Low-Cost Sensors for the Measurement of Soil Water Content for Rainfall-Induced Shallow Landslide Early Warning Systems
Abstract
:1. Introduction
- (1)
- Reconstruct and characterize the meteorological condition of the monitoring period.
- (2)
- Evaluate whether the SWC dynamics along the unsaturated vertical profile change in relation to the considered sensor.
- (3)
- Investigate the sensors’ SWC response according to different rainfall events.
2. Materials and Methods
2.1. Study Site
2.2. Field Instrumentation Data
2.3. Data Analysis
3. Results
3.1. Characterization of the Meteorological Condition
3.2. Comparison of Soil Water Content Monitored Data: Relative Variation
3.3. Comparison of Soil Water Content Monitored Data: Absolute Values
3.4. Sensors’ Soil Water Content Response to Different Rainfall Events
4. Discussion
5. Conclusions
- The low-cost sensors show poor results in detecting absolute values of soil water content, underscoring the necessity of proper soil-specific calibration for precise quantitative assessment and to avoid overestimation or underestimation of measurements.
- The use of the low-cost sensors to detect the temporal soil water content relative variations as a consequence of rainfall events provides results that are generally reliable and satisfactory, even without a soil-specific calibration procedure.
- The low-cost sensors effectively indicate whether the soil is accommodating infiltration, or of it had exceeded field capacity, providing extremely useful indicators in areas where triggering processes of landslides are related to hydrological processes like the rise of water table (e.g., Montuè study site), the creation of a downward rainwater wetting front, or the break through infiltration of rainwater along fractures and holes in the soil [79].
- Given the reliability in covering the temporal variability of flow processes, the low-cost sensors can allow operators to understand the landslide triggering processes in a specific area or to develop hydrometeorological threshold.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Soil Level | Depth (m) | Gravel % | Sand % | Silt % | Clay % | WL % | Pl % | USCS Class | γ (kN/m3) | CaCO3 (%) | Ks (m/s) | θs (m3/m3) | θr (m3/m3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
US | 0.2 | 12.3 | 12.5 | 53.9 | 21.3 | 39.8 | 17.2 | CL | 16.7–17.0 | 14.1 | 10−5 | 0.32–0.33 | 0.02 |
0.4 | 1.6 | 11.0 | 59.5 | 27.9 | 38.5 | 14.3 | CL | 17.0–18.6 | 15.7 | 10−5 | 0.32–0.33 | 0.02 | |
0.6 | 8.5 | 13.2 | 51.1 | 27.2 | 40.3 | 15.7 | CL | 17.0–18.6 | 14.1 | 10−6 | 0.37–0.40 | 0.01 | |
LS | 1.0 | 2.4 | 12.2 | 56.4 | 29.0 | 39.2 | 15.9 | CL | 17.0–18.6 | 16.1 | 10−6 | 0.37–0.40 | 0.01 |
CAL | 1.2 | 0.5 | 7.5 | 65.6 | 26.4 | 41.8 | 16.5 | CL | 18.2–18.6 | 35.3 | 10−7 | 0.40–0.44 | 0.01 |
WB | 1.4 | 0.2 | 75 | 24.8 | 0.0 | - | - | SM | 18.1 | 13.7 | - | - | - |
Monitored Parameter | Depth (m) | Device | Model | Accuracy | Range of Measure |
---|---|---|---|---|---|
SWC (m3/m3), soil T °C, soil water electrical conductivity SWP (<−10 J/kg) SWP (>−10 J/kg) Rainfall | 0.2, 0.4, 0.6, 1.0, 1.2, 1.4 0.2, 0.6, 1.2 0.2, 0.6, 1.2 0.2, 0.6, 1.2 - | Time Domain Reflectometers (TDR) probes Heat dissipation (HD) probes Tensiometer Tensiometer (from November 2023) Rain gauge | CS610, Campbell Sci. Inc., Logan, UT, USA HD229, Campbell Sci., Logan, UT, USA Jet-Fill 2725, Soilmoisture Equipment Corp., Santa Barbara, CA, USA Teros 32, Meter Group 52,203, Young Comp., Traverse City, MI, USA | 0.01–0.02 m3/m3 1.5–2.0 J/kg 1.5–2.0 J/kg ±0.15 kPa 0.01 mm | 0–1 m3/m3 −10,000/−10 J/kg −80/15 J/kg –85 to +50 kPa - |
Datalogger: No. 1 CR1000X (Campbell Scientific, Inc.) with 10 min acquisition time resolution |
Sensor | Output Signal | Generic Soil Indication | Build-in Calibration Equation |
---|---|---|---|
Renke | Digital with RS485 (Modbus protocol) | No information | No information |
Rika | 4–20 mA | Mineral soils | θ(m3/m3) = (RAW − 4) × 6.25 |
SMT100 | Digital with SDI-12 interface | Mineral soils with moderate salinity | Topp’s equation [27] |
SMT50 | 0–3 V linear | Mineral soils | θ [%] = (RAW × 50):3 |
Teros10 | 1000–2500 mV | Mineral soils with solution EC <8 sD/m | θ (m3/m3) = 1.895 × 10−10 × RAW 3 − 1.222 × 10−6 × RAW 2 + 2.855 × 10−3 × RAW − 2.154 |
C | W | |
---|---|---|
October to April | May to September | |
P1 | 6 h | 3 h |
P2 | 12 h | 6 h |
P3 | 1 mm | 1 mm |
P4 | 48 h | 24 h |
Period | Time Span | E (mm) | Mean Monthly Rainfall (mm/Month) | Mean Air Temperature (°C) |
---|---|---|---|---|
1W | June 2022–September 2022 | 144.2 | 36 | 24.3 |
1C | October 2022–April 2023 | 220.5 | 31.5 | 9.4 |
2W | May 2023–September 2023 | 168.5 | 33.7 | 22.6 |
2C | October 2023–April 2024 | 387.1 | 55.3 | 9.3 |
3W | May 2024 | 173 | 173 | 16.1 |
DEPTH (m) | SENSOR | MIN | MAX | RANGE | MEAN | MEDIAN | SD |
---|---|---|---|---|---|---|---|
TDR | 0.135 | 0.406 | 0.271 | 0.251 | 0.267 | 0.089 | |
Renke | 0.162 | 0.446 | 0.284 | 0.263 | 0.272 | 0.080 | |
0.6 | Rika | 0.208 | 0.488 | 0.280 | 0.304 | 0.318 | 0.074 |
SMT100 | 0.105 | 0.421 | 0.317 | 0.251 | 0.267 | 0.110 | |
Teros10 | 0.176 | 0.400 | 0.224 | 0.274 | 0.294 | 0.072 | |
TDR | 0.170 | 0.444 | 0.274 | 0.260 | 0.213 | 0.087 | |
1.2 | Renke | 0.209 | 0.348 | 0.139 | 0.252 | 0.241 | 0.035 |
Rika | 0.207 | 0.662 | 0.456 | 0.284 | 0.235 | 0.082 | |
SMT50 | 0.176 | 0.509 | 0.333 | 0.256 | 0.207 | 0.081 |
DEPTH (m) | SENSORS | R | BIAS | RMSD |
---|---|---|---|---|
TDR-Renke | 0.98 | 0.01 | 0.03 | |
0.6 | TDR-Rika | 0.97 | 0.06 | 0.06 |
TDR-SMT100 | 0.99 | 0 | 0.02 | |
TDR-Teros10 | 0.98 | 0.02 | 0.03 | |
TDR-Renke | 0.96 | 0 | 0.06 | |
1.2 | TDR-Rika | 0.97 | 0.03 | 0.04 |
TDR-SMT50 | 0.96 | 0 | 0.03 |
DEPTH (m) | SENSORS | D | p–Value |
---|---|---|---|
TDR-Renke | 0.38 | <0.01 | |
0.6 | TDR-Rika | 0.42 | <0.01 |
TDR-SMT100 | 0.32 | <0.01 | |
TDR-Teros10 | 0.37 | <0.01 | |
TDR-Renke | 0.51 | <0.01 | |
1.2 | TDR-Rika | 0.52 | <0.01 |
TDR-SMT50 | 0.35 | <0.01 |
RE | RE_Start_Date | D_RE | E_RE | I_RE | RE_class | AR_1d | AR_2d | AR_3d | AR_5d | AR_10d | AR_15d | AR_30d | AR_60d |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(h) | (mm) | (mm/h) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (mm) | |||
18 | 1 November 2022 13:00 | 67 | 21.9 | 0.327 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 2.8 | 22.8 |
19 | 9 November 2022 09:00 | 23 | 1.4 | 0.061 | 1 | 0 | 0 | 0 | 0 | 21.9 | 21.9 | 22 | 33.4 |
20 | 15 November 2022 06:00 | 29 | 6.4 | 0.221 | 2 | 0 | 0.5 | 0.6 | 0.7 | 2 | 23.9 | 23.9 | 35.2 |
21 | 21 November 2022 19:00 | 18 | 22 | 1.222 | 3 | 0 | 0 | 0 | 0.2 | 7.2 | 8.6 | 30.5 | 40.4 |
22 | 3 December 2022 02:00 | 47 | 33.1 | 0.704 | 3 | 0 | 0 | 0.1 | 1.2 | 1.2 | 23.4 | 51.6 | 56.5 |
23 | 8 December 2022 23:00 | 17 | 9.9 | 0.582 | 2 | 0 | 0.1 | 0.1 | 14 | 34.5 | 34.5 | 65.1 | 88.4 |
24 | 15 December 2022 12:00 | 34 | 17.1 | 0.503 | 3 | 0 | 0.8 | 0.8 | 0.8 | 10.8 | 44.1 | 71.6 | 97.7 |
25 | 20 December 2022 21:00 | 30 | 1.7 | 0.057 | 1 | 0.1 | 0.1 | 0.2 | 1.3 | 18.1 | 28.1 | 84.5 | 115 |
26 | 29 December 2022 17:00 | 136 | 9.8 | 0.072 | 1 | 0.1 | 0.3 | 0.3 | 1 | 2.8 | 20 | 64.2 | 117.7 |
27 | 8 January 2023 10:00 | 9 | 12.7 | 1.411 | 2 | 0.6 | 0.9 | 1 | 2.6 | 11 | 12 | 32.4 | 106.7 |
28 | 13 January 2023 13:00 | 1 | 1.1 | 1.1 | 1 | 0 | 0 | 0 | 3.8 | 14.6 | 23.7 | 43.7 | 117.5 |
29 | 15 January 2023 19:00 | 44 | 3.8 | 0.086 | 1 | 0 | 0 | 1.1 | 1.1 | 14.8 | 20.7 | 27.8 | 112.2 |
30 | 19 January 2023 20:00 | 131 | 28.1 | 0.215 | 2 | 0.4 | 0.4 | 2.4 | 3.4 | 4.5 | 18.2 | 30.9 | 115.4 |
31 | 26 February 2023 06:00 | 28 | 5.7 | 0.204 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56.5 |
32 | 1 March 2023 15:00 | 13 | 5 | 0.385 | 2 | 0 | 0 | 4.6 | 5.7 | 5.7 | 5.7 | 5.7 | 57.9 |
33 | 14 March 2023 05:00 | 3 | 3.8 | 1.267 | 1 | 0 | 0 | 0 | 0 | 0 | 5.8 | 10.7 | 43.3 |
34 | 26 March 2023 15:00 | 2 | 6.8 | 3.4 | 2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 4.1 | 14.8 | 14.8 |
35 | 12.April 2023 20:00 | 30 | 19.1 | 0.637 | 3 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | 11.4 | 22.1 |
36 | 1 May 2023 19:00 | 14 | 8.8 | 0.629 | 2 | 0.2 | 0.2 | 0.2 | 0.2 | 1.5 | 1.6 | 21.1 | 32.1 |
37 | 9 May 2023 18:00 | 17 | 27.6 | 1.624 | 3 | 0 | 0 | 0 | 0 | 9 | 9.4 | 29.5 | 40.9 |
38 | 12 May 2023 12:00 | 9 | 4.1 | 0.456 | 2 | 0 | 0 | 27.6 | 27.6 | 27.6 | 36.6 | 57.1 | 68.5 |
39 | 14 May 2023 03:00 | 9 | 1.7 | 0.189 | 1 | 0.6 | 5 | 5 | 32.6 | 32.6 | 41.6 | 43 | 69.7 |
40 | 19 May 2023 06:00 | 12 | 4.2 | 0.35 | 2 | 0 | 0 | 0 | 1.2 | 34.9 | 34.9 | 45.3 | 72 |
41 | 24 May 2023 16:00 | 7 | 3.7 | 0.529 | 1 | 0 | 0 | 0 | 1.3 | 6 | 40.3 | 49.7 | 77.3 |
42 | 2 June 2023 23:00 | 9 | 9.9 | 1.1 | 2 | 0 | 0 | 0 | 0 | 4 | 9.4 | 44.3 | 74.2 |
43 | 4 June 2023 16:00 | 10 | 5.9 | 0.59 | 2 | 0 | 9.9 | 9.9 | 9.9 | 10.1 | 14.3 | 54.2 | 84.1 |
44 | 7 June 2023 07:00 | 2 | 1.3 | 0.65 | 1 | 0 | 0.3 | 6.2 | 16.1 | 16.1 | 20.1 | 60.4 | 89.9 |
45 | 13 June 2023 19:00 | 11 | 6.1 | 0.555 | 2 | 0 | 0 | 0 | 0.3 | 7.8 | 17.7 | 27.7 | 72.4 |
46 | 28 June 2023 12:00 | 1 | 1.2 | 1.2 | 1 | 0 | 0 | 0 | 0 | 0.1 | 6.3 | 24 | 77.3 |
47 | 30 June 2023 11:00 | 16 | 16.6 | 1.038 | 3 | 0 | 1.2 | 1.2 | 1.2 | 1.2 | 1.3 | 25.2 | 78.3 |
48 | 5 July 2023 18:00 | 1 | 3.4 | 3.4 | 1 | 0.2 | 0.2 | 0.2 | 0.7 | 18 | 18 | 25.9 | 86.3 |
49 | 19 July 2023 12:00 | 1 | 3.1 | 3.1 | 1 | 0 | 0 | 0 | 0 | 0.3 | 4.4 | 22.2 | 50.7 |
50 | 25 July 2023 22:00 | 5 | 2.8 | 0.56 | 1 | 0 | 0.8 | 0.8 | 0.8 | 3.9 | 4.2 | 26.1 | 50.3 |
51 | 4 August 2023 19:00 | 8 | 5.8 | 0.725 | 2 | 0 | 0 | 0 | 0 | 3 | 3.8 | 7.7 | 37 |
52 | 27 August 2023 11:00 | 42 | 42.1 | 1.002 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 6.1 | 35 |
53 | 16 September 2023 18:00 | 2 | 2 | 1 | 1 | 0 | 0 | 0.2 | 0.2 | 0.2 | 0.2 | 42.4 | 55.2 |
54 | 20 September 2023 15:00 | 39 | 11.3 | 0.29 | 2 | 0 | 0 | 0 | 2.1 | 2.3 | 2.3 | 44.5 | 54.2 |
55 | 18 October 2023 13:00 | 49 | 6 | 0.122 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 11.7 | 56.2 |
56 | 23 October 2023 20:00 | 20 | 10.6 | 0.53 | 2 | 0 | 0 | 0 | 5.3 | 6 | 6 | 6 | 62.2 |
57 | 27 October 2023 02:00 | 7 | 4.3 | 0.614 | 2 | 0.1 | 0.1 | 10.4 | 10.7 | 16.7 | 16.7 | 16.7 | 56.5 |
58 | 29 October 2023 23:00 | 150 | 63.4 | 0.423 | 3 | 0 | 0 | 4.3 | 4.4 | 17.7 | 21 | 21 | 35 |
59 | 9 November 2023 10:00 | 22 | 6.6 | 0.3 | 2 | 0 | 0 | 0 | 12.9 | 62.1 | 67.9 | 84.5 | 98.5 |
60 | 27 November 2023 06:00 | 126 | 13.1 | 0.104 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 70.1 | 91.1 |
61 | 5 December 2023 11:00 | 4 | 1.6 | 0.4 | 1 | 0.4 | 0.4 | 0.4 | 5.3 | 13.6 | 13.6 | 20.3 | 104.7 |
62 | 8 December 2023 04:00 | 15 | 5.2 | 0.347 | 2 | 0 | 0.1 | 1.7 | 2.1 | 13.9 | 15.3 | 21.9 | 106.4 |
63 | 21 December 2023 12:00 | 7 | 1.1 | 0.157 | 1 | 0 | 0 | 0 | 0 | 0.3 | 6.5 | 21.8 | 106.9 |
64 | 31 December 2023 03:00 | 25 | 6.9 | 0.276 | 2 | 0.1 | 1.1 | 1.5 | 1.5 | 2.6 | 2.6 | 15.2 | 63.6 |
65 | 5 January 2024 05:00 | 70 | 26.55 | 0.379 | 3 | 0 | 0.1 | 0.1 | 5.3 | 8.6 | 9.7 | 16.3 | 38.2 |
66 | 17 January 2024 05:00 | 23 | 9.1 | 0.396 | 2 | 0 | 0 | 0 | 0.3 | 4.8 | 26.9 | 36.5 | 58.3 |
67 | 8 February 2024 10:00 | 77 | 15.3 | 0.199 | 2 | 0 | 0 | 0 | 0 | 0.1 | 0.3 | 9.7 | 46.3 |
68 | 22 February 2024 09:00 | 29 | 15.7 | 0.541 | 2 | 0 | 0 | 0 | 0 | 0.1 | 15.4 | 15.7 | 60.2 |
69 | 26 February 2024 04:00 | 221 | 108.58 | 0.491 | 3 | 0.1 | 0.4 | 9.7 | 16.2 | 16.2 | 17 | 31.9 | 76.4 |
70 | 8 March 2024 19:00 | 52 | 31.4 | 0.604 | 3 | 0.1 | 0.1 | 12.5 | 36.5 | 70.6 | 121.1 | 140.4 | 150 |
71 | 26 March 2024 06:00 | 16 | 4.9 | 0.306 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 140.3 | 172.1 |
72 | 30 March 2024 11:00 | 43 | 7.3 | 0.17 | 2 | 0.1 | 1.1 | 1.2 | 6.1 | 6.1 | 6.1 | 105.5 | 177.9 |
73 | 9.April 2023 15:00 | 39 | 24.5 | 0.628 | 3 | 0 | 0 | 0 | 0 | 7.1 | 13.4 | 13.6 | 180.5 |
74 | 22.April 2023 00:00 | 11 | 16.5 | 1.5 | 3 | 0 | 0 | 0 | 0 | 0 | 24.5 | 37.9 | 194.3 |
75 | 1 May 2024 08:00 | 36 | 4.4 | 0.122 | 1 | 0.1 | 0.1 | 0.2 | 1.4 | 18.7 | 18.7 | 43.2 | 131.8 |
76 | 7 May 2024 12:00 | 8 | 10.6 | 1.325 | 2 | 0.8 | 0.9 | 0.9 | 2 | 6.9 | 8.1 | 49.1 | 93.9 |
77 | 14 May 2024 16:00 | 51 | 42.78 | 0.839 | 3 | 0 | 0.5 | 0.5 | 0.5 | 12 | 17.1 | 35.7 | 73.6 |
78 | 20 May 2024 12:00 | 19 | 67.43 | 3.549 | 5 | 0 | 0 | 0 | 20.4 | 43.5 | 55 | 78.7 | 116.6 |
79 | 22 May 2024 14:00 | 68 | 18.93 | 0.278 | 2 | 0 | 57.3 | 67.4 | 67.4 | 111 | 121.4 | 129.7 | 184.1 |
80 | 27 May 2024 16:00 | 10 | 4.03 | 0.403 | 2 | 0 | 0 | 9.6 | 16.2 | 86.9 | 130.4 | 147.9 | 198.5 |
81 | 30 May 2024 19:00 | 26 | 22 | 0.846 | 3 | 0 | 0 | 2 | 4 | 80.7 | 109.3 | 151 | 196.1 |
RE ID | SENSOR | RESP 0.6 m | RESP 1.2 m | RESP 0.6 m | RESP 1.2 m |
---|---|---|---|---|---|
(h) | (h) | (%) | (%) | ||
22 | TDR | 138 | - | 13.70% | - |
Renke | 107 | - | 11.70% | - | |
Rika | 84 | - | 10.70% | - | |
SMT100/SMT50 | 127 | - | 17% | - | |
Teros10 | 72 | - | 11.90% | - | |
23 | TDR | 67 | - | 2.80% | - |
Renke | 50 | - | 1.20% | - | |
Rika | 38 | - | 1.20% | - | |
SMT100/SMT50 | 57 | - | 3% | - | |
Teros10 | 36 | - | 1.20% | - | |
24 | TDR | 41 | - | 4.50% | - |
Renke | 40 | - | 3.30% | - | |
Rika | 24 | - | 2.70% | - | |
SMT100/SMT50 | 57 | - | 5% | - | |
Teros10 | 40 | - | 2.60% | - | |
26 | TDR | 149 | - | 1.00% | - |
Renke | 142 | - | 1.50% | - | |
Rika | 140 | - | 1.40% | - | |
SMT100/SMT50 | 146 | - | 1.00% | - | |
Teros10 | 143 | - | 1.00% | - | |
30 | TDR | 111 | 145 | 3.20% | 6.00% |
Renke | 136 | 147 | 4.90% | 0.80% | |
Rika | 132 | 161 | 3.70% | 6.80% | |
SMT100/SMT50 | 115 | 139 | 2.60% | 4.70% | |
Teros10 | 110 | - | 2.30% | - | |
58 | TDR | 251 | - | 3.30% | - |
Renke | 232 | - | 10.30% | - | |
Rika | 184 | - | 11.30% | - | |
SMT100/SMT50 | 251 | - | 6.00% | - | |
Teros10 | 206 | - | 9.60% | - |
References
- European Environment Agency. Climate Change Adaptation and Disaster Risk Reduction in Europe; Report No 15; European Environment Agency: Copenhagen, Denmark, 2017; ISSN 1977-8449. [Google Scholar]
- Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring strategies for local landslide early warning systems. Landslides 2019, 16, 213–223. [Google Scholar] [CrossRef]
- Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial early warning systems for rainfall-induced landslides. Earth-Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
- Calvello, M.; Devoli, G.; Freeborough, K.; Gariano, S.L.; Guzzetti, F.; Kirschbaum, D.; Nakaya, H.; Robbins, J.; Stähli, M. LandAware: A new international network on Landslide Early warning Systems. Landslides 2020, 17, 2699–2702. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early warning systems. Earth-Sci. Rev. 2020, 200, 102973. [Google Scholar] [CrossRef]
- Crosta, G.B.; Agliardi, F. Failure forecast for large rock slides by surface displacement measurements. Can. Geotech. J. 2003, 40, 176–191. [Google Scholar] [CrossRef]
- Vassallo, R.; Mancuso, C.; Vinale, F. Effects of net stress and suction history on the small strain stiffness of a compacted clayey silt. Can. Geotech. J. 2007, 44, 447–462. [Google Scholar] [CrossRef]
- Ponziani, F.; Pandolfo, C.; Stelluti, M.; Berni, N.; Brocca, L.; Moramarco, T. Assessment of rainfall thresholds and soil moisture modeling for operational hydrogeological risk prevention in the Umbria region (central Italy). Landslides 2012, 9, 229–237. [Google Scholar] [CrossRef]
- Bordoni, M.; Meisina, C.; Valentino, R.; Lu, N.; Bittelli, M.; Chersich, S. Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis. Eng. Geol. 2015, 193, 19–37. [Google Scholar] [CrossRef]
- Comegna, L.; Damiano, E.; Greco, R.; Guida, A.; Plivares, L.; Picarelli, L. Field hydrological monitoring of a sloping shallow pyroclastic deposit. Can. Geotech. J. 2016, 53, 1125–1137. [Google Scholar] [CrossRef]
- Bogaard, T.; Greco, R. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-meteorological thresholds. Nat. Hazards Earth Syst. Sci. 2018, 18, 31–39. [Google Scholar] [CrossRef]
- Wicki, A.; Lehmann, P.; Hauck, C.; Stähli, M. Impact of topography on in situ soil wetness measurements for regional landslide early warning—A case study from the Swiss Alpine Foreland. Nat. Hazards Earth Syst. Sci. 2023, 23, 1059–1077. [Google Scholar] [CrossRef]
- Mirus, B.B.; Bogaard, T.; Greco, R.; Stähli, M. Invited Perspectives: Integrating hydrologic information into the next generation of landslide early warning systems. EGUsphere 2024, Preprint. [Google Scholar] [CrossRef]
- Terzaghi, K. Theoretical Soil Mechanics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1943. [Google Scholar] [CrossRef]
- Mirus, B.B.; Morphew, M.D.; Smith, J.B. Developing hydro-meteorological thresholds for shallow landslide initiation and early warning. Water 2018, 10, 1274. [Google Scholar] [CrossRef]
- Tarantino, A.; Pozzato, A. Instruments for monitoring the unsaturated zone. Riv. Ital. Geotec. 2008, 3, 112–125. [Google Scholar]
- Caine, N. The Rainfall Intensity—Duration Control of Shallow Landslides and Debris Flows. Geogr. Ann. Ser. A Phys. Geogr. 1980, 62, 23–27. [Google Scholar] [CrossRef]
- Godt, J.W.; Baum, R.L.; Chleborad, A.F. Rainfall characteristics for shallow landsliding in Seattle, Washington, USA. Earth Surf. Process. Landf. 2006, 31, 97–110. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Baum, R.L.; Godt, J.W. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 2010, 7, 259–272. [Google Scholar] [CrossRef]
- Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N. Technical Note: An operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds. Nat. Hazards Earth Syst. Sci. 2015, 15, 853–861. [Google Scholar] [CrossRef]
- Melillo, M.; Brunetti, M.T.; Perruccacci, S.; Gariano, S.L.; Roccati, A.; Guzzetti, F. A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ. Mod. Soft. 2018, 105, 230–243. [Google Scholar] [CrossRef]
- Mirus, B.B.; Becker, R.; Baum, R.L.; Smith, J.B. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning. Landslides 2018, 15, 1909–1919. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501. [Google Scholar] [CrossRef]
- Marino, P.; Peres, D.J.; Cancelliere, A.; Greco, R.; Bogaard, T.A. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach. Landslides 2020, 17, 2041–2054. [Google Scholar] [CrossRef]
- Greco, R.; Marino, P.; Bogaard, T.A. Recent advancements of landslide hydrology. WIREs Water 2023, 10, e1675. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Topp, G.C. State of the art of measuring soil water content. Hydrol. Process. 2003, 17, 2993–2996. [Google Scholar] [CrossRef]
- Wicki, A.; Lehmann, P.; Hauck, C.; Seneviratne, S.I.; Waldner, P.; Stähli, M. Assessing the potential of soil moisture measurements for regional landslide early warning. Landslides 2020, 17, 1881–1896. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- McKim, H.L.; Walsh, J.E.; Arion, D.N. Review of Techniques for Measuring Soil Moisture In Situ; Special Report 80-31; U.S. Army Cold Regions Research and Engineering Laboratory Hanover: Hanover, NH, USA, 1980. [Google Scholar]
- Bogena, H.R.; Huisman, J.A.; Schilling, B.; Weuthen, A.; Vereecken, H. Effective Calibration of Low-Cost Soil Water Content Sensors. Sensors 2017, 17, 208. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Moramarco, T.; Ponziani, F.; Berni, N.; Wagner, W. Use of Satellite Soil Moisture Products for the Operational Mitigation of Landslides Risk in Central Italy. In Satellite Soil Moisture Retrievals: Techniques & Applications; Petropoulos, G.P., Srivastava, P., Kerr, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 231–247. [Google Scholar] [CrossRef]
- Zhao, B.; Dai, Q.; Han, D.; Dai, H.; Mao, J.; Zhuo, L. Probabilistic thresholds for landslides warning by integrating soil moisture conditions with rainfall thresholds. J. Hydrol. 2019, 574, 276–287. [Google Scholar] [CrossRef]
- Uwihirwe, J.; Riveros, A.; Wanjala, H.; Schellekens, J.; Sperna Weiland, F.; Hrachowitz, M.; Bogaard, T.A. Potential of satellite-derived hydro-meteorological information for landslide hazard assessment thresholds in Rwanda. Nat. Hazards Earth Syst. Sci. 2022, 22, 3641–3661. [Google Scholar] [CrossRef]
- Bordoni, M.; Vivaldi, V.; Ciabatta, L.; Brocca, L.; Meisina, C. Temporal prediction of shallow landslides exploiting soil saturation degree derived by ERA5-Land products. Bull. Eng. Geol. Environ. 2023, 82, 308. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Oberdörster, C.; Vereecken, H. Evaluation of a low-cost soil water content sensor for wireless network applications. J. Hydrol. 2007, 344, 32–42. [Google Scholar] [CrossRef]
- Thirugnanam, H.; Uhlemann, S.; Reghunadh, R.; Ramesh, M.V.; Rangan, V.P. Review of Landslide Monitoring Techniques with IoT Integration Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5317–5338. [Google Scholar] [CrossRef]
- Tamburini, A.; Villa, F.; Miceli, G.; Epifani, F. Application of Multi-Criteria Analysis (MCA) to assess landslide hazard and plan mitigation strategies along railway corridors in Central Italy. In Proceedings of the 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017; American Rock Mechanics Association: Alexandria, VA, USA, 2017; Volume 17-621, pp. 1–5. [Google Scholar]
- Thomas, M.A.; Collins, B.D.; Mirus, B.B. Assessing the feasibility of satellite-based thresholds for hydrologically driven landsliding. Water Resour. Res. 2019, 55, 9006–9023. [Google Scholar] [CrossRef]
- Oguz, E.A.; Depina, I.; Myhre, B.; Devoli, G.; Rustad, H.; Thakur, V. IoT-based hydrological monitoring of water-induced landslides:a case study in central Norway. Bull. Eng. Geol. Environ. 2022, 81, 217. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Pradhan, B.; Alamri, A.M. IoT-Based Geotechincal Monitoring of Unstable Slopes for Landslide Early Warning in the Darjeeling Himalayas. Sensors 2020, 20, 2611. [Google Scholar] [CrossRef]
- Piciullo, L.; Capobianco, V.; Heyerdahl, H. A first step towards a IoT-based local early warning system for an unsaturated slope in Norway. Nat. Hazards 2022, 114, 3377–3407. [Google Scholar] [CrossRef]
- Topp, G.C.; Reynolds, W.D. Time domain reflectometry: A seminal technique for measuring mass and energy in soil. Soil Tillage Res. 1998, 47, 125–132. [Google Scholar] [CrossRef]
- Robinson, D.A.; Jones, S.B.; Wraith, J.A.; Or, D.; Friedman, S.P. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2003, 2, 444–475. [Google Scholar] [CrossRef]
- Dean, T.J.; Bell, J.P.; Baty, A.J.B. Soil-moisture measurement by an improved capacitance technique, Part 1. Sensor design and performance. J. Hydrol. 1987, 93, 67–78. [Google Scholar] [CrossRef]
- Veldkamp, E.; O’Brien, J.J. Calibration of a frequency domain reflectometry sensor for humid tropical soils of volcanic origin. Soil Sci. Soc. Am. J. 2000, 64, 1549–1553. [Google Scholar] [CrossRef]
- Hernández, J.G.R.; Gracia-Sánchez, J.; Rodríguez-Martínez, T.P.; Zuñiga-Morales, J.A. Correlation between TDR and FDR soil moisture measurements at different scales to establish water availability at the south of the Yucatan Peninsula. In Soil Moisture; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Brocca, L.; Melone, F.; Moramarco, T. On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrol. Process. 2008, 22, 629–642. [Google Scholar] [CrossRef]
- Pumo, D.; Francipane, A.; Lo Conti, F.; Arnone, E.; Bitonto, P.; Viola, F.; La Loggia, G.; Noto, L.V. The SESAMO early warning system for rainfall-triggered landslides. J. Hydroinform. 2016, 18, 256–276. [Google Scholar] [CrossRef]
- Moradi, S.; Heinze, T.; Budler, J.; Gunatilake, T.; Kemna, A.; Huisman, J.A. Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability. Land 2021, 10, 423. [Google Scholar] [CrossRef]
- Harris, S.J.; Orense, R.P.; Itoh, K. Back analyses of rainfall-induced slope failure in Northland Allochthon formation. Landslides 2012, 9, 349–356. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Jackson, T.J.; McKim, H.L. Survey of methods for soil moisture determination. Water Resour. Res. 1980, 16, 961–979. [Google Scholar] [CrossRef]
- Blonquist, J.M.; Jones, S.B.; Robinson, D.A. A time domain transmission sensor with TDR performance characteristics. J. Hydrol. 2005, 314, 235–245. [Google Scholar] [CrossRef]
- Kelleners, T.J.; Robinson, D.A.; Shouse, P.J.; Ayars, J.E.; Skaggs, T.H. Frequency dependence of the complex permittivity andits impact on dielectric sensor calibration in soils. Soil Sci. Soc. Am. J. 2005, 69, 67–76. [Google Scholar] [CrossRef]
- Kizito, F.; Campbell, C.S.; Campbell, G.S.; Cobos, D.R.; Teare, B.L.; Carter, B.; Hopmans, J.W. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. J. Hydrol. 2008, 352, 367–378. [Google Scholar] [CrossRef]
- Wang, H.; Sánchez-Molina, J.A.; Li, M.; Berenguel, M.; Yang, X.T.; Bienvenido, J.F. Leaf area index estimation for a greenhouse transpiration model using external climate conditions based on genetics algorithms, back-propagation neural networks and nonlinear autoregressive exogenous models. Agric. Water Manag. 2017, 183, 107–115. [Google Scholar] [CrossRef]
- Lea-Cox, J.D.; Williams, J.; Mellano, M.A. Optimising a sensor-based irrigation protocol for a large-scale cut-flower operation in southern California. Acta Hortic. 2018, 1197, 219–225. [Google Scholar] [CrossRef]
- Chen, Y.; Marek, G.W.; Marek, T.H.; Heflin, K.R.; Porter, D.O.; Moorhead, J.E.; Brauer, D.K. Soil Water Sensor Performance and Corrections with Multiple Installation Orientations and Depths under Three Agricultural Irrigation Treatments. Sensors 2019, 19, 2872. [Google Scholar] [CrossRef] [PubMed]
- Santana, O.A.; Imaña Encinas, J.M.; de Souza Silveira, F.L. Fire passage on geomorphic fractures in Cerrado: Effect on vegetation. Braz. J. For. Res. 2016, 36, 327–337. [Google Scholar] [CrossRef]
- Bordoni, M.; Bittelli, M.; Valentino, R.; Vivaldi, V.; Meisina, C. Observations on soil-atmosphere interactions after long-term monitoring at two sample sites subjected to shallow landslides. Bull. Eng. Geol. Environ. 2021, 80, 7467–7491. [Google Scholar] [CrossRef]
- Operating Manual of Soil Temperature and Moisture Transmitter Type 485 V1.0; Shandong Renke Control Technology Co., Ltd.: Jinan, China, 2020; Available online: https://www.imiconsystem.com/wp-content/uploads/2020/10/Soil-temperature-and-moisture-transmitter-Model-485-instruction-manual.pdf (accessed on 20 April 2022).
- Balbontín, C.; Campos, I.; Odi-Lara, M.; Ibacache, A.; Calera, A. Irrigation Performance Assessment in Table Grape Using the Reflectance-Based Crop Coefficient. Remote Sens. 2017, 9, 1276. [Google Scholar] [CrossRef]
- Baum, R.L.; McKenna, J.P.; Godt, J.W.; Harp, E.L.; McMullen, S.R. Hydrologic Monitoring of Landslide-Prone Coastal Bluffs Near Edmonds and Everett, Washington, 2001–2004; U.S. Geological Survey Open-File Report 2005–1063; 2005; 42p. Available online: https://pubs.usgs.gov/of/2005/1063/OFR2005_1063_508.pdf (accessed on 20 January 2024).
- Centro Meteorologico Lombardo—La meteo in Lombardia. Available online: http://www.centrometeolombardo.com/ (accessed on 1 June 2024).
- Bordoni, M.; Corradini, B.; Lucchelli, L.; Valentino, R.; Bittelli, M.; Vivaldi, V.; Meisina, C. Empirical and physically based thresholds for the occurrence of shallow landslides in a prone area of northern Italian Apennines. Water 2019, 11, 2653. [Google Scholar] [CrossRef]
- Alpert, P.; Ben-Gai, T.; Baharan, A.; Benjamini, Y.; Yekutieli, D.; Colacino, M.; Diodato, L.; Ramis, C.; Homar, V.; Romero, R.; et al. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys. Res. Lett. 2002, 29, 1536. [Google Scholar] [CrossRef]
- Qu, W.; Bogena, H.R.; Huisman, J.A.; Vereecken, H. Calibration of a novel low-cost soil water content sensor based on a ring oscillator. Vadose Zone J. 2013, 12, 1–10. [Google Scholar] [CrossRef]
- Plauborg, F.; Iversen, B.V.; Lærke, P.E. In situ comparison of three dielectric soil moisture sensors in drip irrigated sandy soils. Vadose Zone J. 2005, 4, 1037–1047. [Google Scholar] [CrossRef]
- Mittelbach, H.; Casini, F.; Lehner, I.; Teuling, A.J.; Seneviratne, S.I. Soil moisture monitoring for climate research: Evaluation of a low-cost sensor in the framework of the Swiss Soil Moisture Experiment (SwissSMEX) campaign. J. Geophys. Res. 2011, 116, 1–11. [Google Scholar] [CrossRef]
- Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of four soil moisture sensor type under field conditions in Switzerland. J. Hydrol. 2012, 430–431, 39–49. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, H.; He, H.; Zhou, J.; Zhang, Y. Evaluation of Soil Moisture Climatology and Anomaly Components Derived From ERA5-Land and GLDAS-2.1 in China. Water Resour. Manag. 2021, 35, 629–643. [Google Scholar] [CrossRef]
- Fares, A.; Abbas, F.; Maria, D.; Mair, A. Improved Calibration Functions of Three Capacitance Probes for the Measurement of Soil Moisture in Tropical Soils. Sensors 2011, 11, 4858–4874. [Google Scholar] [CrossRef]
- Pratt, J.W.; Gibbons, J.D. Kolmogorov-Smirnov Two-Sample Tests. In Concepts of Nonparametric Theory; Springer Series in Statistics; Springer: New York, NY, USA, 1981. [Google Scholar]
- Gonzalez-Ollauri, A.; Mickovski, S.B. The Effect of Willow (Salix sp.) on Soil Moisture and Matric Suction at a Slope Scale. Sustainability 2020, 12, 9789. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R.; Kalma, J.D. In situ measurement of soil moisture: A comparison of techniques. J. Hydrol. 2004, 293, 85–99. [Google Scholar] [CrossRef]
- Capobianco, V.; Cascini, L.; Cuomo, S.; Foresta, V. Wetting–drying response of an unsaturated pyroclastic soil vegetated with long-root grass. Environ. Geotech. 2020, 10, 332–350. [Google Scholar] [CrossRef]
- Varun, M.O.; Narasimha, D.S. Landslide warning system based on Arduino. In Symposium on Landslides in Kerala 2018; Phasor Books: Kollam, India, 2019; pp. 31–35. [Google Scholar]
Monitored Parameter | Depth (m) | Device | Model | Accuracy with Generic Factory Calibration | Range of SWC Measure | Price Ratio |
---|---|---|---|---|---|---|
SWC (%), air T °C | 0.6, 1.2 0.6, 1.2 0.6 1.2 | FDR probe Renke FDR probe Rika FDR probe Truebner FDR probeTruebner | RS-WS-N01-TR-1 RK520-01 SMT100 (SDI-12) SMT50 | 0–50% → ±2% 50–100% → ±3% 0–50% → ±2% 51–100% → ±3% 0–50% → ±3% 50–100% → limited 0–50% → ±2% | 0–100% 0–100% 0–100% 0–50% | 1 1.5 4 2 |
SWC (%) | 0.6 | Capacitance probe METER | Teros 10 | 0–64% → ±3% | 0–64% | 4 |
Datalogger: No. 1 CR1000X (Campbell Scientific, Inc., Logan, UT, USA) with 10 min acquisition time resolution. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavanello, M.; Bordoni, M.; Vivaldi, V.; Reguzzoni, M.; Tamburini, A.; Villa, F.; Meisina, C. Low-Cost Sensors for the Measurement of Soil Water Content for Rainfall-Induced Shallow Landslide Early Warning Systems. Water 2024, 16, 3244. https://doi.org/10.3390/w16223244
Pavanello M, Bordoni M, Vivaldi V, Reguzzoni M, Tamburini A, Villa F, Meisina C. Low-Cost Sensors for the Measurement of Soil Water Content for Rainfall-Induced Shallow Landslide Early Warning Systems. Water. 2024; 16(22):3244. https://doi.org/10.3390/w16223244
Chicago/Turabian StylePavanello, Margherita, Massimiliano Bordoni, Valerio Vivaldi, Mauro Reguzzoni, Andrea Tamburini, Fabio Villa, and Claudia Meisina. 2024. "Low-Cost Sensors for the Measurement of Soil Water Content for Rainfall-Induced Shallow Landslide Early Warning Systems" Water 16, no. 22: 3244. https://doi.org/10.3390/w16223244
APA StylePavanello, M., Bordoni, M., Vivaldi, V., Reguzzoni, M., Tamburini, A., Villa, F., & Meisina, C. (2024). Low-Cost Sensors for the Measurement of Soil Water Content for Rainfall-Induced Shallow Landslide Early Warning Systems. Water, 16(22), 3244. https://doi.org/10.3390/w16223244