Microplastics Meet Metoprolol in Natural Water: Sorption Behavior and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. MP Characterization and β-Blocker Determination
2.3. Batch Sorption Experiments
2.4. Analysis Methods
3. Results and Discussion
3.1. Characterizations of the MPs
3.2. Effects of Environmental Factors on Sorption
3.2.1. pH
3.2.2. Salinity
3.2.3. HAs
3.3. Sorption Kinetics
3.4. Sorption Isotherms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, X.; Hong, S.; Cheng, R. Adsorption characteristics of antibiotics on microplastics: The effect of surface contamination with an anionic surfactant. Chemosphere 2022, 307, 136195. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Li, Y.; Huang, G. Adsorption behavior of the antibiotic levofloxacin on microplastics in the presence of different heavy metals in an aqueous solution. Chemosphere 2020, 260, 127650. [Google Scholar] [CrossRef] [PubMed]
- Kinigopoulou, V.; Pashalidis, I.; Kalderis, D. Microplastics as carriers of inorganic and organic contaminants in the environment: A review of recent progress. J. Mol. Liq. 2022, 350, 118580. [Google Scholar] [CrossRef]
- Mao, R.; Lang, M.; Yu, X. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. J. Hazard. Mater. 2020, 393, 122515. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, C.; Wang, J. Sorption of sulfamethoxazole onto six types of microplastics. Chemosphere 2019, 228, 300–308. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, J.; Zhu, Z. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. Environ. Pollut. 2019, 254, 113104. [Google Scholar] [CrossRef]
- Wang, T.; Yu, C.; Chu, Q. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere 2020, 244, 125491. [Google Scholar] [CrossRef]
- Rubin, A.E.; Zucker, I. Interactions of microplastics and organic compounds in aquatic environments: A case study of augmented joint toxicity. Chemosphere 2022, 289, 133212. [Google Scholar] [CrossRef]
- Wang, T.; Wang, L.; Chen, Q. Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Sci. Total Environ. 2020, 748, 142427. [Google Scholar] [CrossRef]
- Tourinho, P.S.; Kočí, V.; Loureiro, S. Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environ. Pollut. 2019, 252, 1246–1256. [Google Scholar] [CrossRef]
- Fred-Ahmadu, O.H.; Bhagwat, G.; Oluyoye, I. Interaction of chemical contaminants with microplastics: Principles and perspectives. Sci. Total Environ. 2020, 706, 135978. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ding, J.; Razanajatovo, R.M. Sorption of selected pharmaceutical compounds on polyethylene microplastics: Roles of pH, aging, and competitive sorption. Chemosphere 2022, 307, 135561. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, Y.; Wang, J. Equilibrium, kinetics and molecular dynamic modeling of Sr2+ sorption onto microplastics. J. Hazard. Mater. 2020, 400, 123324. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Hu, G.; Fan, X. Sorption properties of cadmium on microplastics: The common practice experiment and a two-dimensional correlation spectroscopic study. Ecotoxicol. Environ. Saf. 2020, 190, 110118. [Google Scholar] [CrossRef]
- Elizalde-Velázquez, A.; Subbiah, S.; Anderson, T.A. Sorption of three common nonsteroidal anti-inflammatory drugs (NSAIDs) to microplastics. Sci. Total Environ. 2020, 715, 136974. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, H.; Cheng, Y. Interaction between microplastics and humic acid and its effect on their properties as revealed by molecular dynamics simulations. J. Hazard. Mater. 2023, 455, 131636. [Google Scholar] [CrossRef]
- Du, H.L.; Zhang, Y.S.; Wang, H. Adsorption behavior of methylene blue on diverse microplastics. Environ. Chem. 2022, 41, 2803–2812. [Google Scholar]
- Sun, M.; Yang, Y.; Huang, M.; Fu, S.; Hao, Y. Adsorption behaviors and mechanisms of antibiotic norfloxacin on degradable and nondegradable microplastics. Sci. Total Environ. 2022, 807, 151042. [Google Scholar] [CrossRef]
- Guo, X.; Pang, J.; Chen, S. Sorption properties of tylosin on four different microplastics. Chemosphere 2018, 209, 240–245. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef]
- Barbieri, M.; Licha, T.; Nödler, K. Fate of β-blockers in aquifer material under nitrate reducing conditions: Batch experiments. Chemosphere 2012, 89, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Sheng, Q.; Sui, Q. β-blockers in the environment: Distribution, transformation, and ecotoxicity. Environ. Pollut. 2020, 266, 115269. [Google Scholar] [CrossRef] [PubMed]
- Puckowski, A.; Cwięk, W.; Mioduszewska, K.; Stepnowski, P. Sorption of pharmaceuticals on the surface of microplastics. Chemosphere 2021, 263, 127976. [Google Scholar] [CrossRef] [PubMed]
- McDougall, L.; Thomson, L.; Brand, S. Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. Sci. Total Environ. 2022, 808, 152071. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, C.; He, D.; Sun, J.; Zhang, A.; Li, J. Interactions between polypropylene microplastics (PP-MPs) and humic acid influenced by aging of MPs. Water Res. 2022, 222, 118921. [Google Scholar] [CrossRef]
- Titov, I.; Semerád, J.; Boháčková, J. Microplastics meet micropollutants in a central european river stream: Adsorption of pollutants to microplastics under environmentally relevant conditions. Environ. Pollut. 2024, 360, 124616. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Guo, M.H. Adsorption of antibiotics on different microplastics (MPs): Behavior and mechanism. Sci. Total Environ. 2023, 863, 161022. [Google Scholar] [CrossRef]
- He, S.; Sun, S.; Xue, H.; Kang, C. Polypropylene microplastics aging under natural conditions in winter and summer and its effects on the sorption and desorption of nonylphenol. Environ. Res. 2023, 225, 115615. [Google Scholar] [CrossRef]
- Ding, L.; Yu, X.; Guo, X.; Zhang, Y.; Ouyang, Z.; Liu, P. The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: Important role of clay minerals. Water Res. 2022, 208, 117879. [Google Scholar] [CrossRef]
- Yza, B.; Yyac, D.; Glac, D. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Res. 2020, 184, 116209. [Google Scholar]
- Huang, D.; Xu, Y.; Yu, X. Effect of cadmium on the sorption of tylosin by polystyrene microplastics. Ecotoxicol. Environ. Saf. 2020, 207, 111255. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.; Chen, G.; Bao, J.; Song, M.; Li, Y.; Luo, C. Interactions between microplastics and organic compounds in aquatic environments: A mini review. Sci. Total Environ. 2020, 736, 139472. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, Y. Surface-bound humic acid increased propranolol sorption on Fe3O4/attapulgite magnetic nanoparticles. Nanomaterials 2020, 10, 205. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Zhou, B. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ. Pollut. 2018, 243, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, P.; Chen, Q. Effects of polymer aging on sorption of 2, 2′, 4, 4′-tetrabromodiphenyl ether by polystyrene microplastics. Chemosphere 2020, 253, 126706. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, A.; Lawton, L.A.; Petrie, B. Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs. Chemosphere 2021, 288, 132578. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Diao, Y.; Dan, Y. Effects of solution chemistry and humic acid on transport and deposition of aged microplastics in unsaturated porous media. Chemosphere 2022, 309, 136658. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, S.; Zhong, L.B. Adsorption of typical natural organic matter on microplastics in aqueous solution: Kinetics, isotherm, influence factors and mechanism. J. Hazard. Mater. 2023, 443, 130130. [Google Scholar] [CrossRef]
- Li, L.; Zhao, X.L.; Liu, D. Occurrence and ecological risk assessment of PPCPs in typical inflow rivers of Taihu lake, China. J. Environ. Manag. 2021, 285, 112176. [Google Scholar] [CrossRef]
MTL | MPs | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||
K1/(L/min) | qe/(mg/g) | R2 | K2/(g/(g·min)) | qe/(mg/g) | R2 | ||
PVC | 0.0773 | 0.7307 | 0.9234 | 0.0879 | 0.7669 | 0.9976 | |
PP | 0.0035 | 0.3252 | 0.9897 | 0.0089 | 0.3882 | 0.9924 |
MTL | MPs | Langmuir | Freundlich | |||||
Kl (L·mg−1) | Qe (mg·g−1) | R2 | n | Kf (mg·g−1) | R2 | |||
PVC | 0.0502 | 2.1258 | 0.8469 | 2.7252 | 0.3018 | 0.9720 | ||
PP | 0.0356 | 1.4024 | 0.7534 | 2.5848 | 0.1190 | 0.9406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, T.; Yang, Z.; Chen, D.; Cao, H.; Deng, Y.; Zhao, W. Microplastics Meet Metoprolol in Natural Water: Sorption Behavior and Mechanism. Water 2024, 16, 3278. https://doi.org/10.3390/w16223278
Peng T, Yang Z, Chen D, Cao H, Deng Y, Zhao W. Microplastics Meet Metoprolol in Natural Water: Sorption Behavior and Mechanism. Water. 2024; 16(22):3278. https://doi.org/10.3390/w16223278
Chicago/Turabian StylePeng, Tao, Zhuo Yang, Danni Chen, Hongyu Cao, Yuehua Deng, and Wei Zhao. 2024. "Microplastics Meet Metoprolol in Natural Water: Sorption Behavior and Mechanism" Water 16, no. 22: 3278. https://doi.org/10.3390/w16223278
APA StylePeng, T., Yang, Z., Chen, D., Cao, H., Deng, Y., & Zhao, W. (2024). Microplastics Meet Metoprolol in Natural Water: Sorption Behavior and Mechanism. Water, 16(22), 3278. https://doi.org/10.3390/w16223278