The Potential of Micro-Dictum Preparation in Surface Water Reclamation Subject to Strong Anthropogenic Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tests of the Physical and Chemical Parameters of the Micro-Dictum
2.2. Tests of the Microbiological Parameters of the Micro-Dictum
- (a)
- Number of lactic acid bacteria on MRS culture medium with the addition of 0.1% cyclohexamide solution (plate method), incubation in relatively anaerobic conditions at 37 °C for 48–72 h (test procedure based on PN-EN ISO 15214:2002);
- (b)
- Number of aerobic microorganisms on PCA (plate count agar) culture medium (plate method), under incubation conditions of 28 °C for 5–7 days (PN-EN ISO 4833:2004 + Ap1:2005);
- (c)
- Number of fungi on DRBC culture medium (plate method), under incubation conditions of 24 °C for 5–7 days (PN-EN ISO 21527-2:2009).
2.3. Study of the Spread of Microorganisms from a Bioreparation—Containers in and Outside the Laboratory
- (a)
- Number of lactic acid bacteria on MRS + Actidione culture medium with the addition of 0.1% cycloheximide solution, incubated under relatively anaerobic conditions at 37 °C for 2–3 days, with pH 5.5;
- (b)
- Number of aerobic microorganisms on PCA (plate count agar) culture medium, with incubation conditions of 28 °C for 5–7 days;
- (c)
- Number of fungi on DRBC culture medium, with incubation conditions of 24 °C for 5–7 days.
2.4. Micro-Dictum Solubility with Forced Water Circulation
2.5. Study of Water Quality in Containers with the Biopreparation
- P-PO4 [mg/L−1]—spectrophotometric method;
- Total phosphorus [mg/L−1]—atomic emission spectrometry method after microwave digestion;
- Total nitrogen [mg/L−1]—spectrophotometric method;
- N-NH4 [mg/L−1]—spectrophotometric method;
- N-NO3 [mg/L−1]—spectrophotometric method;
- N-NO2 [mg/L−1]—spectrophotometric method.
2.6. Tests of the Preparation in Real Conditions
- Section A—located on an existing water reservoir (approximately 0.74 ha), situated on the Struga Gnieźnieńska stream, about 150 m from Lake Jelonek;
- Section B (between the reservoir and Lake Jelonek)—located on the Struga Gnieźnieńska stream, situated at a distance of 100 to 120 m from the lake (section length approximately 20 m, width approximately 8 m).
- Section A—3 segments: sedimentation and microbiological activity, phosphorus sorption, and plant biofilter with a denitrifying bed;
- Section B—4 segments: sedimentation and microbiological activation zone, biogeochemical barrier for phosphate binding, denitrification zone, and biofiltration zone.
- PO4 [mg/L−1]—spectrophotometric method;
- Total phosphorus [mg/L−1]—atomic emission spectrometry method after microwave mineralization.
Analysis of Physical Parameters at the Water Surface and Bottom in Sedimentation Zones
3. Results and Discussion
3.1. Results of Physical and Chemical Parameters Tests of the Micro-Dictum
3.2. Results of Testing the Microbiological Parameters of the Micro-Dictum
3.3. Results of Research on the Spread of Microorganisms from a Biopreparation
3.3.1. Containers in the Laboratory
3.3.2. Container Outside the Laboratory
3.4. Biopreparation Solubility with Forced Water Circulation
3.5. Results of Water Quality Tests in Containers with the Biopreparation
3.5.1. Physical Parameters—Comparison of Containers in the Laboratory and Outside the Building
3.5.2. Chemical Parameters
3.6. Characterization of Physical and Chemical Parameters in the Environment
3.6.1. Physical Parameters at the Water Surface and Bottom in Sedimentation Zones of the SED-BIO System
3.6.2. Chemical Parameters of Water in the SED-BIO System
4. Conclusions
5. Patents
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. The United Nations World Water Development Report 2023. Partnerships and Cooperation for Water; UNESCO: Paris, France, 2023; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000384655 (accessed on 2 September 2024).
- Liu, J.; Zheng, C. Towards Integrated Groundwater Management in China. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Goldin, W.F. Incentiv Incentives for Change: China es for Change: China's Cadre System Applied t e System Applied to Water Quality. Wash. Int. Law J. 2011, 20, 399. Available online: https://digitalcommons.law.uw.edu/wilj/vol20/iss2/6 (accessed on 24 August 2024).
- Zijun, L. Acid Rain Affects One-Third of China; Main Pollutants Are Sulfur Dioxide and Particulate Matter; Worldwatch Institute: Washington, DC, USA, 2006; Available online: https://spice.fsi.stanford.edu/docs/water_issues_in_china (accessed on 24 August 2024).
- Kupiec, J.M. Wieloaspektowa Ocena Wywieranej Presji Gospodarstw Rolnych na Środowisko; Publishing House of the Poznań University of Life Sciences: Poznań, Poland, 2023. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. L 2000, 327, 0001–0073.
- WWAP (UNESCO World Water Assessment Programme). The United NationsWorld Water Development Report 2019: Leaving No One Behind; UNESCO: Paris, France, 2019; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000367306 (accessed on 16 September 2024).
- UN (United Nations). Sustainable Development Goal 6: Synthesis Report 2018 on Water and Sanitation; United Nations: New York, NY, USA, 2018; Available online: www.unwater.org/app/uploads/2018/07/SDG6_SR2018_web_v5.pdf (accessed on 15 September 2024).
- WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2017: Wastewater—The Untapped Resource; UNESCO: Paris, France, 2017; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000247153 (accessed on 25 September 2024).
- PBL Netherlands Environmental Assessment Agency. The Geography of Future Water Challenges; BPL Netherlands Environmental Assessment Agency: The Hague, The Netherland, 2018; Available online: https://www.pbl.nl/sites/default/files/downloads/pbl-2018-the-geography-of-future-water-challenges-2920_2.pdf (accessed on 2 September 2024).
- WHO/UNICEF (World Health Organization/United Nations Children’s Fund). Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; WHO/UNICEF: Geneva, Switzerland, 2017; Available online: https://washdata.org/sites/default/files/documents/reports/2018-01/JMP-2017-report-final.pdf (accessed on 28 August 2024).
- Prasad, R.; Singh, R. Microbial Bioremediation of Aquatic Environment: An Overview. Res. J. Chem. Sci. 2015, 5, 1–5. [Google Scholar]
- Sreedevi, P.R.; Suresh., K.; Jiang, G. Bacterial bioremediation of heavy metals in wastewater: A review of processes and applications. J. Water Process Eng. 2022, 48, 102884. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Li, H.; Tao, L.; Li, J.; Li, G. Application of microorganisms in the bioremediation of polluted water: A review. Environ. Sci. Pollut. Res. 2017, 24, 9092–9105. [Google Scholar]
- Yang, Y.; Shi, X.; Ballent, W.; Mayer, B.K. Biological Phosphorus Recovery: Review of Current Progress and Future Needs. Water Environ. Res. 2017, 89, 2122–2135. [Google Scholar] [CrossRef]
- Siripong, S.; Rittmann, B.E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res. 2007, 41, 1110–1120. [Google Scholar] [CrossRef]
- Mellbye, B.L.; Bottomley, P.J.; Sayavedra-Soto, L.A. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers. Appl. Environ. Microbiol. 2015, 81, 5917–5926. [Google Scholar] [CrossRef]
- Melki, M.; Isnansetyo, A.; Widada, J.; Murwantoko, M. The significance of water quality parameters on the diversity of ammonia-oxidizing bacteria in the water surface of Musi river, Indonesia. AACL Bioflux 2018, 11, 1908–1918. [Google Scholar]
- Han, D.; Hu, Z.; Li, D.; Tang, R. Nitrogen Removal of Water and Sediment in Grass Carp Aquaculture Ponds by Mixed Nitrifying and Denitrifying Bacteria and Its Effects on Bacterial Community. Water 2022, 14, 1855. [Google Scholar] [CrossRef]
- Carlson, C.A.; Ingraham, J.L. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl. Environ. Microbiol. 1983, 45, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Bedzyk, L.; Wang, T.; Ye, R.W. The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J. Bacteriol. 1999, 181, 2802–2806. [Google Scholar] [CrossRef] [PubMed]
- Martikainen, P.J. Heterotrophic nitrification—An eternal mystery in the nitrogen cycle. Soil Biol. Biochem. 2022, 168, 108611. [Google Scholar] [CrossRef]
- Wang, J.; Long, Y.; Yu, G.; Wang, G.; Zhou, Z.; Li, P.; Zhang, Y.; Yang, K.; Wang, S. A Review on Microorganisms in Constructed Wetlands for Typical Pollutant Removal: Species, Function, and Diversity. Front. Microbiol. 2022, 13, 845725. [Google Scholar] [CrossRef] [PubMed]
- Habyarimana, J.L.; Juan, M.; Nyiransengiyumva, C.; Qing, T.W.; Yu, C.; Twagirayezu, G.; Ying, D. Critical review on operation mechanisms to recover phosphorus from wastewater via microbial procedures amalgamated with phosphate-rich in side-stream to enhance biological phosphorus removal. Biocatal. Agric. Biotechnol. 2022, 45, 102484. [Google Scholar] [CrossRef]
- Bhakta, J.N.; Munekage, Y.; Ohnishi, K.; Jana, B.B.; Balcazar, J.L. Isolation and characterization of cadmium and arsenic-absorbing bacteria for bioremediation. Water Air Soil Pollut. 2014, 225, 2150–2159. [Google Scholar] [CrossRef]
- Coelho, L.M.; Rezende, H.C.; Coelho, L.M.; de Sousa, P.A.R.; Melo, D.F.O.; Coelho, N.M.M. Bioremediation of Polluted Waters Using Microorganisms. Adv. Bioremediation Wastewater Polluted Soil 2015, 10, 60770. [Google Scholar] [CrossRef]
- Buranasilp, K.; Charoenpanich, J. Biodegradation of acrylamide by Enterobacter aerogenes isolated from wastewater in Thailand. J. Environ. Sci. 2011, 23, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of environmental wastes: The role of microorganisms. Front. Agron. Sec. Plant-Soil Interactions. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Al Bazedi, G.; Ismail, M.M.; Mugwanya, M.; Sewilam, H. Desalination concentrate microalgae cultivation: Biomass production and applications. Sustain. Water Resour. Manag. 2023, 9, 108. [Google Scholar] [CrossRef]
- Zhao, D.; Cheah, W.Y.; Lai, S.H.; Ng, E.P.; Kuan Shiong Khoo, K.S.; Show, P.L.; Ling, T.C. Symbiosis of microalgae and bacteria consortium for heavy metal remediation in wastewater. J. Environ. Chem. Eng. 2023, 11, 109943. [Google Scholar] [CrossRef]
- Gururani, P.; Bhatnagar, P.; Kumar, V.; Vlaskin, M.S.; Grigorenko, A.V. Algal Consortiums: A Novel and Integrated Approach for Wastewater Treatment. Water 2022, 14, 3784. [Google Scholar] [CrossRef]
- Atagana, H.I. Biodegradation of PAHs by fungi in contaminated-soil containing cadmium and nickel ions. Afr. J. Biotechnol. 2009, 21, 5780–5789. [Google Scholar]
- Balaji, V.; Arulazhagan, P.; Ebenezer, P. Enzymatic bioremediation of polyaromatic hydrocarbons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J. Environ. Biol. 2013, 35, 521–529. Available online: https://www.kau.edu.sa/Files/188/Researches/65402_36751.pdf (accessed on 28 August 2024).
- Kupiec, J.M.; Bednarek, A.; Szklarek, S.; Mankiewicz-Boczek, J.; Serwecińska, L.; Dąbrowska, J. Evaluation of the Effectiveness of the SED-BIO System in Reducing the Inflow of Selected Physical, Chemical and Biological Pollutants to a Lake. Water 2022, 14, 239. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, X.; JLuo, J.; Li, H.; How, S.-W.; Wu, D.; He, J.; Cheng, Z.; Gao, Y.; Lu, H. A review of the phosphorus removal of polyphosphate-accumulating organisms in natural and engineered systems. Sci. Total Environ. 2024, 912, 169103. [Google Scholar] [CrossRef]
- Xiao, M.; Burford, M.A.; Wood, S.A.; Aubriot, L.; Ibelings, B.W.; Prentice, M.J.; Galvanese, E.F.; Harris, T.D.; Hamilton, D.P. Schindler’s legacy: From eutrophic lakes to the phosphorus utilization strategies of cyanobacteria. FEMS Microbiol Rev. 2022, 2, 46. [Google Scholar] [CrossRef]
- Aubriot, L.; Bonilla, S.; Falkner, G. Adaptive phosphate uptake behaviour of phytoplankton to environmental phosphate fluctuations. FEMS Microbiol. Ecol. 2011, 77, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Jurkiewicz-Karnkowska, E. Differentiation of Phosphorus Concentration in Selected Mollusc Species from the Zegrzy.ski Reservoir (Central Poland): Implications for P Accumulation in Mollusc Communities. Pol. J. Environ. Stud. 2002, 11, 355–359. [Google Scholar]
- Sugiura, S.H. Digestion and Absorption of Dietary Phosphorus in Fish. Fishes 2024, 9, 324. [Google Scholar] [CrossRef]
- Carrillo, V.; Gómez, G.; Vidal, G. Phosphorus uptake by macrophyte plants in monocultures and polycultures in constructed wetlands for wastewater treatment. Ecol. Eng. 2022, 182, 106690. [Google Scholar] [CrossRef]
- Szubański, K. Łódzki Wynalazek Pomoże Usuwać Zanieczyszczenia Fosforanowe z Wody. PAP—Nauka w Polsce. 2018. Available online: https://naukawpolsce.pl/aktualnosci/news%2C29580%2Clodzki-wynalazek-pomoze-usuwac-zanieczyszczenia-fosforanowe-z-wody.html (accessed on 2 September 2024).
- Ratzke, C.; Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 2018, 16, e2004248. [Google Scholar] [CrossRef]
- Lund, P.A.; De Biase, D.; Liran, O.; Scheler, O.; Mira, N.P.; Cetecioglu, Z.; Fernández, E.N.; Bover-Cid, S.; Hall, R.; Sauer, M.; et al. Understanding How Microorganisms Respond to Acid pH Is Central to Their Control and Successful Exploitation. Front. Microbiol. 2020, 11, 556140. [Google Scholar] [CrossRef] [PubMed]
- Riedel, T.E.; Berelson, W.M.; Nealson, K.H.; Finkel, S.E. Oxygen consumption rates of bacteria under nutrient-limited conditions. Appl. Environ. Microbiol. 2013, 79, 4921–4931. [Google Scholar] [CrossRef]
- Mazurkiewicz, J.; Mazur, A.; Mazur, R.; Chmielowski, K.; Czekała, W.; Janczak, D. The Process of Microbiological Remediation of the Polluted Słoneczko Reservoir in Poland: For Reduction of Water Pollution and Nutrients Management. Water 2020, 12, 3002. [Google Scholar] [CrossRef]
- McMahon, K.D.; Read, E.K. Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu. Rev. Microbiol. 2013, 67, 199–219. [Google Scholar] [CrossRef]
- Rubin, J.A.; Görres, J.H. Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality. Int. J. Environ. Res. Public Health 2020, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.Y.; Ong, S.L.; Ng, W.J.; Lu, F.; Fan, X.J. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors. Water Res. 2003, 37, 3463–3471. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Lu, Y.; Zhu, G.; Cheng, H. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) at low atmosphere pressure. Biochem. Eng. J. 2020, 160. [Google Scholar] [CrossRef]
- Zhang, S.; Huffman, T.; Zhang, X.; Liu, W.; Liu, Z. Spatial distribution of soil nutrient at depth in black soil of Northeast China: A case study of soil available phosphorus and total phosphorus. Int. J. Soil Sedim. Water 2014, 14, 1775–1789. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Yang, X. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Tillage Res. 2019, 187, 85–91. [Google Scholar] [CrossRef]
- Zhao, W.; Xie, X.; He, T.; Zhang, J.; Liu, J. Study on vertical variation characteristics of soil phosphorus adsorption and desorption in black soil region of Northeast China. PLoS ONE 2024, 19, e0306145. [Google Scholar] [CrossRef] [PubMed]
Ball Number | pH a | Total N [%] b | Total P [g/kg] c |
---|---|---|---|
1 | 5.45 | 0.92 | 1.79 |
2 | 5.40 | 1.12 | 1.81 |
3 | 5.46 | 1.03 | 1.89 |
4 | 5.47 | 0.96 | 1.85 |
5 | 5.40 | 1.32 | 1.93 |
Mean | 5.44 | 1.07 | 1.85 |
Depth | Value | Number of Lactic Acid Bacteria | Number of Aerobic Microorganisms | Number of Fungi |
---|---|---|---|---|
CFU/mL | ||||
1 cm | mean | 2,518,000 | 470,000,000 | 150,000,000 |
min. | 150,000 | 200,000,000 | 80,000,000 | |
max. | 9,300,000 | 870,000,000 | 290,000,000 | |
2–3 cm | mean | 1,919,200 | 44,200,000 | 57,560,000 |
min. | 32,000 | 11,000,000 | 2,800,000 | |
max. | 9,200,000 | 120,000,000 | 160,000,000 | |
Center | mean | 162,200 | 38,000,000 | 74,300,000 |
min. | 5000 | 30,000,000 | 1,500,000 | |
max. | 520,000 | 70,000,000 | 140,000,000 |
Container Number | Number of Aerobic Microorganisms [CFU/mL] | Number of Fungi [CFU/mL] |
---|---|---|
Container no. 1 | 2.5 × 103 | 1.6 × 102 |
Container no. 2 | 1.1 × 104 | 2.3 × 101 |
Container no. 3 | 8.6 × 103 | 2.4 × 102 |
Container no. 4 | 1.3 × 104 | 3.3 × 102 |
Container no. 5 | 1.0 × 104 | 2.2 × 101 |
Mean | 9.0 × 103 | 1.6 × 102 |
Water control sample analyzed after 14 days of incubation | 1.7 × 105 | 3.0 × 101 |
Water control sample analyzed after 34 days of incubation | 9.0 × 104 | 1.6 × 101 |
Sample Collection Distance from the Micro-Dictum | Incubation Time | The Number of Lactic Acid Bacteria | Number of Aerobic Microorganisms | Number of Fungi |
---|---|---|---|---|
[cm] | CFU/mL | |||
10 | 24 h | 4.5 × 101 | 2.4 × 106 | 2.1 ×103 |
20 | 5.5 × 101 | 2.8 × 106 | 2.4 × 103 | |
30 | 3.2 × 102 | 1.3 × 106 | 2.4 × 103 | |
10 | 48 h | 1.2 × 104 | 10.3 × 106 | 4.8 × 103 |
20 | 4.4 × 102 | 6.8 × 106 | 3.0 × 103 | |
30 | 6.8 × 103 | 11.6 × 106 | 5.4 × 104 | |
10 | 3 days | 8.7 × 103 | 2.3 × 106 | 9.0 × 103 |
20 | 1.1 × 104 | 2.5 × 106 | 3.7 × 103 | |
30 | 6.1 × 104 | 3.1 × 106 | 1.1 × 104 | |
10 | 4 days | 8.7 × 104 | 2.9 × 106 | 3.1 × 103 |
20 | 8.2 × 104 | 2.7 × 106 | 2.6 × 103 | |
30 | 7.7 × 105 | 4.0 × 106 | 3.0 × 103 | |
10 | 5 days | 4.0 × 105 | 2.2 × 106 | 1.3 × 104 |
20 | 1.2 × 105 | 2.8 × 106 | 4.4 × 103 | |
30 | 9.6 × 105 | 3.4 × 106 | 1.0 × 104 | |
10 | 6 days | 4.3 × 105 | 3.3 × 106 | 2.9 × 103 |
20 | 4.5 × 105 | 3.3 × 106 | 4.6 × 103 | |
30 | 4.7 × 105 | 3.5 × 106 | 3.5 × 103 | |
10 | 34 days | 1.5 × 103 | 1.0 × 106 | 5.4 × 102 |
20 | 1.5 × 103 | 9.5 × 105 | 3.2 × 102 | |
30 | 1.5 × 103 | 1.7 × 106 | 3.4 × 102 |
Sample Collection Distance from Micro-Dictum | Incubation Time | Number of Lactic Acid Bacteria | Number of Aerobic Microorganisms | Number of Fungi |
---|---|---|---|---|
[cm] | CFU/mL | |||
10 | 24 h | <1 | 1.8 × 104 | 2.0 × 102 |
20 | <1 | 2.2 × 104 | 6.0 × 102 | |
30 | <1 | 3.8 × 104 | 7.0 × 102 | |
10 | 6 days | <1 | 1.9 × 106 | 4.0 × 104 |
20 | <1 | 2.5 × 106 | 6.4 × 104 | |
30 | <1 | 3.2 × 106 | 8.0 × 104 | |
10 | 14 days | 1.3 × 103 | 9.3 × 106 | 7.0 × 102 |
20 | 1.4 × 103 | 6.6 × 106 | 1.0 × 102 | |
30 | 1.2 × 103 | 6.9 × 106 | 6.0 × 102 | |
10 | 34 days | 1.7 × 102 | 6.0 × 104 | 9.3 × 101 |
20 | 1.1 × 102 | 6.0 × 104 | 8.4 × 101 | |
30 | 7.6 × 101 | 4.0 × 104 | 8.3 × 101 |
Incubation Time | Number of Lactic Acid Bacteria | Number of Aerobic Microorganisms | Number of Fungi |
---|---|---|---|
CPU/mL | |||
24 h | 4.7 × 101 | 8.5 × 107 | 1.4 × 105 |
48 h | 6.8 × 103 | 2.0 × 107 | 1.0 × 105 |
3 days | 8.2 × 105 | 1.0 × 108 | 5.8 × 105 |
4 days | 1.0 × 106 | 1.3 × 108 | 1.0 × 104 |
5 days | 7.2 × 106 | 4.1 × 108 | 1.3 × 106 |
6 days | 1.2 × 107 | 1.5 × 108 | 7.5 × 105 |
Chemical Parameter | Value | Concentrations of Nutrient in Lake Water 1 | Day 7 of the Experiment | Day 16 of the Experiment | Day 36 of the Experiment |
---|---|---|---|---|---|
P-PO4 [mg/L−1] | range | 0.037 | 0.20–0.47 | 0.41–1.12 | 1.15–2.10 |
SD | 0.104 | 0.302 | 0.365 | ||
container no. 6 | 0.012 | 0.021 | 0.67 | ||
control | 0.037 | 0.053 | <0.01 | ||
TP (filtered samples) [mg/L−1] | range | 0.11 | 0.32–1.23 | 0.61–1.68 | 1.98–2.94 |
SD | 0.306 | 0.357 | 0.353 | ||
container no. 6 | 0.25 | 0.41 | 1.13 | ||
control | 0.11 | 0.09 | 0.08 | ||
TP (unfiltered samples) [mg/L−1] | range | 0.11 | 0.51–1.54 | 0.95–2.11 | 2.51–3.17 |
SD | 0.351 | 0.401 | 0.254 | ||
container no. 6 | 0.39 | 0.81 | 1.58 | ||
control | 0.11 | 0.08 | 0.09 | ||
TN (filtered samples) [mg/L−1] | range | 0.4 | 1.2–2.7 | 1.4–2.5 | 5.9–7.8 |
SD | 0.516 | 0.426 | 0.615 | ||
container no. 6 | 1.2 | 1.1 | 2.6 | ||
control | 0.4 | 0.3 | 0.5 | ||
TN (unfiltered samples) [mg/L−1] | range | 0.4 | 4.0–5.1 | 4.1–4.8 | 12.1–17.1 |
SD | 0.372 | 0.224 | 2.005 | ||
container no. 6 | 1.8 | 2.5 | 4.5 | ||
control | <0.1 | 0.3 | 0.5 | ||
N-NH4 [mg/L−1] | range | 0.04 | 0.68–0.84 | 0.56–1.43 | 3.85–6.50 |
SD | 0.064 | 0.283 | 0.906 | ||
container no. 6 | 0.25 | 0.12 | 0.389 | ||
control | <0.01 | <0.01 | 0.186 | ||
N-NO3 [mg/L−1] | range | 0.23 | 0.19–0.32 | 0.15–0.24 | 0.15–0.21 |
SD | 0.048 | 0.032 | 0.021 | ||
container no. 6 | 0.23 | 0.12 | 0.17 | ||
control | <0.1 | <0.1 | <0.1 | ||
N-NO2 [mg/L−1] | range | 0.004 | 0.001–0.003 | 0.004–0.073 | 0.004–0.005 |
SD | 0.0009 | 0.0265 | 0.0004 | ||
container no. 6 | 0.009 | 0.004 | 0.006 | ||
control | <0.001 | 0.158 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupiec, J.M. The Potential of Micro-Dictum Preparation in Surface Water Reclamation Subject to Strong Anthropogenic Pressure. Water 2024, 16, 3243. https://doi.org/10.3390/w16223243
Kupiec JM. The Potential of Micro-Dictum Preparation in Surface Water Reclamation Subject to Strong Anthropogenic Pressure. Water. 2024; 16(22):3243. https://doi.org/10.3390/w16223243
Chicago/Turabian StyleKupiec, Jerzy Mirosław. 2024. "The Potential of Micro-Dictum Preparation in Surface Water Reclamation Subject to Strong Anthropogenic Pressure" Water 16, no. 22: 3243. https://doi.org/10.3390/w16223243
APA StyleKupiec, J. M. (2024). The Potential of Micro-Dictum Preparation in Surface Water Reclamation Subject to Strong Anthropogenic Pressure. Water, 16(22), 3243. https://doi.org/10.3390/w16223243