Coupling Different Machine Learning and Meta-Heuristic Optimization Techniques to Generate the Snow Avalanche Susceptibility Map in the French Alps
Abstract
:1. Introduction
- Upon examining the literature, this research is the initial attempt regarding the utilization of the SGB technique, and additionally, it is the first attempt in terms of the integration of such a comprehensive hyperparameter tuning strategy in snow avalanche susceptibility mapping.
- Along with implementing several pre-processing steps for spinning up to the predictive analysis, the present study aimed to discover the role of one of the nascent explainable artificial intelligence techniques, namely the SHAP, in post-processing attempts. To the best of the authors’ knowledge, such a well-rounded and systematic approach has not been acknowledged in the pertinent literature with regard to the designation of susceptible regions to snow avalanches.
- Susceptibility mapping with such a holistic model consisting of a total of 17 variables (including topographic, geological, meteorological, and land use factors) has not yet been implemented in snow avalanche analyses. In this sense, hybrid predictive modeling for sensitive ecosystems like the French Alps is important for creating real-time decision support systems by considering geographic and climatic factors in light of current and constantly varying data.
2. Research Framework
3. Study Area
4. Materials
4.1. Avalanche Inventory Mapping
4.2. Avalanche Triggering Factors
5. Methods
5.1. Pre-Processing
5.1.1. Data Encoding
5.1.2. Data Scaling
5.1.3. Data Splitting Strategy
5.2. Processing
5.2.1. Optimization Algorithms
5.2.2. Machine Learning Algorithms
5.2.3. Performance Evaluation
5.3. Post-Processing
6. Results and Discussion
6.1. Training and Validation Results
6.2. Avalanche Susceptibility Mapping with Respect to the Testing Results
6.3. Model Interpretability
7. Concluding Remarks, Limitations, and Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Chen, X.; Yang, J.; Li, L.; Wang, T. Snow Avalanche Susceptibility Mapping from Tree-Based Machine Learning Approaches in Ungauged or Poorly-Gauged Regions. Catena 2023, 224, 106997. [Google Scholar] [CrossRef]
- Wen, H.; Wu, X.; Liao, X.; Wang, D.; Huang, K.; Wünnemann, B. Application of Machine Learning Methods for Snow Avalanche Susceptibility Mapping in the Parlung Tsangpo Catchment, Southeastern Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2022, 198, 103535. [Google Scholar] [CrossRef]
- EAWS European Avalanche Warning Services. Available online: https://www.avalanches.org/fatalities/ (accessed on 20 April 2024).
- Schweizer, J.; Lütschg, M. Characteristics of Human-Triggered Avalanches. Cold Reg. Sci. Technol. 2001, 33, 147–162. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Chen, G.; Ren, C.; Zhang, J. Machine Learning Applications on Air Temperature Prediction in the Urban Canopy Layer: A Critical Review of 2011–2022. Urban Clim. 2023, 49, 101499. [Google Scholar] [CrossRef]
- Pirone, D.; Cimorelli, L.; Del Giudice, G.; Pianese, D. Short-Term Rainfall Forecasting Using Cumulative Precipitation Fields from Station Data: A Probabilistic Machine Learning Approach. J. Hydrol. 2023, 617, 128949. [Google Scholar] [CrossRef]
- Merabet, K.; Heddam, S. Improving the Accuracy of Air Relative Humidity Prediction Using Hybrid Machine Learning Based on Empirical Mode Decomposition: A Comparative Study. Environ. Sci. Pollut. Res. 2023, 30, 60868–60889. [Google Scholar] [CrossRef]
- Demir, V.; Citakoglu, H. Forecasting of Solar Radiation Using Different Machine Learning Approaches. Neural Comput. Appl. 2023, 35, 887–906. [Google Scholar] [CrossRef]
- Ha, H.; Bui, Q.D.; Khuc, T.D.; Tran, D.T.; Pham, B.T.; Mai, S.H.; Nguyen, L.P.; Luu, C. A Machine Learning Approach in Spatial Predicting of Landslides and Flash Flood Susceptible Zones for a Road Network. Model. Earth Syst. Environ. 2022, 8, 4341–4357. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, Z.; Chen, X.; Lai, C. Fast Simulation and Prediction of Urban Pluvial Floods Using a Deep Convolutional Neural Network Model. J. Hydrol. 2023, 624, 129945. [Google Scholar] [CrossRef]
- Viallon-Galinier, L.; Hagenmuller, P.; Eckert, N. Combining Modelled Snowpack Stability with Machine Learning to Predict Avalanche Activity. Cryosphere 2023, 17, 2245–2260. [Google Scholar] [CrossRef]
- Yariyan, P.; Omidvar, E.; Karami, M.; Cerdà, A.; Pham, Q.B.; Tiefenbacher, J.P. Evaluating Novel Hybrid Models Based on GIS for Snow Avalanche Susceptibility Mapping: A Comparative Study. Cold Reg. Sci. Technol. 2022, 194, 103453. [Google Scholar] [CrossRef]
- Bian, R.; Huang, K.; Liao, X.; Ling, S.; Wen, H.; Wu, X. Snow Avalanche Susceptibility Assessment Based on Ensemble Machine Learning Model in the Central Shaluli Mountain. Front. Earth Sci. 2022, 10, 880711. [Google Scholar] [CrossRef]
- Iban, M.C.; Bilgilioglu, S.S. Snow Avalanche Susceptibility Mapping Using Novel Tree-Based Machine Learning Algorithms (XGBoost, NGBoost, and LightGBM) with EXplainable Artificial Intelligence (XAI) Approach. Stoch. Environ. Res. Risk Assess. 2023, 37, 2243–2270. [Google Scholar] [CrossRef]
- Baggi, S.; Schweizer, J. Characteristics of Wet-Snow Avalanche Activity: 20 Years of Observations from a High Alpine Valley (Dischma, Switzerland). Nat. Hazards 2009, 50, 97–108. [Google Scholar] [CrossRef]
- Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S. Projected Changes of Snow Conditions and Avalanche Activity in a Warming Climate: The French Alps over the 2020–2050 and 2070–2100 Periods. Cryosphere 2014, 8, 1673–1697. [Google Scholar] [CrossRef]
- Calvet, M.; Gunnell, Y.; Farines, B. Flat-Topped Mountain Ranges: Their Global Distribution and Value for Understanding the Evolution of Mountain Topography. Geomorphology 2015, 241, 255–291. [Google Scholar] [CrossRef]
- Durand, Y.; Giraud, G.; Laternser, M.; Etchevers, P.; Mérindol, L.; Lesaffre, B. Reanalysis of 47 Years of Climate in the French Alps (1958-2005): Climatology and Trends for Snow Cover. J. Appl. Meteorol. Climatol. 2009, 48, 2487–2512. [Google Scholar] [CrossRef]
- Beaumet, J.; Ménégoz, M.; Morin, S.; Gallée, H.; Fettweis, X.; Six, D.; Vincent, C.; Wilhelm, B.; Anquetin, S. Twentieth Century Temperature and Snow Cover Changes in the French Alps. Reg. Environ. Chang. 2021, 21, 114. [Google Scholar] [CrossRef]
- Diem, T.; Koch, S.; Schwarzenbach, S.; Wehrli, B.; Schubert, C.J. Greenhouse Gas Emissions (CO2, CH4 and N2O) from Perialpine and Alpine Hydropower Reservoirs. Biogeosci. Discuss. 2008, 5, 3699–3736. [Google Scholar]
- Habersack, H.; Piégay, H. 27 River Restoration in the Alps and Their Surroundings: Past Experience and Future Challenges. Dev. Earth Surf. Process. 2007, 11, 703–735. [Google Scholar]
- ESRI. ArcMap 10.3; ESRI: Redlands, CA, USA, 2016. [Google Scholar]
- Pham, B.T.; Luu, C.; Van Phong, T.; Trinh, P.T.; Shirzadi, A.; Renoud, S.; Asadi, S.; Van Le, H.; von Meding, J.; Clague, J.J. Can Deep Learning Algorithms Outperform Benchmark Machine Learning Algorithms in Flood Susceptibility Modeling? J. Hydrol. 2021, 592, 125615. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F. Identifying the Essential Flood Conditioning Factors for Flood Prone Area Mapping Using Machine Learning Techniques. Catena 2019, 175, 174–192. [Google Scholar] [CrossRef]
- Thiemig, V.; Gomes, G.N.; Skøien, J.O.; Ziese, M.; Rauthe-Schöch, A.; Rustemeier, E.; Rehfeldt, K.; Walawender, J.P.; Kolbe, C.; Pichon, D.; et al. EMO-5: A High-Resolution Multi-Variable Gridded Meteorological Dataset for Europe. Earth Syst. Sci. Data 2022, 14, 3249–3272. [Google Scholar] [CrossRef]
- USGS. Earth Explorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 30 January 2024).
- CORINE. CORINE Land Cover Data. Available online: https://land.copernicus.eu (accessed on 30 January 2024).
- Hengl, T. Continental Europe Surface Lithology Based on EGDI/OneGeology Map at 1:1M Scale. 2021. Available online: https://zenodo.org/records/4787632 (accessed on 30 January 2024).
- Tao, C.; Hu, Y.; Dai, L.; Xaio, L. Long-Term Series of Daily Snow Depth Dataset over the Northern Hemisphere Based on Machine Learning (1980–2019); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar]
- Basili, R.; Danciu, L.; Beauval, C.; Sesetyan, K.; Vilanova, S.; Adamia, S.; Arroucau, P.; Atanackov, J.; Baize, S.; Canora, C.; et al. European Fault-Source Model 2020 (EFSM20): Online Data on Fault Geometry and Activity Parameters; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2022. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Post, R.; Quintero, F.; Krajewski, W.F. On the Optimized Management of Activated Distributed Storage Systems: A Novel Approach to Flood Mitigation. Water 2024, 16, 1476. [Google Scholar] [CrossRef]
- Hu, S.; Li, Z.; Wang, H.; Xue, Z.; Tan, P.; Tan, K.; Wu, Y.; Feng, X. Estimating Shear Strength of Marine Soft Clay Sediment: Experimental Research and Hybrid Ensemble Artificial Intelligence Modeling. Water 2024, 16, 1664. [Google Scholar] [CrossRef]
- Le, X.-H.; Huynh, T.T.; Song, M.; Lee, G. Quantifying Predictive Uncertainty and Feature Selection in River Bed Load Estimation: A Multi-Model Machine Learning Approach with Particle Swarm Optimization. Water 2024, 16, 1945. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, H.; Wu, Q.; Chi, S.; Yang, M. An Optimal Model and Application of Hydraulic Structure Regulation to Improve Water Quality in Plain River Networks. Water 2023, 15, 4297. [Google Scholar] [CrossRef]
- Kamran, S.; Safavi, H.R.; Golmohammadi, M.H.; Rezaei, F.; Abd Elaziz, M.; Forestiero, A.; Lu, S. Maximizing Sustainability in Reservoir Operation under Climate Change Using a Novel Adaptive Accelerated Gravitational Search Algorithm. Water 2022, 14, 905. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar] [CrossRef]
- Rajabioun, R. Cuckoo Optimization Algorithm. Appl. Soft Comput. 2011, 11, 5508–5518. [Google Scholar] [CrossRef]
- Xi, H.; Xie, Y.; Liu, S.; Mao, Q.; Shen, T.; Zhang, Q. Multi-Objective Optimal Scheduling of Generalized Water Resources Based on an Inter-Basin Water Transfer Project. Water 2023, 15, 3195. [Google Scholar] [CrossRef]
- Peng, S.; Wang, Y.; Fang, X.; Wu, Q. Burst Diagnosis Multi-Stage Model for Water Distribution Networks Based on Deep Learning Algorithms. Water 2024, 16, 1258. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Koc, K.; Özger, M.; Işık, Z. Exploring the Additional Value of Class Imbalance Distributions on Interpretable Flash Flood Susceptibility Prediction in the Black Warrior River Basin, Alabama, United States. J. Hydrol. 2022, 610, 127877. [Google Scholar] [CrossRef]
- Karaguzel, O.T.; Zhang, R.; Lam, K.P. Coupling of Whole-Building Energy Simulation and Multi-Dimensional Numerical Optimization for Minimizing the Life Cycle Costs of Office Buildings. Build. Simul. 2014, 7, 111–121. [Google Scholar] [CrossRef]
- Ibrahim, Z.; Khalid, N.K.; Ibrahim, I.; Sheng, L.K.; Buyamin, S.; Md. Yusof, Z.; Muhammad, M.S. Function Minimization in DNA Sequence Design Based on Binary Particle Swarm Optimization. J. Teknol. (Sci. Eng.) 2011, 54, 331–342. [Google Scholar] [CrossRef]
- Singh, G.; Pruncu, C.I.; Gupta, M.K.; Mia, M.; Khan, A.M.; Jamil, M.; Pimenov, D.Y.; Sen, B.; Sharma, V.S. Investigations of Machining Characteristics in the Upgraded MQL-Assisted Turning of Pure Titanium Alloys Using Evolutionary Algorithms. Materials 2019, 12, 999. [Google Scholar] [CrossRef]
- Anter, A.M.; Hassenian, A.E. Computational Intelligence Optimization Approach Based on Particle Swarm Optimizer and Neutrosophic Set for Abdominal CT Liver Tumor Segmentation. J. Comput. Sci. 2018, 25, 376–387. [Google Scholar] [CrossRef]
- Amin, M. Hybrid Meta-Heuristic Machine Learning Methods Applied to Landslide Susceptibility Mapping in the Sahel-Algiers. Int. J. Sediment Res. 2022, 37, 601–618. [Google Scholar] [CrossRef]
- Koc, K.; Budayan, C.; Ekmekcioğlu, Ö.; Tokdemir, O.B. Predicting Cost Impacts of Nonconformances in Construction Projects Using Interpretable Machine Learning. J. Constr. Eng. Manag. 2024, 150, 04023143. [Google Scholar] [CrossRef]
- Shehab, M.; Khader, A.T.; Al-Betar, M.A. A Survey on Applications and Variants of the Cuckoo Search Algorithm. Appl. Soft Comput. 2017, 61, 1041–1059. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Guo, Z.; Guo, Y.; Zhao, J. Wind Speed Forecasting Based on Wavelet Decomposition and Wavelet Neural Networks Optimized by the Cuckoo Search Algorithm. Atmos. Ocean. Sci. Lett. 2019, 12, 107–115. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ekmekcioğlu, Ö.; Başakın, E.E.; Özger, M. Tree-Based Nonlinear Ensemble Technique to Predict Energy Dissipation in Stepped Spillways. Eur. J. Environ. Civ. Eng. 2022, 26, 3547–3565. [Google Scholar] [CrossRef]
- Modaresi, F.; Araghinejad, S. A Comparative Assessment of Support Vector Machines, Probabilistic Neural Networks, and K-Nearest Neighbor Algorithms for Water Quality Classification. Water. Resour. Manage. 2014, 28, 4095–4111. [Google Scholar] [CrossRef]
- Başakın, E.E.; Ekmekcioğlu, Ö.; Özger, M.; Altınbaş, N.; Şaylan, L. Estimation of Measured Evapotranspiration Using Data-Driven Methods with Limited Meteorological Variables. Ital. J. Agrometeorol. 2021, 1, 63–80. [Google Scholar] [CrossRef]
- Raghavendra, N.S.; Deka, P.C. Support Vector Machine Applications in the Field of Hydrology: A Review. Appl. Soft Comput. 2014, 19, 372–386. [Google Scholar] [CrossRef]
- Behzad, M.; Asghari, K.; Eazi, M.; Palhang, M. Generalization Performance of Support Vector Machines and Neural Networks in Runoff Modeling. Expert Syst. Appl. 2009, 36, 7624–7629. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Q. Applying Machine Learning Methods to Improve Rainfall–Runoff Modeling in Subtropical River Basins. Water 2024, 16, 2199. [Google Scholar] [CrossRef]
- Campi, P.; Modugno, A.F.; De Carolis, G.; Pedrero Salcedo, F.; Lorente, B.; Garofalo, S. Pietro A Machine Learning Approach to Monitor the Physiological and Water Status of an Irrigated Peach Orchard under Semi-Arid Conditions by Using Multispectral Satellite Data. Water 2024, 16, 2224. [Google Scholar] [CrossRef]
- Kumar, M.; Agrawal, Y.; Adamala, S.; Pushpanjali; Subbarao, A.V.M.; Singh, V.K.; Srivastava, A. Generalization Ability of Bagging and Boosting Type Deep Learning Models in Evapotranspiration Estimation. Water 2024, 16, 2233. [Google Scholar] [CrossRef]
- Devi, K.K.; Kumar, G.A.S. Stochastic Gradient Boosting Model for Twitter Spam Detection. Comput. Syst. Sci. Eng. 2022, 41, 849–859. [Google Scholar] [CrossRef]
- Alzubi, Y.; Al Adwan, J.; Khatatbeh, A.; Al-Kharabsheh, B. Parametric Assessment of Concrete Constituent Materials Using Machine Learning Techniques. J. Soft Comput. Civ. Eng. 2022, 6, 39–62. [Google Scholar] [CrossRef]
- Başakın, E.E.; Ekmekcioğlu, Ö.; Stoy, P.C.; Özger, M. Estimation of Daily Reference Evapotranspiration by Hybrid Singular Spectrum Analysis-Based Stochastic Gradient Boosting. MethodsX 2023, 10, 102163. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Abdel-Aty, M. Application of Stochastic Gradient Boosting Technique to Enhance Reliability of Real-Time Risk Assessment. Transp. Res. Rec. J. Transp. Res. Board 2013, 2386, 26–34. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L., Jr. Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties; USAF School of Aviation Medicine: Randolph Field, TX, USA, 1951. [Google Scholar]
- Qaddoura, R.; Faris, H.; Aljarah, I. An Efficient Clustering Algorithm Based on the K-Nearest Neighbors with an Indexing Ratio. Int. J. Mach. Learn. Cybern. 2020, 11, 675–714. [Google Scholar] [CrossRef]
- Jung, W.-H.; Lee, S.-G. An Arrhythmia Classification Method in Utilizing the Weighted KNN and the Fitness Rule. IRBM 2017, 38, 138–148. [Google Scholar] [CrossRef]
- Li, W.; Yin, Y.; Quan, X.; Zhang, H. Gene Expression Value Prediction Based on XGBoost Algorithm. Front. Genet. 2019, 10, 1077. [Google Scholar] [CrossRef]
- Petch, J.; Di, S.; Nelson, W. Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Can. J. Cardiol. 2022, 38, 204–213. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Y.; Han, Z.; Liu, G. Interpretability Analysis for Thermal Sensation Machine Learning Models: An Exploration Based on the SHAP Approach. Indoor Air 2022, 32, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Chen, H.; Tang, L.; Chen, Z.; Samui, P. Assessment of Rockburst Risk Using Multivariate Adaptive Regression Splines and Deep Forest Model. Acta Geotech. 2021, 17, 1183–1205. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y. Explainable Heat-Related Mortality with Random Forest and SHapley Additive ExPlanations (SHAP) Models. Sustain. Cities Soc. 2022, 79, 103677. [Google Scholar] [CrossRef]
- Shapley, L.S. A Value for N-Person Games. In Contributions to the Theory of Games; Princeton University Press: Princeton, NJ, USA, 1953; Volume 2, pp. 307–317. [Google Scholar]
- Mangalathu, S.; Hwang, S.-H.; Jeon, J.-S. Failure Mode and Effects Analysis of RC Members Based on Machine-Learning-Based SHapley Additive ExPlanations (SHAP) Approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4766–4775. [Google Scholar]
- Ransom, K.M.; Nolan, B.T.; Stackelberg, P.E.; Belitz, K.; Fram, M.S. Machine Learning Predictions of Nitrate in Groundwater Used for Drinking Supply in the Conterminous United States. Sci. Total Environ. 2021, 803, 151065. [Google Scholar] [CrossRef]
- Cousseau, V.; Barbosa, L. Linking Place Records Using Multi-View Encoders. Neural Comput. Appl. 2021, 33, 12103–12119. [Google Scholar] [CrossRef]
- Akay, H. Spatial Modeling of Snow Avalanche Susceptibility Using Hybrid and Ensemble Machine Learning Techniques. Catena 2021, 206, 105524. [Google Scholar] [CrossRef]
- Tiwari, A.; Arun, G.; Vishwakarma, B.D. Parameter Importance Assessment Improves Efficacy of Machine Learning Methods for Predicting Snow Avalanche Sites in Leh-Manali Highway, India. Sci. Total Environ. 2021, 794, 148738. [Google Scholar] [CrossRef]
- Dreier, L.; Harvey, S.; van Herwijnen, A.; Mitterer, C. Relating Meteorological Parameters to Glide-Snow Avalanche Activity. Cold Reg. Sci. Technol. 2016, 128, 57–68. [Google Scholar] [CrossRef]
- Parshad, R.; Srivastva, P.K.; Snehmani; Ganguly, S.; Kumar, S.; Ganju, A. Snow Avalanche Susceptibility Mapping Using Remote Sensing and GIS in Nubra-Shyok Basin, Himalaya, India. Indian J. Sci. Technol. 2017, 10, 1–12. [Google Scholar] [CrossRef]
- Schweizer, J.; Jamieson, J.B.; Schneebeli, M. Snow Avalanche Formation. Rev. Geophys. 2003, 41, 1016. [Google Scholar] [CrossRef]
- Yariyan, P.; Omidvar, E.; Minaei, F.; Ali Abbaspour, R.; Tiefenbacher, J.P. An Optimization on Machine Learning Algorithms for Mapping Snow Avalanche Susceptibility; Springer: Dordrecht, The Netherlands, 2022; Volume 111, ISBN 0123456789. [Google Scholar]
- Monti, F.; Cagnati, A.; Valt, M.; Schweizer, J. A New Method for Visualizing Snow Stability Profiles. Cold Reg. Sci. Technol. 2012, 78, 64–72. [Google Scholar] [CrossRef]
- Yang, J.; He, Q.; Liu, Y. Winter–Spring Prediction of Snow Avalanche Susceptibility Using Optimisation Multi-Source Heterogeneous Factors in the Western Tianshan Mountains, China. Remote Sens. 2022, 14, 1340. [Google Scholar] [CrossRef]
- Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A. Snehmani Automated Identification of Potential Snow Avalanche Release Areas Based on Digital Elevation Models. Nat. Hazards Earth Syst. Sci. 2013, 13, 1321–1335. [Google Scholar] [CrossRef]
- Brandolini, P.; Faccini, F.; Fratianni, S.; Freppaz, M.; Giardino, M.; Maggioni, M.; Perotti, L.; Romeo, V. Snow-Avalanche and Climatic Conditions in the Ligurian Ski Resorts (NW-Italy). Geogr. Fis. Din. Quat. 2017, 40, 41–52. [Google Scholar] [CrossRef]
Criterion | Definition | Direct/Indirect Impacts on Snow Avalanches | Data Source |
---|---|---|---|
Elevation | The height above sea level of a certain location. | Elevation influences snowpack characteristics, avalanche initiation, and runout. | United States Geological Survey (USGS) [26] |
Slope | The steepness of the terrain is typically expressed as an angle or percentage. | Slope impacts the initiation of the snow avalanches. | Retrieved from the Digital Elevation Model. |
Aspect | The compass direction that a slope face. | Aspect affects snow accumulation and melting rates, influencing snowpack stability and avalanche occurrence. | Retrieved from the Digital Elevation Model. |
Profile Curvature | The curvature of the terrain profile along a slope. | Terrain profile curvature affects snow deposition, wind redistribution, and snowpack stability. | Retrieved from the Digital Elevation Model. |
Plan Curvature | The curvature of the terrain is perpendicular to the slope direction. | Plan curvature influences snow distribution and wind loading patterns. | Retrieved from the Digital Elevation Model. |
Land use/Land cover (LULC) | The classification and mapping of surface cover types in a geographic area. | LULC affects snow accumulation, stability, and avalanche occurrence. | Coordination of Information on the Environment (CORINE) [27] |
Topographic position index (TPI) | A measure of a location’s relative position within a landscape. | TPI influences snow distribution and avalanche behavior as it reflects terrain morphology. | Retrieved from the Digital Elevation Model. |
Topographic wetness index (TWI) | A measure of topographic moisture conditions, which is calculated from the ratio of upslope contributing area to the tangential slope. | TWI influences soil moisture, vegetation distribution, and snowmelt rates, which in turn affect snow stability and avalanche potential. | Retrieved from the Digital Elevation Model. |
Topographic ruggedness index (TRI) | A measure of terrain roughness or variability. | TRI influences snow distribution, wind transport, and avalanche behavior as it represents the complexity and variability of terrain morphology. | Retrieved from the Digital Elevation Model. |
Lithology | The study of the physical and chemical properties of rocks and soil. | Lithology affects snowpack stability and avalanche release through its influence on terrain roughness, slope stability, and snowpack composition. | Hengl [28] |
Rainfall | Precipitation is in the form of liquid water falling from the atmosphere. | Rainfall can destabilize the snowpack by increasing water infiltration and percolation, weakening snow layers, and promoting avalanche release. | Thiemig et al. [25] |
Wind Speed | The velocity of air movement is typically measured at a certain height above the ground. | Wind speed influences snow transport patterns, deposition, and loading, affecting avalanche release and propagation. | Thiemig et al. [25] |
Minimum Temperature | The lowest temperature is recorded within a specific period. | Minimum temperatures affect snow metamorphism, stability, and avalanche conditions. | Thiemig et al. [25] |
Maximum Temperature | The highest temperature is recorded within a specific period. | Maximum temperatures influence snowmelt rates, snowpack settlement, and avalanche conditions. | Thiemig et al. [25] |
Solar Radiation | The energy received from the sun is typically measured as solar irradiance or insolation. | Solar radiation drives snowmelt, consequently influencing snowpack stability and avalanche conditions. | Thiemig et al. [25] |
Snow Depth | The vertical thickness of the snowpack was measured from the ground surface. | Snow Depth is a fundamental indicator of an avalanche potential. | Tao et al. [29] |
Distance to Faults | The proximity of a location to geological faults, fractures, or seismic zones. | Faults and geological structures influence terrain stability and snowpack characteristics, potentially serving as release zones for avalanches. | Basili et al. [30] |
Attribute | Unit | Mode | Min | Mean | Max | Std. Dev. | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Elevation | m | 1880 | 174 | 1945.05 | 4389 | 690.10 | −0.26 | −0.36 |
Slope | - | 16.98 | 0.00 | 27.17 | 72.52 | 11.52 | −0.10 | −0.28 |
Aspect | - | 45.00 | −1.00 | 184.02 | 359.82 | 105.94 | −0.06 | −1.28 |
Profile Curvature | - | −0.07 | −5.06 | 0.00 | 4.35 | 0.57 | −0.01 | 6.25 |
Plan Curvature | - | 0.00 | −3.52 | 0.01 | 4.12 | 0.45 | 0.30 | 5.17 |
LULC * | - | - | 1 | - | 41 | - | - | - |
TPI | - | −10.12 | −235.26 | 15.26 | 319.79 | 78.61 | 0.37 | 0.34 |
TWI | - | 6.44 | 2.85 | 6.08 | 15.25 | 1.60 | 1.52 | 3.37 |
TRI | - | 0.40 | 0.00 | 0.47 | 0.81 | 0.10 | −0.48 | 0.71 |
Lithology * | - | - | 2 | - | 96 | - | - | - |
Rainfall | mm | 0 | 0 | 87.37 | 161.42 | 27.75 | 0.29 | −0.05 |
Wind Speed | m/s | 0 | 0 | 2.20 | 4.60 | 0.46 | −0.17 | 3.26 |
Minimum Temperature | °C | 0 | −20.87 | −8.06 | 4.37 | 3.86 | 0.31 | −0.47 |
Maximum Temperature | °C | 0 | −14.62 | −0.28 | 10.84 | 3.59 | 0.11 | −0.18 |
Solar Radiation | Joule/m2 | 0 | 0 | 6,102,559.36 | 7,438,510 | 817,567.33 | −2.67 | 19.41 |
Snow Depth | cm | 43.23 | 2.68 | 38.05 | 80.03 | 22.17 | 0.27 | −0.75 |
Distance to Faults | km × 10−3 | 0 | 0 | 0.23 | 0.94 | 0.15 | 0.86 | 1.05 |
Target | - | - | 0.00 | - | 1.00 | - | - | - |
Algorithm | Parameter | Abbreviation | Value | Reference |
---|---|---|---|---|
PSO | Population Size * | 500 | - | |
Number of Population * | 250 | - | ||
Cognitive component | 2.8 | Karaguzel et al. [43] | ||
Social component | 1.45 | Ibrahim et al. [44] | ||
Inertial weight | 0.3 | Singh et al. [45] | ||
Minimal velocity | 0.1 | Anter and Hassenian [46] | ||
Maximal velocity | 0.9 | Anter and Hassenian [46] | ||
GSA | Population Size * | 500 | - | |
Number of Population * | 250 | - | ||
Gravitational Constant | 50 | Amin [47] | ||
Number of Masses | 20 | Koc et al. [48] | ||
CS | Population Size * | 500 | - | |
Number of Population * | 250 | - | ||
Fraction | 0.25 | Shehab et al. [49] | ||
Step size | 1 | Zhang et al. [50] |
ML Method | Parameters | Parameter Ranges | Step | Count | Total Combination |
---|---|---|---|---|---|
SVC | Kernel Function | Polynomial, Radial Basis, Sigmoid | - | 3 | 600 |
Gamma | 2−15–23 | - | 10 | ||
C | 0–200 | 10 | 20 | ||
SGB | Number of trees | 0–500 | 50 | 10 | 500 |
Learning rate | 0.0025–0.015 | 0.0025 | 5 | ||
Maximum Depth | 0–10 | 1 | 10 | ||
KNN | Metric | Euclidean, Manhattan, Chebyshev, Minkowski | - | 4 | 200 |
Number of neighbors | 0–50 | 1 | 50 |
Predicted Cases | |||
---|---|---|---|
Yes | No | ||
Observed Cases | Yes | True Positive (TP) | False Negative (FN) |
No | False Positive (FP) | True Negative (TN) |
Scenario | Best Candidate (G; C) | Duration (s) | Mean Training Accuracy | Mean Testing Accuracy | Optimum Hyperparameters |
---|---|---|---|---|---|
PSO-SVC | G: 6 C:54 | 1834 | 0.8416 | 0.7956 | Kernel: RBF Gamma: 0.0078125 C: 150 |
PSO-SGB | G: 186 C:63 | 2499 | 0.8933 | 0.8161 | Number of trees: 250 Learning rate: 0.0125 Maximum Depth: 8 |
PSO-KNN | G: 4 C:64 | 603 | 0.8276 | 0.7953 | Metric: Manhattan Number of neighbors: 11 |
GSA-SVC | G: 3 C:74 | 1936 | 0.8528 | 0.7982 | Kernel: RBF Gamma: 0.003125 C: 10 |
GSA-SGB | G: 4 C:57 | 2533 | 0.8859 | 0.8149 | Number of trees: 250 Learning rate: 0.0075 Maximum Depth: 10 |
GSA-KNN | G: 5 C:106 | 763 | 0.8276 | 0.7953 | Metric: Manhattan Number of neighbors: 11 |
CS-SVC | G: 11 C:308 | 8685 | 0.8528 | 0.7982 | Kernel: RBF Gamma: 0.003125 C: 10 |
CS-SGB | G: 11 C:325 | 8561 | 0.8933 | 0.8161 | Number of trees: 250 Learning rate: 0.0125 Maximum Depth: 8 |
CS-KNN | G: 4 C:88 | 1281 | 0.8276 | 0.7953 | Metric: Manhattan Number of neighbors: 11 |
Performance Measures | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Training | Testing | |||||||||
Scenario | Precision | Recall | F1-Score | MCC | Kappa | Precision | Recall | F1-Score | MCC | Kappa |
PSO-SVC | 0.8560 | 0.8508 | 0.8503 | 0.6803 | 0.6753 | 0.8115 | 0.8089 | 0.8085 | 0.6126 | 0.6089 |
PSO-SGB | 0.8908 | 0.8877 | 0.8875 | 0.7906 | 0.7876 | 0.8237 | 0.8214 | 0.8211 | 0.6541 | 0.6805 |
PSO-KNN | 0.8372 | 0.8308 | 0.8299 | 0.6725 | 0.6653 | 0.8026 | 0.7936 | 0.7922 | 0.5956 | 0.5896 |
GSA-SVC | 0.8560 | 0.8508 | 0.8503 | 0.6803 | 0.6753 | 0.8115 | 0.8089 | 0.8085 | 0.6126 | 0.6089 |
GSA-SGB | 0.8882 | 0.8851 | 0.8849 | 0.7852 | 0.7557 | 0.8228 | 0.8205 | 0.8202 | 0.6473 | 0.6391 |
GSA-KNN | 0.8372 | 0.8308 | 0.8299 | 0.6725 | 0.6653 | 0.8026 | 0.7936 | 0.7922 | 0.5956 | 0.5896 |
CS-SVC | 0.8560 | 0.8508 | 0.8503 | 0.6803 | 0.6753 | 0.8115 | 0.8089 | 0.8085 | 0.6126 | 0.6089 |
CS-SGB | 0.8908 | 0.8877 | 0.8875 | 0.7906 | 0.7876 | 0.8237 | 0.8214 | 0.8211 | 0.6541 | 0.6805 |
CS-KNN | 0.8372 | 0.8308 | 0.8299 | 0.6725 | 0.6653 | 0.8026 | 0.7936 | 0.7922 | 0.5956 | 0.5896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayhan, E.C.; Ekmekcioğlu, Ö. Coupling Different Machine Learning and Meta-Heuristic Optimization Techniques to Generate the Snow Avalanche Susceptibility Map in the French Alps. Water 2024, 16, 3247. https://doi.org/10.3390/w16223247
Kayhan EC, Ekmekcioğlu Ö. Coupling Different Machine Learning and Meta-Heuristic Optimization Techniques to Generate the Snow Avalanche Susceptibility Map in the French Alps. Water. 2024; 16(22):3247. https://doi.org/10.3390/w16223247
Chicago/Turabian StyleKayhan, Enes Can, and Ömer Ekmekcioğlu. 2024. "Coupling Different Machine Learning and Meta-Heuristic Optimization Techniques to Generate the Snow Avalanche Susceptibility Map in the French Alps" Water 16, no. 22: 3247. https://doi.org/10.3390/w16223247
APA StyleKayhan, E. C., & Ekmekcioğlu, Ö. (2024). Coupling Different Machine Learning and Meta-Heuristic Optimization Techniques to Generate the Snow Avalanche Susceptibility Map in the French Alps. Water, 16(22), 3247. https://doi.org/10.3390/w16223247