Impacts of Remedial Techniques on Contamination Transport in Groundwater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coupled Hydrodynamic and Transport Models
2.2. Hypothetical Study Zone and Boundary Conditions
Calibration of the Used Model
2.3. Types of Groundwater Remediations
2.3.1. Grouting
2.3.2. Slurry Wall
2.3.3. Injection Wells
2.3.4. Pumping Wells
3. Results and Discussion
3.1. Grouting
3.1.1. Effect of Grouting Depth
Partial Depth Grouting Zone
Full-Depth Grouting Zone
3.1.2. Effect of Grouting Permeability
3.1.3. Effect of Grouting Thickness
3.1.4. Impact of Grouting Scenarios on Contamination Transport
3.2. Slurry Wall
3.3. Injection Wells
3.3.1. Effect of Injection Well Rate
3.3.2. Effect of Screen Depth of Injection Wells
3.3.3. Effect of Injection Well Number
3.4. Pumping Wells
3.4.1. Effect of Pumping Well Rate
3.4.2. Effect of Screen Depth of Pumping Wells
3.4.3. Effect of Pumping Wells Number
3.5. Effect of Injection/Pumping Wells on Spread of Contamination
4. Conclusions
- Grouting of soil creates a low-permeability medium that reduces the hydraulic gradient and the corresponding pore velocity preventing the spread of contaminants.
- Slurry walls act as low-permeability barriers that can confine contaminants and prevent their migration.
- Increasing the thickness of the grouted soil reduces the transfer of contamination through the grouted medium.
- The depth of grouting is an important factor to consider in the design of a confining system. Greater grouting depth improves control over the contaminant spread.
- One straight slurry wall upstream of the contamination source is insufficient in preventing contaminant spread.
- Higher clean water injection rates and pumping rates for hydrodynamic control allow for reduced contaminant spread.
- Increasing the injection well number and pumping wells reduces the spread of contaminants.
- Changing the screen length of the pumping wells is effective in controlling the contamination propagation.
- The effect of changing the screen length of the pumping wells on the contamination spread is more than that of injection wells.
- Changing the number of pumping wells has a greater effect on contaminant spread compared to a change in injection wells.
5. Recommendations
- Grouting should penetrate the whole aquifer thickness, reaching its impermeable bed to trap the contaminant in position.
- The permeability of grouted soil should be low enough to prevent the migration of a contaminant.
- The grouted soil should be thick enough to prevent contaminant penetration through the soil.
- More complete grouting around the contamination source helps in confining the contaminant position.
- All the above-mentioned factors are also applicable to slurry walls.
- The flow rate and well number for the injection/pumping method should be studied in detail when designing an effective system.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Babiker, I.S.; Mohamed, M.A.; Terao, H.; Kato, K.; Ohta, K. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environ. Int. 2004, 29, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- WHO. Fluoride in Drinking Water, World Health Organization; IWA Publishing: London, UK, 2006. [Google Scholar]
- Chengcheng, X.; Guodong, L.; Hongye, X.; Fangting, J.; Yuchuan, M. Influence of saline intrusion on the wetland ecosystem revealed by isotopic and hydrochemical indicators in the Yellow River Delta. China. Ecol. Indic. 2021, 133, 108422. [Google Scholar]
- Mallick, J.; Singh, C.K.; AlMesfer, M.K.; Singh, V.P.; Alsubih, M. Groundwater Quality Studies in the Kingdom of Saudi Arabia: Prevalent Research and Management Dimensions. Water 2021, 13, 1266. [Google Scholar] [CrossRef]
- Fallatah, O.; Khattab, M.R. Evaluation of Groundwater Quality and Suitability for Irrigation Purposes and Human Consumption in Saudi Arabia. Water 2023, 15, 2352. [Google Scholar] [CrossRef]
- Truex, M.J.; Pierce, E.M.; Nimmons, M.J.; Mattigod, S.V. Evaluation of In Situ Grouting as a Potential Remediation Method for the Hanford Central Plateau Deep Vadose Zone, Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830; Pacific Northwest National Laboratory Richland: Washington, DC, USA, 2011; p. 99352. [Google Scholar]
- Freitag, P.; Reichenauer, T.G. In situ chemical remediation using the jet grouting technique: A field test. Environ. Geotech. 2022, 11, 355–365. [Google Scholar] [CrossRef]
- Alberti, L.; Angelotti, A.; Antelmi, M.; La Licata, I. A Numerical Study on the Impact of Grouting Material on Borehole Heat Exchangers Performance in Aquifers. Energies 2017, 10, 703. [Google Scholar] [CrossRef]
- Yang, Y.L.; Reddy, K.R.; Zhang, W.J.; Fan, R.D.; Du, Y.J. SHMP-Amended Ca-Bentonite/Sand Backfill Barrier for Containment of Lead Contamination in Groundwater. Int. J. Environ. Res. Public Health 2020, 17, 370. [Google Scholar] [CrossRef]
- Casasso, A.; Salomone, A.; Bianco, C.; Prassede, G.; Sethi, R. A Quantitative Approach to Assessing the Technical and Economic Performance of Source Containment Options for Contaminated Aquifers. Sustainability 2021, 13, 5346. [Google Scholar] [CrossRef]
- Cao, B.; Xu, J.; Wang, F.; Zhang, Y.; O’Connor, D. Vertical Barriers for Land Contamination Containment: A Review. Int. J. Environ. Res. Public Health 2021, 18, 12643. [Google Scholar] [CrossRef]
- Samper, J.; Sobral, B.; Pisani, B.; Naves, A.; Guadaño, J.; Gómez, J.; Fernández, J. Groundwater Flow Model along a Vertical Profile of the Sardas Landfill in Sabiñánigo, Huesca, Spain. Water 2023, 15, 3457. [Google Scholar] [CrossRef]
- Zhou, T.; Hu, J.; Liu, T.; Zhao, F.; Yin, Y.; Guo, M. Engineering Characteristics and Microscopic Mechanism of Soil–Cement–Bentonite (SCB) Cut-Off Wall Backfills with a Fixed Fluidity. Materials 2023, 16, 4971. [Google Scholar] [CrossRef] [PubMed]
- Tatti, F.; Papini, M.; Torretta, V.; Mancini, G.; Boni, M.; Viotti, P. Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation technology for persistent, low permeability contaminant source zones. J. Contam. Hydrol. 2019, 222, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Lu, S.; Cai, Y.; Zhao, S. Site Investigation and Remediation of Sulfate-Contaminated Groundwater Using Integrated Hydraulic Capture Techniques. Water 2022, 14, 2989. [Google Scholar] [CrossRef]
- Ciampi, P.; Esposito, C.; Bartsch, E.; Alesi, E.; Papini, M. Pump-and-treat (P&T) vs. groundwater circulation wells (GCW): Which approach delivers more sustainable and effective groundwater remediation? Environ. Res. 2023, 234, 116538. [Google Scholar] [CrossRef]
- Abd-Elaty, I.; Zelenakova, M.; Straface, S.; Vranayová, Z.; Abu-hashim, M. Integrated Modelling for Groundwater Contamination from Polluted Streams Using New Protection Process Techniques. Water 2019, 11, 2321. [Google Scholar] [CrossRef]
- Khalifa, W.M.A.; Achour, B.; Butt, T.; Mirza, C.; Salah, H.; El-Didy, S. The Impact of Injection/Pumping Wells on the Pollution Transport in Groundwater. Eng. Technol. Appl. Sci. Res. 2024, 14, 12918–12924. [Google Scholar] [CrossRef]
- Heejun, S.; Jui-Sheng, C.; Eungyu, P.; Weon, S.; Han, Y.H.K. Numerical evaluation of the performance of injection/extraction well pair operation strategies with temporally variable injection/pumping rates. J. Hydrol. 2021, 598, 126494, ISSN 0022-1694. [Google Scholar] [CrossRef]
- Ahm, H.; Kilanehei, F.; Nazari-Sharabian, M. Impact of Pumping Rate on Contaminant Transport in Groundwater—A Numerical Study. Hydrology 2021, 8, 103. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, P. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems; Documentation and User’s Guide; US Army Corps of Engineers Engineer Research and Development Center: Vicksburg, MI, USA, 1999; Contract Report SERDP99-1. [Google Scholar]
- Suk, H. Modified Mixed Lagrangian–Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary. Groundwater 2016, 54, 508–520. [Google Scholar] [CrossRef]
- McDonald, J.M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, Reston, VA, USA: U.S. Geological Survey. 1988. Available online: http://pubs.usgs.gov/twri/twri6a1/ (accessed on 24 January 2019).
- Langevin, C.D.; Hughes, J.D.; Banta, E.; Provost, A.; Niswonger, R.; Panday, S. MODFLOW 6 Modular Hydrologic Model, Version 6.1.0; U.S. Geological Survey: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Langevin, C.D.; Hughes, J.D.; Banta, E.R.; Niswonger, R.G.; Panday, S.; Provost, A.M. Documentation for the MODFLOW 6, Groundwater Flow Model: Techniques and Methods 6-A55; U.S. Geological Survey: Reston, VA, USA, 2017; p. 197. [Google Scholar] [CrossRef]
- El Fakharany, M.A.; Monem, M.; Mansour, N. Using Modflow and MT3D Groundwater Flow and Transport Models as a Management Tool for the Quaternary aquifer, East Nile Delta, Egypt. Int. J. Sci. Commer. Humanit. 2013, 1, 219–223. [Google Scholar]
- Bedekar, V.; Morway, E.D.; Langevin, C.D.; Tonkin, M.J. MT3DUSGS Version 1: A U.S. Geological Survey Release of MT3DMS Updated with New and Expanded Transport Capabilities for Use with MODFLOW, U.S. Geological Survey, 6-A53; U.S. Geological Survey: Reston, VA, USA, 2016. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Medium; Elsevier: Amsterdam, The Netherlands, 1972. [Google Scholar]
- Bear, J. Hydraulics of Groundwater; McGrawHill: New York, NY, USA, 1979. [Google Scholar]
- Tsang, C.F.; Buscheck, T.; Doughty, C. Aquifer thermal energy storage: A numerical simulation of Auburn University Field Experiments. Water Resour. Res. 1981, 17, 647–658. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. J. Hydrol. 1981, 49, 213–233. [Google Scholar] [CrossRef]
- Serrano, S.E. Solute transport under non-linear sorption and decay. Water Res. 2001, 35, 1525–1533. [Google Scholar] [CrossRef]
- Guevara Morel, C.R.; van Reeuwijk, M.; Graf, T. Systematic investigation of non-Boussinesq effects in variable-density groundwater flow simulations. J. Contam. Hydrol. 2015, 183, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, W.M.A.; El-Didy, S.M.A.; Butt, T.A. Groundwater protection around Makkah sewage treatment plant using hydrological and transport models. Alex. Eng. J. 2024, 109, 508–519. [Google Scholar] [CrossRef]
- IAEA. Remediation of Sites with Mixed Contamination of Radioactive and Other Hazardous Substances, Technical Reports Series No. 442; International Atomic Energy Agency: Vienna, Austria, 2006. [Google Scholar]
- Zhu, M.; Zhang, Q.; Zhang, X.; Hui, B. Comparative Study of Soil Grouting with Cement Slurry and Cement-Sodium Silicate Slurry. Adv. Mater. Sci. Eng. 2018, 2018, 1893195. [Google Scholar] [CrossRef]
- Ciardi, G.; Vannucchi, G.; Madiai, C. Effects of Colloidal Silica Grouting on Geotechnical Properties of Liquefiable Soils: A Review. Geotechnics 2021, 1, 460–491. [Google Scholar] [CrossRef]
- Zhenkun, H.; Zhanlin, L.; Zejun, H.; Mengxiong, T.; Yupeng, L.; Dingli, S.; Lei, W. Experimental research on the flow law of the grouting fluid in an annular gap between a non-soil-squeezing PHC pipe pile wall and a hole wall. Front. Ecol. Evol. 2023, 11, 1133631. [Google Scholar] [CrossRef]
- Lubo, T.; Xiaobin, C.; Xinxin, Z.; Zhongrong, W.; Yeshun, W.; Kang, X. Numerical analysis and experimental study on slurry diffusion characteristics of vortical oscillatory grouting technology considering soil interface. Phys. Fluids 2024, 36, 013313. [Google Scholar] [CrossRef]
- Zhai, M.; Ma, D.; Bai, H. Diffusion Mechanism of Slurry during Grouting in a Fractured Aquifer: A Case Study in Chensilou Coal Mine, China. Mathematics 2022, 10, 1345. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Zhen, S.; Gao, K.; Liang, D.; Cheng, S. Diffusion mechanism and sensitivity analysis of slurry while grouting in fractured aquifer with horizontal injection hole. Carbonates Evaporites 2020, 35, 1–16. [Google Scholar] [CrossRef]
- Ngo, I.; Ma, L.; Zhai, J.; Wang, Y.; Wei, T.; Ni, Y. Experimental Investigation of CO2-Induced Silica Gel as the Water Blocking Grout Effect of Aquifer Ions. ACS Omega 2022, 30, 27090–27101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- David, L. Grouting—For Groundwater Control and Mitigation Of Ground Movements. In AGS SANT Symposium 2019–Tunnelling Under Adelaide; AT Publishing: Adelaide, SA, Australia, 2019. [Google Scholar]
- Shucai, L.; Rentai, L.; Qingsong, Z.; Xiao, Z. Protection against water or mud inrush in tunnels by grouting: A review. J. Rock Mech. Geotech. Eng. 2016, 8, 753–766, ISSN 1674-7755. [Google Scholar] [CrossRef]
- Jin-Quan, L.; Wei-Zhong, C.; Ka-Veng, Y.; Xiao-Sheng, Z. Groundwater-mud control and safety thickness of curtain grouting for the Junchang Tunnel: A case study. Tunn. Undergr. Space Technol. 2020, 103, 103429, ISSN 0886-7798. [Google Scholar] [CrossRef]
- Lokesh, P.P.; Prashant, S.; Tahereh, J.; Shiv, B.; Deyi, H.; Sabry, M.S.; Jörg, R.; David, O.; Dane, L.; Hailong, W.; et al. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. J. Hazard. Mater. 2023, 455, 131575, ISSN 0304-3894. [Google Scholar] [CrossRef]
- Zhipeng, D.; Jiajun, C.; Shengnan, K.; Qi, X.; Zhenquan, W. Experimental investigations on spreading and displacement of fluid plumes around an injection well in a contaminated aquifer. J. Hydrol. 2023, 617, 129062, ISSN 0022-1694. [Google Scholar] [CrossRef]
- Poursalehi, F.; Akbarpour, A.; Hashemi, S.R. Simulating the effect of injection well on groundwater table in unconfined aquifer using numerical model of Isogeometric analysis and optimization of injection rate with PSO algorithm. Q. J. Eng. Geol. Hydrogeol. 2022, 55, qjegh2021-117. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.; Knappett, P.S.K.; Montiel, D.; Wang, J.; Aviles, M.; Hernandez, H.; Mendoza-Sanchez, I.; Loza-Aguirre, I. Water Quality Assessment Bias Associated with Long-Screened Wells Screened across Aquifers with High Nitrate and Arsenic Concentrations. Int. J. Environ. Res. Public Health 2022, 11, 9907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mostafa, M.M.; Helal, E.Y.; Sobeh, M.F.; Abdelhaleem, F.S. EFFECT of Dewatering System on Groundwater Contaminations Transport, ERJ, PART 4. Civil Eng. 2023, 46, 353–364. [Google Scholar]
Piezometer | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Distance (m) | 11 | 11.5 | 24.8 | 38.6 | 51.5 | 62.3 | 70.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalifa, W.M.A.; Achour, B.; Butt, T.; Mirza, C.R.; Salah, H.; El-Didy, S.M. Impacts of Remedial Techniques on Contamination Transport in Groundwater. Water 2024, 16, 3277. https://doi.org/10.3390/w16223277
Khalifa WMA, Achour B, Butt T, Mirza CR, Salah H, El-Didy SM. Impacts of Remedial Techniques on Contamination Transport in Groundwater. Water. 2024; 16(22):3277. https://doi.org/10.3390/w16223277
Chicago/Turabian StyleKhalifa, Walid M. A., Belkacem Achour, Tayyab Butt, Cyrus Raza Mirza, Heba Salah, and Sherif M. El-Didy. 2024. "Impacts of Remedial Techniques on Contamination Transport in Groundwater" Water 16, no. 22: 3277. https://doi.org/10.3390/w16223277
APA StyleKhalifa, W. M. A., Achour, B., Butt, T., Mirza, C. R., Salah, H., & El-Didy, S. M. (2024). Impacts of Remedial Techniques on Contamination Transport in Groundwater. Water, 16(22), 3277. https://doi.org/10.3390/w16223277