Microbiological Characterization and Pathogen Control in Drying Bed-Processed Sewage Sludge
Abstract
:1. Introduction
2. Experimental
2.1. Study Sites
- Bourdj Bou Ariridj (BBA) WWTP (S1): Located in the southern part of Bourdj Bou Ariridj city, this plant covers an area of 42,750 m2 and processes a daily flow of 30,000 m3. It serves 150,000 equivalent residents using a low-load activated sludge process. The treated water is released into the Oued K’sob river, which supports irrigation downstream. In October 2013, the plant produced approximately 180 m3 of sludge.
- Sidi Marouane WWTP (S2): Positioned 12 km northwest of the Mila wilaya seat, this facility processes wastewater from multiple localities, aiming to reduce pollution in the Beni Haroun dam. It has a capacity for 137,711 equivalent people. In November 2013, the facility produced around 24,386 m3 of sludge.
- Ibn Ziad WWTP (S3): Situated 12 km northeast of Constantine, this plant spans 12 hectares and serves 450,000 equivalent people. It treats a portion of the city’s low-load wastewater.
- El Rabta WWTP (S4): Located 2 km west of Jijel’s wilaya seat, this plant covers 5.9 hectares and serves 150,000 people (with future expansion to 225,000). It has been operational since June 2008. The plant generated 224 m3 of sludge in October 2013.
- Guelma WWTP (S5): Found north of Guelma city, along national road No. 21, this plant has been operational since 18 February 2008. It spans eight hectares, treats wastewater for 200,000 equivalent residents, and processes a daily flow of 43,388 m3. The facility produced 9288 m3 of sludge in October 2013.
2.2. Sampling
- Liquid Sludge (LS): Collected directly from the drying beds on day zero.
- Semi-Dry Sludge (BS1): Collected after 1 to 2 months of drying.
- Fully Dry Sludge (BS2): Collected after more than six months of drying.
2.3. General Dilution Technique
2.4. Bacterial Enumeration
2.5. Parasitological Examination
- Concentration methods: The three concentration procedures included sedimentation, filtration, and centrifugation. Sedimentation allows heavier particles, including parasites, to settle at the bottom of the sample. Filtration removes large debris using a fine-mesh filter. Centrifugation uses centrifugal force to separate parasites from the surrounding medium.
- Flotation methods: The two flotation methods employed flotation with potassium iodomercurate and flotation with sodium dichromate. These techniques utilize the density difference between parasites and the surrounding medium to concentrate the parasites.
- Giardia spp. cysts: Giardia spp. cysts were concentrated using the Teleman-Rivas two-phase method, modified by Bailenger [39], which incorporates ether and an acetoacetic buffer. This technique is particularly effective for separating and concentrating Giardia cysts from other materials in the sludge.
2.6. Data Analysis
3. Results
3.1. Seasonal Variations in Bacterial Counts in the BS1 Sludge
3.2. Seasonal Variations in Bacterial Counts in the BS2 Sludge
3.3. Seasonal Variations in Bacterial Counts in the LS Sludge
3.4. Analysis of Bacterial Loads Across Different Sludge Types
3.5. Total Coliform (TC) Enumeration
3.6. E. coli Enumeration
3.7. Fecal Streptococci (SF) Enumeration
3.8. Clostridium Enumeration
3.9. Search for Parasites
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bijekar, S.; Padariya, H.; Yadav, V.; Gacem, A.; Hasan, M.; Awwad, N.; Yadav, K.; Islam, S.; Park, S.; Jeon, B. The State of the Artand Emerging Trends in the Wastewater Treatment in Developing Nations. Water 2022, 14, 2537. [Google Scholar] [CrossRef]
- Ledakowicz, S.; Stolarek, P.; Malinowski, A.; Lepesz, O. Thermochemicaltreatmentofsewagesludgebyintegrationofdryingandpyrolysis/autogasification. Renew. Sustain. Energy Rev. 2019, 104, 319–327. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Energy and resources recovery from excess sewage sludge: A holistic analysis of opportunities ands trategies. Resour. Conserv. Recycl. Adv. 2023, 19, 200184. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwąg, M.; Rorat, A.; Brattebø, H.; Almås, Å.; Singh, B. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Bouchaala, L.; Charchar, N.; Gherib, A. Ressources hydriques: Traitement et réutilisation des eaux usées en Algérie. Alger. J. Arid. Environ. 2017, 7, 84–95. [Google Scholar] [CrossRef]
- Brahimi, R.; Cheurfi, W.; Laidoudi, M.; Aouati, M.; Bougherara, H.; Kebabi, B. Physical, chemical, and spectroscopic analysis of sludge from the sewage treatment plant of Mila, Algeria, forits valorization. J. Mater. Res. Technol. 2021, 14, 1428–1437. [Google Scholar] [CrossRef]
- Bouchaala, L.; Charchar, N.; Sahraoui, H.; Gherib, A. Assessment of wastewater biological treatment efficiency and mapping of WWTPs and LTPs in Algeria. J. Environ. Health Sci. Eng. 2021, 19, 1153–1169. [Google Scholar] [CrossRef]
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Capodaglio, A.G. Sustainable management of biological solids in small treatment plants: Overview of strategies and reuse options for a solar drying facilityin Poland. Env. Sci. Pollut. Res. 2021, 28, 24680–24693. [Google Scholar] [CrossRef]
- Kocbek, E.; Garcia, H.; Hooijmans, C.; Mijatovíc, I.; Lah, B.; Brdjanovic, D. Microwave treatment of municipal sewagesludge: Evaluation of the drying performance and energy demand of a pilot-scale microwave drying system. Sci. Total Environ. 2020, 742, 140541. [Google Scholar] [CrossRef]
- Gomes, L.; Santos, A.; Pinheiro, C.; Góis, J.; Quina, M. Screening of waste materials as adjuvants for drying sewage sludge based on environmental, technical and economic criteria. J. Clean. Prod. 2020, 259, 120927. [Google Scholar] [CrossRef]
- Mamine, N.; Grara, N.; Khaldi, F.; Maresca, V.; Aouaichia, K.; Basile, A. Determination of the Toxic Effects of Heavy Metals on the Morpho-Anatomical Responses of the Leaf of Typhala tifolia as a Biomonitoring Tool. Plants 2024, 13, 176. [Google Scholar] [CrossRef] [PubMed]
- Dhanker, R.; Chaudhary, S.; Goyal, S.; Garg, V. Influence of urban sewage sludge amendment on agricultural soil parameters. Environ. Technol. Innov. 2021, 23, 101642. [Google Scholar] [CrossRef]
- Li, M.; Song, G.; Liu, R.; Huang, X.; Liu, H. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review. Front. Environ. Sci. Eng. 2021, 16, 70. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, X.; Liu, H.; Zhou, T.; Li, J.; Li, Y.; Wang, Q. Triclosanin sludge: Exploringits journey from the sewage treatment plants tol and application and potential impacts on the environment. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1340–1363. [Google Scholar] [CrossRef]
- Miguel, N.; Sarasa, J.; López, A.; Gómez, J.; Mosteo, R.; Ormad, M.P. Study of Evolution of Microbiological Properties in Sewage Sludge-Amended Soils: A Pilot Experience. Int. J. Environ. Res. Public Health 2020, 17, 6696. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhou, Z.; Chen, T.; Wei, Y.; Zheng, J.; Gao, R.; Chen, H. Biomarkers of antibiotic resistance genes during seasonal changes in wastewater treatment systems. Environ. Pollut. 2018, 234, 79–87. [Google Scholar] [CrossRef]
- Szyłak-Szydłowski, M.; Kulig, A.; Miaśkiewicz-Pęska, E. Season al changes in the concentrations of airborne bacteria emitted from al arge wastewater treatment plant. Int. Biodeterior. Biodegrad. 2016, 115, 11–16. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Y.; Feng, K.; Li, S.; Wang, S.; Jin, D.; Zhang, Y.; Chen, H.; Yin, H.; Xu, M.; et al. The divergence between fungal and bacterial communities in seasonal and spatial variationsofwastewatertreatmentplants. Sci. Total Environ. 2018, 628–629, 969–978. [Google Scholar] [CrossRef]
- Xu, S.; Lu, W.; Mustafa, M.; Caicedo, L.; Guo, H.; Fu, X.; Wang, H. Co-Existence of Anaerobic Ammonium Oxidation Bacteria and Denitrifying Anaerobic Methane Oxidation Bacteriain Sewage Sludge: Community Diversity and Seasonal Dynamics. Microb. Ecol. 2017, 74, 832–840. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Zhang, Y.; Huang, K. Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. Int. J. Env. Res. Public Health 2020, 17, 1748. [Google Scholar] [CrossRef]
- Pallares-Vega, R.; Leal, L.; Fletcher, B.; Vias-Torres, E.; Loosdrecht, M.; Weissbrodt, D.; Schmitt, H. Annual dynamics of antimicrobials and resistance determinants in flocculent and aerobic granular sludge treatment systems. Water Res. 2020, 190, 116752. [Google Scholar] [CrossRef] [PubMed]
- Schages, L.; Wichern, F.; Kalscheuer, R.; Bockmühl, D. Winter is coming—Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant. Sci. Total Environ. 2020, 712, 136499. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Zhu, L.; Wang, S.; Liu, Y. Temperature-effect on the performance of non-aerated microalgal-bacterial granular sludge process in municipal wastewater treatment. J. Environ. Manag. 2021, 282, 111955. [Google Scholar] [CrossRef]
- Al-Gheethi, A.A.; Efaq, A.N.; Bala, J.D.; Norli, I.; Abdel-Monem, M.O.; Ab Kadir, M.O. Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Appl. Water Sci. 2018, 8, 74. [Google Scholar] [CrossRef]
- Nakib, M.; Kettab, A.; Berreksi, A.; Mandi, L. Study of the prospects for agricult uralutilization of sludge produced from WWTPS in North Central Algeria. Energy Procedia 2014, 50, 829–839. [Google Scholar] [CrossRef]
- Boudjabi, S.; Chenchouni, H. On the sustainability of land applications of sewage sludge: How to apply the sewage biosolid in order to improve soil fertility and increase crop yield? J. Clean. Prod. 2021, 277, 123376. [Google Scholar] [CrossRef]
- Boudjabi, S.; Kribaa, M.; Chenchouni, H. Sewage sludge fertilization alleviates drought stress and improves physiological adaptation and yield performances in durum wheat (Triticum durum): A double-edged sword. J. Saudi Soc. Agric. Sci. 2019, 18, 364–372. [Google Scholar] [CrossRef]
- Benito, M.; Menacho, C.; Chueca, P.; Ormad, M.; Goñi, P. Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. J. Environ. Manag. 2020, 261, 110268. [Google Scholar] [CrossRef]
- Zahedi, A.; Greay, T.; Paparini, A.; Linge, K.; Joll, C.; Ryan, U. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. Water Res. 2019, 158, 301–312. [Google Scholar] [CrossRef]
- Zdybel, J.; Karamon, J.; Dąbrowska, J.; Różycki, M.; Bilska-Zając, E.; Kłapeć, T.; Cencek, T. Parasitological contamination with eggs Ascaris spp., Trichuris spp. and Toxocara spp. of dehydrated municipal sewage sludge in Poland. Environ. Pollut. 2019, 248, 621–626. [Google Scholar] [CrossRef]
- Stiborova, H.; Martina, K.; Tereza, V.; Marta, B.; Jindrich, C.; Jiri, B.; Katerina, D. Impact of Long-Term Manure and Sewage Sludge Application to Soil as Organic Fertilizer on the Incidence of Pathogenic Microorganisms and Antibiotic Resistance Genes. Agronomy 2021, 11, 1423. [Google Scholar] [CrossRef]
- Raïs, M.T.; Khélil, M.N.; Marzougui, N.; Sabbahi, S. Impact of agricultural spreading of urban waste sludge on the microbiological quality of three vegetables. Eur. J. Sci. Res. 2016, 1, 26–36. [Google Scholar]
- Delrras, C. Pratique en Microbiologie de Laboratoire: Recherche Debactériesetde Levure-Moisissures; Lavoisier: Paris, France, 2014; 722p. [Google Scholar]
- Rodier, J.; Legube, B.; Marlet, N.; Legube, B.; Merlet, N. L’analyse de L’eau, 9th ed.; Dunod: Paris, France, 2009. [Google Scholar]
- Lee, J.; Kim, H.; Jo, H.; Kwon, M. Revisiting soil bacterial counting methods: Optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods. PLoS ONE 2021, 16, e0246142. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, D.; Ye, X.; Yuan, K.; Xie, Y.; Li, B.; Huang, C.; Kuang, T.; Yu, Z.; Chen, Z. Fluorescence detection of Escherichia coli on mannose modified ZnTe quantum dots. Chin. Chem. Lett. 2020, 31, 1504–1507. [Google Scholar] [CrossRef]
- Zhou, C.; Pan, S.; Jin, P.; Deng, J.; Xue, J.; Ma, X.; Xie, Y.; Cao, H.; Liu, Q.; Xie, W.; et al. Fecal signatures of Streptococcus anginosus and Streptococcus constellatus for non-invasive screening and early warning of gastric cancer. Gastroenterology 2022, 162, 1933–1947. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Gude, V.; Malyan, S.; Pugazhendhi, A. Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in Microbial Fuel Cells (MFC) treating sulfate-laden wastewater. Bioresour. Technol. 2020, 306, 123110. [Google Scholar] [CrossRef]
- Bailenger, J. Coprologieparasitaire et Fonctionnelle; Imprimerie, E. Drouillard: Bordeaux, France, 1965. [Google Scholar]
- Dada, B.J.; Lindquist, W.D. Studies on flotation techniques for the recovery of helminth eggs from soil and the prevalence of eggs of Toxocaraspp in some Kansas public places. J. Am. Vet. Med. Assoc. 1979, 174, 1208–1210. [Google Scholar] [PubMed]
- Silva, K.; Sabogal-Paz, L. Cryptosporidium spp. And Giardia spp. (oo) cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays. Water Res. 2020, 189, 116590. [Google Scholar] [CrossRef]
- Heckman, T.; Soto, E. Streptococcus iniae biofilm formation enhances environmental persistence and resistance to antimicrobials and disinfectants. Aquaculture 2021, 540, 736739. [Google Scholar] [CrossRef]
- López, A.; Rodríguez-Chueca, J.; Mosteo, R.; Gómez, J.; Ormad, M. Microbiological quality of sewage sludge after digestion treatment: A pilot scale case of study. J. Clean. Prod. 2020, 254, 120101. [Google Scholar] [CrossRef]
- Stiborová, H.; Strejcek, M.; Musilova, L.; Demnerova, K.; Uhlík, O. Diversity and phylogenetic composition of bacterial communities and their association with anthropogenic pollutants in sewage sludge. Chemosphere 2019, 238, 124629. [Google Scholar] [CrossRef] [PubMed]
- Fonti, V.; Cesare, A.; Šangulin, J.; Negro, P.; Celussi, M. Antibiotic Resistance Genes and Potentially Pathogenic Bacteriain the Central Adriatic Sea: Are They Connected to Urban Wastewater Inputs? Water 2021, 13, 3335. [Google Scholar] [CrossRef]
- Masmoudi, A.; Ali, A.; Dhaouadi, H.; Mhiri, H. Comparison Between Two Solar Drying Techniques of Sewage Sludge: Draining Solar Drying and Drying Bed. Waste Biomass Valorization 2020, 12, 4089–4102. [Google Scholar] [CrossRef]
- Luo, Y.; Yao, J.; Wang, X.; Zheng, M.; Guo, D.; Chen, Y. Efficient municipal wastewater treatment by oxidation ditch process at low temperature: Bacterial community structure in activated sludge. Sci. Total Environ. 2019, 703, 135031. [Google Scholar] [CrossRef]
- López, B.; Baguer, P.; Goñi, E.; Rubio Gómez, J.; Mosteo, R.; Ormad, M.P. Assessment of the methodologies used in microbiological control of sewage sludge. Waste Manag. 2019, 96, 168–174. [Google Scholar] [CrossRef]
- Søberg, L.; Viklander, M.; Blecken, G.; Hedström, A. Reduction of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa in stormwater bioretention: Effect of drying, temperature and submerged zone. J. Hydrol. X 2019, 3, 100025. [Google Scholar] [CrossRef]
- Houari, A.; Ranchou-Peyruse, M.; Ranchou-Peyruse, A.; Bennisse, R.; Bouterfas, R.; Urriza, M.; Qatibi, A.; Guyoneaud, R. Microbial Communities and Sulfate-Reducing Microorganisms Abundance and Diversity in Municipal Anaerobic Sewage Sludge Digesters from a Wastewater Treatment Plant (Marrakech, Morocco). Processes 2020, 8, 1284. [Google Scholar] [CrossRef]
- Huang, H.; Biswal, B.; Chen, G.; Wu, D. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community. Bioresour. Technol. 2019, 297, 122396. [Google Scholar] [CrossRef]
- Sabbahi, S.; BenAyed, L.; Trad, M.; Berndtsson, R.; Karanis, P. Parasitological Assessment of Sewage Sludge Samples for Potential Agricultural Reuse inTunisia. Int. J. Environ. Res. Public Health 2021, 19, 1657. [Google Scholar] [CrossRef]
- Zhang, B.; Ning, D.; Yang, Y.; Nostrand, J.; Zhou, J.; Wen, X. Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants. Water Res. 2019, 169, 115276. [Google Scholar] [CrossRef]
- Yu, J.; Tang, S.; Lee, P. Microbial Communities in Full-Scale Wastewater Treatment Systems Exhibit Deterministic AssemblyProcesses and Functional Dependency over Time. Environ. Sci. Technol. 2021, 55, 5312–5323. [Google Scholar] [CrossRef] [PubMed]
- Guzma’n, C.; Jofre, J.; Montemayor, M.; Lucena, F. Occurrence and levels of indicators and selected pathogens in different sludges and biosolids. J. Appl. Microbiol. 2007, 103, 2420–2429. [Google Scholar] [CrossRef]
- Erkan, M.A.; Sanin, F.D. Can sludge dewatering reactivate microorganisms in mesophilically digested anaerobic sludge? Case of belt filter versus centrifuge. Water Res. 2012, 47, 428–438. [Google Scholar] [CrossRef]
- Kaetzl, K.; Lübken, M.; Uzun, G.; Gehring, T.; Nettmann, E.; Stenchly, K.; Wichern, M. On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries. Sci. Total Environ. 2019, 682, 601–610. [Google Scholar] [CrossRef]
- Reitter, C.; Petzoldt, H.; Korth, A.; Schwab, F.; Stange, C.; Hambsch, B.; Tiehm, A.; Lagkouvardos, I.; Gescher, J.; Hügler, M. Seasonal Dynamics in the Numberand Composition of Coliform Bacteriain Drinking Water Reservoirs. bioRxiv 2021, 787, 147539. [Google Scholar] [CrossRef]
- Storto, D.; Nara, L.; Kozusny-Andreani, D.; Vanzela, L.; Mansano, C.; Bilal, M.; Iqbal, H.; Américo-Pinheiro, J. Seasonal Dynamics of Microbial Contamination and Antibiotic Resistance in the Water at the Tietê Ecological Park, Brazil. Water Air Soil Pollut. 2021, 232, 257. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Magri, M.E.; Zurbrügg, C.; Lindström, A.; Vinnerås, B. Faecal sludge management with the larvae of the black soldier fly (Hermetiaillucens): From a hygiene aspect. Sci. Total Environ. 2013, 458–460, 312–318. [Google Scholar] [CrossRef]
- Rocamora, I.; Wagland, S.; Villa, R.; Simpson, E.; Fernández, O.; Bajón-Fernández, Y. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresour. Technol. 2019, 299, 122681. [Google Scholar] [CrossRef]
- Dahou, M.E.A.; Touzi, A. Biogas production from Adrar city lagoon station’s sludge. Energy Procedia 2016, 95, 139–144. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, Y.; Gong, H.; Fang, N.; Tan, Y.; Zhou, W.; Huang, J.; Dai, L.; Dai, X. Variations of heavy metals, nutrients, POPs and particle size distribution during “sludge anaerobic digestion-solar drying-land utilization process”: Case study in China. Sci. Total Environ. 2021, 801, 149609. [Google Scholar] [CrossRef]
- Xue, G.; Jiang, M.; Chen, H.; Sun, M.; Liu, Y.; Li, X.; Gao, P. Critical review of ARGs reduction behavior in various sludge and sewage treatment processes in wastewater treatment plants. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1623–1674. [Google Scholar] [CrossRef]
- Grobelak, A.; Placek, A.; Grosser, A.; Singh, B.R.; Almås, Å.R.; Napora, A.; Kacprzak, M. Effects of single sewage sludge application on soil phytoremediation. J. Clean. Prod. 2017, 155, 189–197. [Google Scholar] [CrossRef]
- Douaer, N.; Douaoui, A.; Mehaiguene, M.; Zouidi, M.; Hamza, W. The effect of municipal sewage sludge on physicochemical and microbial properties of agricultural soil. E3S Web Conf. 2021, 234, 02014. [Google Scholar] [CrossRef]
- Merdas, S.; Kouba, Y.; Mostephaoui, T.; Farhi, Y.; Chenchouni, H. Livestock grazing-induced large-scale bioti chomogenization in arid Mediterranean steppe rangelands. J. Arid. Environ. 2018, 154, 5099–5107. [Google Scholar] [CrossRef]
Season | Station | Sludge | TC1 log 10 | TC2 | TC3 | E.coli1 | E.coli2 | E.coli3 | SF1 | SF2 | SF3 |
---|---|---|---|---|---|---|---|---|---|---|---|
Wint | S1 | BS1 | 5.820 | 5.550 | 4.860 | 3.950 | 3.351 | 4.190 | |||
Spr | 6.400 | 5.401 | 4.980 | 4.400 | 4.180 | 4.300 | |||||
Sum | 8.150 *** | 8.150 *** | 6.880 ** | 6.401 ** | 4.182 | 4.540 | |||||
Aut | 8.150 *** | 8.15 *** | 6.850 ** | 7.300 ** | 4.650 | 5.180 | |||||
Wint | S2 | 5.020 | 5.145 | 4.300 | 4.492 | 3.401 | 3.944 | ||||
Spr | 5.180 | 5.176 | 3.950 | 3.845 | 2.401 | 2.263 | |||||
Sum | 8.150 *** | 8.041 *** | 7.401 ** | 7.667 ** | 4.402 | 4.699 | |||||
Aut | 8.150 *** | 8.146 *** | 7.180 ** | 6.890 ** | 3.405 | 3.875 | |||||
Wint | S3 | 5.041 | 5.146 | 3.398 | 3.954 | 3.176 | 3.301 | ||||
Spr | 7.398 ** | 7.978 ** | 6.398 ** | 5.978 ** | 2.954 | 3.653 | |||||
Sum | 8.146 *** | 8.041 *** | 7.398 ** | 6.954 ** | 5.176 * | 7.146 * | |||||
Aut | 8.041 *** | 7.653 ** | 7.398 ** | 7.123 ** | 3.398 | 3.041 | |||||
Wint | S4 | 5.146 | 5.146 | 4.875 | 4.602 | 4.477 | 4.398 | ||||
Spr | 7.954 ** | 8.146 *** | 7.201 ** | 7.398 ** | 4.477 | 4.398 | |||||
Sum | 7.146 ** | 7.146 ** | 6.398 * | 6.301 * | 4.398 | 4.875 | |||||
Aut | 7.146 ** | 7.146 ** | 6.301 * | 6.398 * | 3.875 | 3.653 | |||||
Wint | S5 | 4.381 | 4.398 | 4.398 | 4.192 | 4.398 | 4.176 | 3.836 | 3.845 | 3.810 | |
Spr | 4.146 | 3.954 | 3.398 | 4.398 | 3.954 | 4.001 | 2.978 | 2.176 | 2.978 | ||
Sum | 4.875 * | 4.568 * | 4.339 | 4.398 | 4.544 | 3.804 | 2.398 | 2.653 | 3.702 | ||
Aut | 4.653 | 4.176 | 4.323 | 4.301 | 3.022 | 3.850 | 2.653 | 2.204 | 2.813 |
Season | Station | Sludge | TC1 | TC2 | TC3 | E.coli1 | E.coli2 | E.coli3 | SF1 | SF2 | SF3 |
---|---|---|---|---|---|---|---|---|---|---|---|
Wint | S1 | BS2 | 5.340 | 5.320 | 4.230 | 3.850 | 3.170 | 3.010 | |||
Spr | 5.400 | 4.980 | 3.601 | 3.950 | 3.301 | 3.480 | |||||
Sum | 5.401 | 5.601 | 4.601 | 4.650 | 3.401 | 3.300 | |||||
Aut | 8.150 *** | 8.15 *** | 4.950 | 6.301 | 3.400 | 4.650 | |||||
Wint | S2 | 4.830 | 5.026 | 4.300 | 4.399 | 3.340 | 3.395 | ||||
Spr | 4.880 | 4.954 | 3.600 | 3.653 | 1.400 | 2.130 | |||||
Sum | 6.850 * | 7.386 ** | 6.600 * | 6.802 * | 3.650 | 3.807 | |||||
Aut | 7.180 ** | 7.365 ** | 6.400 * | 6.921 * | 2.950 | 2.987 | |||||
Wint | S3 | 4.978 | 4.041 | 2.954 | 2.477 | 2.954 | 3.041 | ||||
Spr | 6.978 * | 6.653 * | 5.954 | 6.398 | 3.398 | 3.398 | |||||
Sum | 7.602 ** | 7.176 * | 6.875 * | 6.602 * | 5.041 * | 6.653 * | |||||
Aut | 6.978 * | 6.759 * | 6.398 | 6.659 | 3.176 | 2.954 | |||||
Wint | S4 | 4.978 | 4.845 | 3.699 | 4.398 | 3.954 | 3.653 | ||||
Spr | 7.477 ** | 7.845 *** | 6.813 * | 6.602 * | 3.954 | 3.653 | |||||
Sum | 6.845 * | 7.041 * | 6.176 | 5.978 | 3.813 | 3.653 | |||||
Aut | 7.041 * | 6.653 * | 4.978 | 4.602 | 3.653 | 3.398 | |||||
Wint | S5 | 4.172 | 4.176 | 4.301 | 4.023 | 3.041 | 3.954 | 2.511 | 2.398 | 2.114 | |
Spr | 3.146 | 3.398 | 3.477 | 3.041 | 2.602 | 2.653 | 2.602 | 1.954 | 1.954 | ||
Sum | 4.653 | 4.653 | 4.318 | 2.602 | 2.301 | 2.923 | 3.398 | 3.176 | 2.898 | ||
Aut | 4.398 | 4.185 | 4.307 | 3.602 | 3.897 | 3.834 | 2.398 | 2.241 | 2.793 |
Season | Station | Sludge | TC1 | TC2 | TC3 | E.coli1 | E.coli2 | E.coli3 | FS1 | FS2 | FS3 |
---|---|---|---|---|---|---|---|---|---|---|---|
Wint | S1 | BL | 4.190 | 4.220 | 4.005 | 3.403 | 3.330 | 3.220 | |||
Spr | 6.150 ** | 5.650 * | 4.850 | 4.180 | 3.180 | 3.401 | |||||
Sum | 6.401 ** | 6.950 ** | 4.407 | 4.950 | 3.150 | 3.402 | |||||
Aut | 8.150 *** | 8.150 *** | 6.400 ** | 5.98 ** | 4.950 * | 4.650 * | |||||
Wint | S2 | 4.902 | 5.359 | 4.980 | 4.463 | 3.260 | 3.492 | ||||
Spr | 4.600 | 5.653 | 3.880 | 4.176 | 1.401 | 2.134 | |||||
Sum | 8.150 *** | 7.452 ** | 7.401 ** | 7.807 ** | 3.402 | 3.913 | |||||
Aut | 8.150 *** | 8.041 *** | 7.401 ** | 6.532 ** | 3.401 | 3.988 | |||||
Wint | S3 | 4.978 | 4.653 | 2.954 | 2.398 | 2.398 | 2.653 | ||||
Spr | 7.653 *** | 7.653 *** | 7.176 ** | 6.653 * | 3.398 | 3.041 | |||||
Sum | 8.146 *** | 7.477 ** | 7.653 ** | 6.978 ** | 3.887 | 3.653 | |||||
Aut | 7.398 ** | 7.818 *** | 6.653 * | 7.204 ** | 2.978 | 3.398 | |||||
Wint | S4 | 4.954 | 5.146 | 4.041 | 4.398 | 3.398 | 3.653 | ||||
Spr | 8.146 *** | 8.146 *** | 7.699 ** | 7.398 ** | 2.816 | 2.653 | |||||
Sum | 7.146 ** | 6.954 ** | 6.398 * | 5.602 | 3.875 | 3.653 | |||||
Aut | 5.954 | 7.041 * | 4.602 | 4.398 | 2.653 | 3.176 | |||||
Wint | S5 | 3.267 | 3.653 | 3.398 | 3.027 | 3.041 | 2.398 | 2.977 | 3.000 | 3.081 | |
Spr | 3.146 | 3.398 | 3.301 | 3.301 | 2.954 | 3.954 | 2.978 | 2.602 | 2.978 | ||
Sum | 4.398 * | 4.653 * | 4.351 | 4.176 | 4.398 | 3.910 | 3.602 | 3.954 | 3.882 | ||
Aut | 4.041 | 4.287 | 4.380 | 3.398 | 2.471 | 3.805 | 2.176 | 2.193 | 2.796 |
Station Season | Sludge Type | Winter | Spring | Summer | Autumn |
---|---|---|---|---|---|
S1 | BS1 | ns | CF↑, CT↑ | CF↑, CT↑ | ns |
BS2 | ns | ns | *CF↑, CT↑ | ns | |
LS | ns | CT↑, CF↑ | ns | CF↑, CT↑ | |
S2 | BS1 | ns | CF↑, CT↑ | CF↑, CT↑ | ns |
BS2 | SF↓ | CF↑, CT↑ | CF↑, CT↑ | ns | |
LS | SF↓ | ***CF↑, CT↑ | *CF↑, CT↑ | ns | |
S3 | BS1 | CF↑, CT↑ | CF↑, CT↑, SF↑ | CF↑, CT↑ | ns |
BS2 | CF↑, CT↑, SF↑ | CF↑, CT↑, SF↑ | CF↑, CT↑ | ns | |
LS | CF↑, CT↑ | CF↑, CT↑ | CF↑, CT↑ | ns | |
S4 | BS1 | CF↑, CT↑ | *CF↑, CT↑ | *CF↑, CT↑ | ns |
BS2 | CF↑, CT↑ | ***CF↑, CT↑ | CT↑ | ns | |
LS | *CF↑, CT↑ | **CF↑, CT↑ | **CF↑, CT↑ | ns | |
S5 | BS1 | ns | * | * | ns |
BS2 | ns | * | * | ns | |
LS | ns | * | * | ns |
Liquid Sludge (LS) | ||||
Station/Species | TC log10 | E. coli log10 | FS log10 | p |
S1 | 6.270 ± 0.137 | 4.855 ± 0.034 | 3.675 ± 0.017 | p < 0.001 significant |
S2 | 6.650 ± 0.144 | 5.911 ± 0.106 | 3.203 ± 0.056 | |
S3 | 7.021 ± 0.065 | 6.049 ± 0.084 | 3.205 ± 0.133 | |
S4 | 6.761 ± 0.077 | 5.626 ± 0.058 | 3.232 ± 0.133 | |
S5 | 3.877 ± 0.088 | 3.547 ± 0.119 | 3.059 ± 0.108 | |
Semi-Solid Sludge (BS1) | ||||
Station/Species | TC | E. coli | FS | p |
S1 | 7.035 ± 0.081 | 5.804 ± 0.025 | 4.394 ± 0.013 | p < 0.00 significant |
S2 | 6.627 ± 0.095 | 5.730 ± 0.091 | 3.590 ± 0.079 | |
S3 | 7.215 ± 0.036 | 6.126 ± 0.137 | 4.186 ± 0.034 | |
S4 | 6.875 ± 0.109 | 6.068 ± 0.047 | 4.339 ± 0.062 | |
S5 | 4.351 ± 0.055 | 3.433 ± 0.074 | 2.494 ± 0.113 | |
Solid Sludge (BS2) | ||||
Station/Species | TC | E. coli | FS | p |
S1 | 6.06 ± 0.068 | 4.635 ± 0.078 | 3.555 ± 0.025 | p < 0.001, significant |
S2 | 6.083 ± 0.066 | 5.357 ± 0.043 | 2.995 ± 0.075 | |
S3 | 6.473 ± 0.032 | 5.579 ± 0.102 | 3.968 ± 0.088 | |
S4 | 6.615 ± 0.054 | 5.503 ± 0.078 | 3.714 ± 0.056 | |
S5 | 4.114 ± 0.069 | 4.043 ± 0.097 | 3.199 ± 0.049 |
Station | Sludge | Winter | Spring | Summer | Autumn |
---|---|---|---|---|---|
Guelma | Liquid |
|
|
|
|
Solid |
|
|
|
| |
Sidi Marouane | Liquid |
|
|
|
|
Solid |
|
|
|
| |
Jijel | Liquid |
|
|
|
|
Solid |
|
|
|
| |
BBA | Liquid |
|
|
|
|
Solid |
|
|
|
| |
Constantine | Liquid |
|
|
|
|
Solid |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchaala, L.; Grara, N.; Charchar, N.; Nourine, H.; Dahdah, K.; Driouche, Y.; Amrane, A.; Alsaeedi, H.; Cornu, D.; Bechelany, M.; et al. Microbiological Characterization and Pathogen Control in Drying Bed-Processed Sewage Sludge. Water 2024, 16, 3276. https://doi.org/10.3390/w16223276
Bouchaala L, Grara N, Charchar N, Nourine H, Dahdah K, Driouche Y, Amrane A, Alsaeedi H, Cornu D, Bechelany M, et al. Microbiological Characterization and Pathogen Control in Drying Bed-Processed Sewage Sludge. Water. 2024; 16(22):3276. https://doi.org/10.3390/w16223276
Chicago/Turabian StyleBouchaala, Laid, Nedjoud Grara, Nabil Charchar, Heidar Nourine, Kamal Dahdah, Youssouf Driouche, Abdeltif Amrane, Huda Alsaeedi, David Cornu, Mikhael Bechelany, and et al. 2024. "Microbiological Characterization and Pathogen Control in Drying Bed-Processed Sewage Sludge" Water 16, no. 22: 3276. https://doi.org/10.3390/w16223276
APA StyleBouchaala, L., Grara, N., Charchar, N., Nourine, H., Dahdah, K., Driouche, Y., Amrane, A., Alsaeedi, H., Cornu, D., Bechelany, M., & Barhoum, A. (2024). Microbiological Characterization and Pathogen Control in Drying Bed-Processed Sewage Sludge. Water, 16(22), 3276. https://doi.org/10.3390/w16223276