.; Yang, T.; Xu, J.; Chao, L.; Ni, J.; Wang, L.; Gao, Y.; Hu, Y. Xin’anjiang nested experimental watershed (XAJ-NEW) for understanding multiscale water cycle: Scientific objectives and experimental design. Engineering 2022, 18, 207–217. [Google Scholar] [CrossRef]
- Mirani, A.; Memon, M.S.; Chohan, R.; Wagan, A.A.; Qabulio, M. Machine learning in agriculture: A review. Int. J. Sci. Technol. Res. 2021, 10, 5. [Google Scholar]
- Kumar, V.; Yadav, S. Optimization of cropping patterns using elitist-Jaya and elitist-TLBO algorithms. Water Resour. Manag. 2019, 33, 1817–1833. [Google Scholar] [CrossRef]
- Sun, J.; Lai, Z.; Di, L.; Sun, Z.; Tao, J.; Shen, Y. Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5048–5060. [Google Scholar] [CrossRef]
- Cho, S.; Vasarhelyi, M.A.; Sun, T.; Zhang, C. Learning from Machine Learning in Accounting and Assurance; American Accounting Association: Lakewood Ranch, FL, USA, 2020; pp. 1–10. [Google Scholar]
- Veeragandham, S.; Santhi, H. A review on the role of machine learning in agriculture. Scalable Comput. Pract. Exp. 2020, 21, 583–589. [Google Scholar] [CrossRef]
- Everingham, Y.; Sexton, J.; Skocaj, D.; Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 2016, 36, 1–9. [Google Scholar] [CrossRef]
- Okal, H.A.; Ngetich, F.K.; Okeyo, J.M. Spatio-temporal characterisation of droughts using selected indices in Upper Tana River watershed, Kenya. Sci. Afr. 2020, 7, e00275. [Google Scholar] [CrossRef]
- Mompremier, R.; Her, Y.; Hoogenboom, G.; Migliaccio, K.; Muñoz-Carpena, R.; Brym, Z.; Colbert, R.; Jeune, W. Modeling the response of dry bean yield to irrigation water availability controlled by watershed hydrology. Agric. Water Manag. 2021, 243, 106429. [Google Scholar] [CrossRef]
- Adhikari, N.D.; Simko, I.; Mou, B. Phenomic and physiological analysis of salinity effects on lettuce. Sensors 2019, 19, 4814. [Google Scholar] [CrossRef]
- Yao, J.; Wu, J.; Xiao, C.; Zhang, Z.; Li, J. The classification method study of crops remote sensing with deep learning, machine learning, and Google Earth engine. Remote Sens. 2022, 14, 2758. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rouse, J.H.; Shaw, J.A.; Lawrence, R.L.; Lewicki, J.L.; Dobeck, L.M.; Repasky, K.S.; Spangler, L.H. Multi-spectral imaging of vegetation for detecting CO2 leaking from underground. Environ. Earth Sci. 2010, 60, 313–323. [Google Scholar] [CrossRef]
- Hub, S. NDVI (Normalized Difference Vegetation Index). 2018. Available online: https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/ndvi/ (accessed on 1 January 2023).
- Mokhtar, A.; He, H.; Alsafadi, K.; Li, Y.; Zhao, H.; Keo, S.; Bai, C.; Abuarab, M.; Zhang, C.; Elbagoury, K.; et al. Evapotranspiration as a response to climate variability and ecosystem changes in southwest, China. Environ. Earth Sci. 2020, 79, 312. [Google Scholar] [CrossRef]
- Mokhtar, A.; He, H.; Nabil, M.; Kouadri, S.; Salem, A.; Elbeltagi, A. Securing China’s rice harvest: Unveiling dominant factors in production using multi-source data and hybrid machine learning models. Sci. Rep. 2024, 14, 14699. [Google Scholar] [CrossRef]
- Mokhtar, A.; Hamed, M.M.; He, H.; Salem, A.; Hendy, Z.M. Egypt’s water future: AI predicts evapotranspiration shifts across climate zones. J. Hydrol. Reg. Stud. 2024, 56, 101968. [Google Scholar] [CrossRef]
- Allen, R.G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 2000, 229, 27–41. [Google Scholar] [CrossRef]
- Sumner, D.M.; Jacobs, J.M. Utility of Penman–Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. J. Hydrol. 2005, 308, 81–104. [Google Scholar] [CrossRef]
- Chico, D.; Aldaya, M.M.; Garrido, A. A water footprint assessment of a pair of jeans: The influence of agricultural policies on the sustainability of consumer products. J. Clean. Prod. 2013, 57, 238–248. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.; Martinez-Aldaya, M.; Mekonnen, M. Water Footprint Manual: State of the Art 2009; Water Footprint Network: Enschede, The Netherlands, 2009. [Google Scholar]
- Li, Z.; Xu, X.; Yu, B.; Xu, C.; Liu, M.; Wang, K. Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China. J. Hydrol. 2016, 542, 836–849. [Google Scholar] [CrossRef]
- Djebou, D.C.S.; Singh, V.P. Impact of climate change on precipitation patterns: A comparative approach. Int. J. Climatol. 2016, 36, 3588–3606. [Google Scholar] [CrossRef]
- Li, R.; Xiong, L.; Xiong, B.; Li, Y.; Xu, Q.; Cheng, L.; Xu, C.-Y. Investigating the downstream sediment load change by an index coupling effective rainfall information with reservoir sediment trapping capacity. J. Hydrol. 2020, 590, 125200. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Zhu, L.; Niu, R.-q.; Trinder, C.J.; Peng, L.; Lei, T. Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. J. Mt. Sci. 2020, 17, 670–685. [Google Scholar] [CrossRef]
- Chutia, D.; Borah, N.; Baruah, D.; Bhattacharyya, D.K.; Raju, P.; Sarma, K. An effective approach for improving the accuracy of a random forest classifier in the classification of Hyperion data. Appl. Geomat. 2020, 12, 95–105. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Deo, R.C.; Kim, S.; Hasanpour Kashani, M.; Karimi, V.; Izadkhah, M. Development and evaluation of the cascade correlation neural network and the random forest models for river stage and river flow prediction in Australia. Soft Comput. 2020, 24, 12079–12090. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ferreira, L.B.; da Cunha, F.F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. Comput. Electron. Agric. 2020, 178, 105728. [Google Scholar] [CrossRef]
- Zheng, H.; Yuan, J.; Chen, L. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation. Energies 2017, 10, 1168. [Google Scholar] [CrossRef]
- Suo, G.; Song, L.; Dou, Y.; Cui, Z. Multi-dimensional short-term load forecasting based on XGBoost and fireworks algorithm. In Proceedings of the 2019 18th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Wuhan, China, 8–10 November 2019; pp. 245–248. [Google Scholar]
- Shamsudin, H.; Sabudin, M.; Yusof, U.K. Hybridisation of RF (Xgb) to improve the tree-based algorithms in learning style prediction. IAES Int. J. Artif. Intell. 2019, 8, 422. [Google Scholar] [CrossRef]
- Hou, W.; Yin, G.; Gu, J.; Ma, N. Estimation of spring maize evapotranspiration in semi-arid regions of Northeast China using machine learning: An improved SVR Model based on PSO and RF algorithms. Water 2023, 15, 1503. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Wiebe, K.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Health-motivated taxes on red and processed meat: A modelling study on optimal tax levels and associated health impacts. PLoS ONE 2018, 13, e0204139. [Google Scholar] [CrossRef]
- Gueymard, C.A. A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects. Renew. Sustain. Energy Rev. 2014, 39, 1024–1034. [Google Scholar] [CrossRef]
- Behar, O.; Khellaf, A.; Mohammedi, K. A novel parabolic trough solar collector model–Validation with experimental data and comparison to Engineering Equation Solver (EES). Energy Convers. Manag. 2015, 106, 268–281. [Google Scholar] [CrossRef]
- Li, D.; Liu, Y.; Zhang, X. Linear statics and free vibration sensitivity analysis of the composite sandwich plates based on a layerwise/solid-element method. Compos. Struct. 2013, 106, 175–200. [Google Scholar] [CrossRef]
- Downing, A.R.; Greenberg, I.B.; Peha, J.M. OSCAR: A system for weak-consistency replication. In Proceedings of the 1990 Proceedings. Workshop on the Management of Replicated Data, Houston, TX, USA, 8–9 November 1990; pp. 26–30. [Google Scholar]
- Balaghi, R.; Tychon, B.; Eerens, H.; Jlibene, M. Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 438–452. [Google Scholar] [CrossRef]
- Tao, M.; Zhang, T.; Xie, X.; Liang, X. Water footprint modeling and forecasting of cassava based on different artificial intelligence algorithms in Guangxi, China. J. Clean. Prod. 2023, 382, 135238. [Google Scholar] [CrossRef]
- Mokhtar, A.; El-Ssawy, W.; He, H.; Al-Anasari, N.; Sammen, S.S.; Gyasi-Agyei, Y.; Abuarab, M. Using machine learning models to predict hydroponically grown lettuce yield. Front. Plant Sci. 2022, 13, 706042. [Google Scholar] [CrossRef]
- Abdel-Hameed, A.M.; Abuarab, M.; Al-Ansari, N.; Sayed, H.; Kassem, M.A.; Elbeltagi, A.; Mokhtar, A. Estimation of Potato Water Footprint Using Machine Learning Algorithm Models in Arid Regions. Potato Res. 2024, 67, 1755–1774. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, L.; Yu, Z.; Liu, H.; Zhang, L.; Gong, X.; Sun, H. Prediction of greenhouse tomato crop evapotranspiration using XGBoost machine learning model. Plants 2022, 11, 1923. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Deng, J.; Wang, K.; Hong, Y. Crop Water footprint estimation and modeling using an artificial neural network approach in the Nile Delta, Egypt. Agric. Water Manag. 2020, 235, 106080. [Google Scholar] [CrossRef]
- Wu, L.; Huang, G.; Fan, J.; Ma, X.; Zhou, H.; Zeng, W. Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction. Comput. Electron. Agric. 2020, 168, 105115. [Google Scholar] [CrossRef]
- Azzam, A.; Zhang, W.; Akhtar, F.; Shaheen, Z.; Elbeltagi, A. Estimation of green and blue water evapotranspiration using machine learning algorithms with limited meteorological data: A case study in Amu Darya River Basin, Central Asia. Comput. Electron. Agric. 2022, 202, 107403. [Google Scholar] [CrossRef]
- Elhussiny, K.T.; Hassan, A.M.; Habssa, A.A.; Mokhtar, A. Prediction of water distribution uniformity of sprinkler irrigation system based on machine learning algorithms. Sci. Rep. 2023, 13, 20885. [Google Scholar] [CrossRef]
Index | Platform | Spatial Resolution (m) | Temporal Resolution (d) | Data Level | Years |
---|---|---|---|---|---|
EVI | Landsat7 ETM + Sensor Landsat8 OLI Sensor | 30 | 2 | L2 | 2001–2005, 2006–2010, 2011–2015, 2016–2020 |
NDVI | Landsat7 ETM + Sensor Landsat8 OLI Sensor | 30 | 2 | L2 | 2001–2005, 2006–2010, 2011–2015, 2016–2020 |
SAVI | Landsat7 ETM + Sensor Landsat8 OLI Sensor | 30 | 2 | L2 | 2001–2005, 2006–2010, 2011–2015, 2016–2020 |
NDWI | Landsat7 ETM + Sensor Landsat8 OLI Sensor | 30 | 2 | L2 | 2001–2005, 2006–2010, 2011–2015, 2016–2020 |
Scenario | Input Parameters | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pe | Tmax | Tmin | RH | Tave | Rn | WS | Kcadj | SA | EVI | NDVI | SAVI | NDWI | |
Sc1 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Sc2 | √ | √ | √ | √ | √ | √ | √ | ||||||
Sc3 | √ | √ | √ | √ | |||||||||
Sc4 | √ | √ | √ | √ | |||||||||
Sc5 | √ | √ |
NSE | Classifications | SI | Classifications |
---|---|---|---|
NSE = 1 | Perfect | SI < 0.1 | Excellent |
NSE > 0.75 | very good | 0.1 < SI < 0.2 | Good |
0.74 > NSE > 0.64 | Good | 0.2 < SI < 0.3 | Fair |
0.64 > NSE > 0.5 | Satisfactory | SI > 0.3 | Poor |
NSE < 0.5 | Unsatisfactory |
Vegetation Index | Classes | Area | |||||||
---|---|---|---|---|---|---|---|---|---|
(2000–2005) | (2006–2010) | (2011–2015) | (2016–2020) | ||||||
(km2) | (%) | (km2) | (%) | (km2) | (%) | (km2) | (%) | ||
NDVI | No Veg. | 816.46 | 2.04 | 837.64 | 2.10 | 851.378 | 2.13 | 761.27 | 816.46 |
Low | 37,199.34 | 93.09 | 33,347.96 | 83.46 | 34,352.1 | 85.97 | 32,210.81 | 37,199.34 | |
Moderate | 1942.90 | 4.86 | 5773.10 | 14.45 | 4755.19 | 11.90 | 6986.57 | 1942.90 | |
SAVI | No Veg. | 702.94 | 1.76 | 760.40 | 1.90 | 730.998 | 1.83 | 622.38 | 702.94 |
Low | 38,933.90 | 97.44 | 38,606.98 | 96.62 | 38,572.5 | 96.53 | 38,838.59 | 38,933.90 | |
Moderate | 321.76 | 0.81 | 591.32 | 1.48 | 655.174 | 1.64 | 497.72 | 321.76 | |
NDWI | No Veg. | 39,111.52 | 97.88 | 34,207.52 | 85.61 | 34,056.7 | 85.23 | 33,498.87 | 39,111.52 |
Low | 320.63 | 0.80 | 5374.52 | 13.45 | 4874.58 | 12.20 | 6382.57 | 320.63 | |
Moderate | 32.06 | 0.08 | 372.66 | 0.93 | 678.6 | 1.70 | 77.26 | 32.06 | |
EVI | No Veg. | 921.86 | 2.31 | 960.04 | 2.40 | 952.29 | 2.38 | 885.93 | 921.86 |
Low | 37,911.68 | 94.88 | 37,515.68 | 93.89 | 37,648.95 | 94.22 | 34,761.71 | 37,911.68 | |
Moderate | 544.5 | 1.36 | 902.07 | 2.26 | 776.80 | 1.94 | 3730.40 | 544.5 |
Model | Index | Input Scenario | ||||
---|---|---|---|---|---|---|
Sc1 | Sc2 | Sc3 | Sc4 | Sc5 | ||
RF | MBE (m3 ton−1) | 0.48 | 0.65 | 0.34 | 0.54 | 0.57 |
MAPE | 2.58 | 1.29 | 120.97 | 1.48 | 1.51 | |
MARE | 1.26 | 0.63 | 59.28 | 0.73 | 0.74 | |
XGB | MBE (m3 ton−1) | 1.01 | 0.96 | −1.51 | 1.05 | 1.05 |
MAPE | −6.28 | −6.83 | 118.00 | −8.05 | −1.56 | |
MARE | −3.08 | −3.35 | 57.82 | −3.95 | −0.76 | |
SVR | MBE (m3 ton−1) | 1.10 | 1.09 | 5.14 | 0.87 | 1.13 |
MAPE | −8.14 | −8.30 | 98.31 | −2.36 | 1.06 | |
MARE | −3.99 | −4.07 | 48.17 | −1.16 | 0.52 | |
RF-XGB | MBE (m3 ton−1) | 0.98 | 1.17 | 1.87 | 0.75 | 1.09 |
MAPE | −2.58 | −1.53 | 92.66 | 3.78 | −1.35 | |
MARE | −1.26 | −0.75 | 45.40 | 1.85 | −0.66 | |
RF-SVR | MBE (m3 ton−1) | 0.03 | −0.06 | 5.05 | 0.22 | 0.15 |
MAPE | −1.83 | −1.12 | 64.53 | −0.72 | 0.25 | |
MARE | −0.90 | −0.55 | 31.62 | −0.35 | 0.12 | |
XGB-SVR | MBE (m3 ton−1) | 0.33 | 0.48 | 2.86 | 0.06 | 0.26 |
MAPE | 0.06 | −1.13 | 60.44 | 5.48 | 0.87 | |
MARE | 0.03 | −0.55 | 29.61 | 2.68 | 0.43 | |
RF-XGB-SVR | MBE(m3 ton−1) | 0.97 | 1.32 | 2.44 | 1.25 | 0.88 |
MAPE | 3.61 | −0.47 | 99.89 | −0.71 | 5.16 | |
MARE | 1.77 | −0.23 | 48.94 | −0.35 | 2.53 |
Model | Input Scenario | R2 | Fitting Equation |
---|---|---|---|
RF | Sc1 | 0.9662 | y = 0.8619x + 2.581 |
Sc2 | 0.9621 | y = 0.8532x + 2.604 | |
Sc3 | 0.2407 | y = 0.222x + 16.925 | |
Sc4 | 0.9680 | y = 0.8633x + 2.49 | |
Sc5 | 0.9680 | y = 0.8633x + 2.49 | |
XGB | Sc1 | 0.9671 | y = 0.8757x + 1.7511 |
Sc2 | 0.9688 | y = 0.8759x + 1.7894 | |
Sc3 | 0.2322 | y = 0.3305x + 16.37 | |
Sc4 | 0.9618 | y = 0.874x + 1.7483 | |
Sc5 | 0.9499 | y = 0.8541x + 2.1941 | |
SVR | Sc1 | 0.9816 | y = 0.8826x + 1.503 |
Sc2 | 0.9802 | y = 0.8798x + 1.5772 | |
Sc3 | 0.2390 | y = 0.0959x + 14.929 | |
Sc4 | 0.9846 | y = 0.8807x + 1.7732 | |
Sc5 | 0.9730 | y = 0.8647x + 1.8714 | |
RF-XGB | Sc1 | 0.9727 | y = 0.8873x + 1.8993 |
Sc2 | 0.9625 | y = 0.8943x + 1.9451 | |
Sc3 | 0.2528 | y = 0.1897x + 15.18 | |
Sc4 | 0.9683 | y = 0.8743x + 2.2113 | |
Sc5 | 0.9601 | y = 0.8829x + 2.1468 | |
RF-SVR | Sc1 | 0.971 | y = 0.9155x + 1.8096 |
Sc2 | 0.9668 | y = 0.9155x + 1.8931 | |
Sc3 | 0.2811 | y = 0.1536x + 13.344 | |
Sc4 | 0.9714 | y = 0.8969x + 2.022 | |
Sc5 | 0.9692 | y = 0.9013x + 1.9928 | |
XGB-SVR | Sc1 | 0.9781 | y = 0.9203x + 1.3998 |
Sc2 | 0.9809 | y = 0.9198x + 1.2626 | |
Sc3 | 0.3409 | y = 0.2536x + 13.368 | |
Sc4 | 0.9782 | y = 0.9094x + 1.907 | |
Sc5 | 0.9683 | y = 0.9167x + 1.5544 | |
RF-XGB-SVR | Sc1 | 0.9593 | y = 0.7911x + 3.4766 |
Sc2 | 0.9555 | y = 0.7801x + 3.3624 | |
Sc3 | 0.4960 | y = 0.3492x + 11.399 | |
Sc4 | 0.9549 | y = 0.785x + 3.3223 | |
Sc5 | 0.9487 | y = 0.777x + 3.8615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Taher, R.H.; Abuarab, M.E.; Ahmed, A.A.-R.S.; Hamed, M.M.; Salem, A.; Helalia, S.A.; Hammad, E.A.; Mokhtar, A. Predicting Green Water Footprint of Sugarcane Crop Using Multi-Source Data-Based and Hybrid Machine Learning Algorithms in White Nile State, Sudan. Water 2024, 16, 3241. https://doi.org/10.3390/w16223241
Al-Taher RH, Abuarab ME, Ahmed AA-RS, Hamed MM, Salem A, Helalia SA, Hammad EA, Mokhtar A. Predicting Green Water Footprint of Sugarcane Crop Using Multi-Source Data-Based and Hybrid Machine Learning Algorithms in White Nile State, Sudan. Water. 2024; 16(22):3241. https://doi.org/10.3390/w16223241
Chicago/Turabian StyleAl-Taher, Rogaia H., Mohamed E. Abuarab, Abd Al-Rahman S. Ahmed, Mohammed Magdy Hamed, Ali Salem, Sara Awad Helalia, Elbashir A. Hammad, and Ali Mokhtar. 2024. "Predicting Green Water Footprint of Sugarcane Crop Using Multi-Source Data-Based and Hybrid Machine Learning Algorithms in White Nile State, Sudan" Water 16, no. 22: 3241. https://doi.org/10.3390/w16223241
APA StyleAl-Taher, R. H., Abuarab, M. E., Ahmed, A. A. -R. S., Hamed, M. M., Salem, A., Helalia, S. A., Hammad, E. A., & Mokhtar, A. (2024). Predicting Green Water Footprint of Sugarcane Crop Using Multi-Source Data-Based and Hybrid Machine Learning Algorithms in White Nile State, Sudan. Water, 16(22), 3241. https://doi.org/10.3390/w16223241