Insights into the Acute Stress of Glutaraldehyde Disinfectant on Short-Term Wet Anaerobic Digestion System of Pig Manure: Dose Response, Performance Variation, and Microbial Community Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Establishment and Operation of the Stimulated Anaerobic Fermentation Reactors
2.3. Determination of Methane and Physicochemical Indices
2.4. Microbial Community Analysis
2.5. Data Analysis
3. Results
3.1. Effects of Glutaraldehyde on Effluent Properties in the Anaerobic Fermentation System
3.2. Effects of Glutaraldehyde on Methane Production in Anaerobic Fermentation System
3.3. Effect of Glutaraldehyde on Microbial Richness and Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Wang, D.H.; Li, S.C.; Ou, X.Y. Prolonging the time of manure by water soaking can alleviate the inhibition of lime disinfection wastewater in a batch anaerobic digestion of swine manure. J. Environ. Chem. Eng. 2024, 12, 113466. [Google Scholar] [CrossRef]
- Liu, W.R.; Zeng, D.; She, L.; Su, W.X.; He, D.C.; Wu, G.Y.; Ma, X.R.; Jiang, S.; Jiang, C.H.; Ying, G.G. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China. Sci. Total Environ. 2020, 734, 139023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Q.; Wang, S.L.; Yin, F.B.; Dong, H.M.; Cao, Q.T.; Lian, T.J.; Zhu, J. Produce individual medium chain carboxylic acids (MCCA) from swine manure: Performance evaluation and economic analysis. Waste Manag. 2022, 144, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.Y.; Liu, B.; Xi, C.; Luo, X.S.; Yuan, X.F.; Wang, X.F.; Zhu, W.B.; Wang, H.L.; Cui, Z.J. Effect of pig manure on the chemical composition and microbial diversity during co-composting with spent mushroom substrate and rice husks. Bioresour. Technol. 2018, 251, 22–30. [Google Scholar] [CrossRef] [PubMed]
- McAuliffe, G.A.; Chapman, D.V.; Sage, C.L. A thematic review of life cycle assessment (LCA) applied to pig production. Environ. Impact Assess. Rev. 2016, 56, 12–22. [Google Scholar] [CrossRef]
- Li, J.G.; Yang, W.H.; Liu, L.L.; Liu, X.M.; Qiu, F.D.; Ma, X.D. Development and environmental impacts of China’s livestock and poultry breeding. J. Clean. Prod. 2022, 371, 133586. [Google Scholar] [CrossRef]
- Pecar, D.; Pohleven, F.; Gorsek, A. Kinetics of methane production during anaerobic fermentation of chicken manure with sawdust and fungi pre-treated wheat straw. Waste Manag. 2020, 102, 170–178. [Google Scholar] [CrossRef]
- Zhang, T.; Mao, C.L.; Zhai, N.N.; Wang, X.J.; Yang, G.H. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag. 2015, 35, 119–126. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Shi, X.C.; Lin, J.; Zuo, J.N.; Li, P.; Li, X.X.; Guo, X.L. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes. J. Environ. Sci. 2017, 55, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.L.; Feng, Y.Z.; Wang, X.J.; Ren, G.X. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Zhang, C.S.; Su, H.J.; Baeyens, J.; Tan, T.W. Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. [Google Scholar] [CrossRef]
- Ambrose, H.W.; Dalby, F.R.; Feilberg, A.; Kofoed, M.V.W. Effects of surfactant, oxidant, and flocculant treatments on methane emission from pig slurry during storage. J. Clean. Prod. 2023, 430, 139665. [Google Scholar] [CrossRef]
- Le, V.P.; Songkasupa, T.; Boonpornprasert, P.; Nguyen, T.L.; Nuanualsuwan, S. Inactivation rates of African swine fever virus by compound disinfectants. Ann. Agric. Sci. Ser. E 2022, 67, 181–188. [Google Scholar] [CrossRef]
- Mallah, S.I.; Ghorab, O.K.; Al-Salmi, S.; Abdellatif, O.S.; Tharmaratnam, T.; Iskandar, M.A.; Sefen, J.A.N.; Sidhu, P.; Atallah, B.; El-Lababidi, R.; et al. COVID-19: Breaking down a global health crisis. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 35. [Google Scholar] [CrossRef]
- Li, S.; Wang, D.; He, L.; Wang, W. CO2 bubbling pretreatment to remove the inhibition of lime disinfection wastewater in a swine manure anaerobic digestion system. J. Clean. Prod. 2024, 434, 140275. [Google Scholar] [CrossRef]
- Duerschner, J.; Bartelt-Hunt, S.; Eskridge, K.M.; Gilley, J.E.; Li, X.; Schmidt, A.M.; Snow, D.D. Swine slurry characteristics as affected by selected additives and disinfectants. Environ. Pollut. 2020, 260, 114058. [Google Scholar] [CrossRef] [PubMed]
- Maertens, H.; Van Coillie, E.; Millet, S.; Van Weyenberg, S.; Sleeckx, N.; Meyer, E.; Zoons, J.; Dewulf, J.; De Reu, K. Repeated disinfectant use in broiler houses and pig nursery units does not affect disinfectant and antibiotic susceptibility in Escherichia coli field isolates. BMC Vet. Res. 2020, 16, 140. [Google Scholar] [CrossRef]
- Isabelle, M.; Catherine, D.; Michel, J.B.; Karen, C.W. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Bioresour. Technol. 2004, 37, 790–802. [Google Scholar]
- Wei, H.; Tang, Y.; Shoeib, T.; Li, A.; Yang, H. Evaluating the effects of the preoxidation of H2O2, NaClO, and KMnO4 and reflocculation on the dewaterability of sewage sludge. Chemosphere 2019, 234, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.X.; Guo, L.; Shapleigh, J.P.; Liu, Y.; Huang, Y.; Lian, J.S.; Xie, L.; Deng, L.W.; Wang, W.G.; Wang, L. The long-term effect of glutaraldehyde on the bacterial community in anaerobic ammonium oxidation reactor. Bioresour. Technol. 2023, 385, 129448. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Wang, D.B.; Yi, N.; Li, Y.F.; Ni, B.J.; Wang, Q.L.; Wang, H.J.; Li, X.M. Insights into the toxicity of troclocarban to anaerobic digestion: Sludge characteristics and methane production. J. Hazard. Mater. 2020, 385, 121615. [Google Scholar] [CrossRef] [PubMed]
- Chacón, L.; Arias-Andres, M.; Mena, F.; Rivera, L.; Hernández, L.; Achi, R.; Garcia, F.; Rojas-Jimenez, K. Short-term exposure to benzalkonium chloride in bacteria from activated sludge alters the community diversity and the antibiotic resistance profile. J. Water Health 2021, 19, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, T.; Zhou, Y.; Zhao, M.; Shi, W.; Huang, Z.; Ruan, W. Insights into the phenol disinfectant on the methane performance from wastewater by mesophilic anaerobic digestion: Single and two stages analysis. Process Saf. Environ. Prot. 2023, 170, 19–27. [Google Scholar] [CrossRef]
- Yang, W.; Cai, C.; Wang, R.; Dai, X. Insights into the impact of quaternary ammonium disinfectant on sewage sludge anaerobic digestion: Dose-response, performance variation, and potential mechanisms. J. Hazard. Mater. 2023, 444, 130341. [Google Scholar] [CrossRef]
- Wang, B.X.; Duran, R.; Pigot, T.; Cravo-Laureau, C. Safe reuse of wastewater: Effect of disinfection methods on microbial community. J. Clean. Prod. 2023, 419, 138291. [Google Scholar] [CrossRef]
- Dang, C.Y.; Zhang, Y.B.; Zheng, M.S.; Meng, Q.Y.; Wang, J.; Zhong, Y.N.; Wu, Z.B.; Liu, B.C.; Fu, J. Effect of chlorine disinfectant influx on biological sewage treatment process under the COVID-19 pandemic: Performance, mechanisms and implications. Water Res. 2023, 244, 120453. [Google Scholar] [CrossRef]
- Luo, L.W.; Wu, Y.H.; Yu, T.; Wang, Y.H.; Chen, G.Q.; Tong, X.; Bai, Y.; Xu, C.; Wang, H.B.; Ikuno, N.; et al. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Res. 2021, 188, 116474. [Google Scholar] [CrossRef]
- Leung, H.W. Ecotoxicology of glutaraldehyde: Review of environmental fate and effects studies. Ecotoxicol. Environ. Saf. 2001, 49, 26–39. [Google Scholar] [CrossRef]
- Maan Singh, S.; Even, H.; Truls, L.; Karianne, W.; Askild, H. Frequency of disinfectant resistance genes and genetic linkage with beta-lactamase transposon Tn552 among clinical staphylococci. Antimicrob. Agents Chemother. 2002, 46, 2797–2803. [Google Scholar]
- Sakoda, Y.; Endo, M.; Sato, Y.; Okamatsu, M.; Kida, H. Effects of Disinfectant Containing Glutaraldehyde Against Avian Influenza Virus. J. Jpn. Vet. Med. Assoc. 2012, 65, 303–305. [Google Scholar] [CrossRef]
- Zhao, C.; Yan, H.; Liu, Y.; Huang, Y.; Zhang, R.H.; Chen, C.; Liu, G.Q. Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion. Waste Manag. 2016, 52, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Nabi, M.; Liang, J.S.; Zhang, P.Y.; Wu, Y.; Fu, C.; Wang, S.Q.; Ye, J.P.; Gao, D.W.; Shah, F.A.; Dai, J.Q. Anaerobic digestion of sewage sludge pretreated by high pressure homogenization using expanded granular sludge blanket reactor: Feasibility, operation optimization and microbial community. J. Environ. Chem. Eng. 2021, 9, 104720. [Google Scholar] [CrossRef]
- Zhang, X.J.; Yang, H.J.; Wei, D.H.; Chen, Z.; Wang, Q.; Song, Y.L.; Ma, Y.P.; Zhang, H.Z. Tolerance of anaerobic digestion sludge to heavy metals: COD removal, biogas production, and microbial variation. J. Water Process Eng. 2023, 55, 104157. [Google Scholar] [CrossRef]
- Nagendra, H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geochem. 2000, 22, 175–186. [Google Scholar] [CrossRef]
- Azami, H.; Sarrafzadeh, M.H.; Mehrnia, M.R. Influence of sludge rheological properties on the membrane fouling in submerged membrane bioreactor. Desalination Water Treat. 2011, 34, 117–122. [Google Scholar] [CrossRef]
- Ren, Y.; Yu, G.; Shi, C.; Liu, L.; Guo, Q.; Han, C.; Zhang, D.; Zhang, L.; Liu, B.; Gao, H.; et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses. iMeta 2022, 1, e12. [Google Scholar] [CrossRef]
- Liang, J.S.; Zhang, H.B.; Zhang, P.Y.; Zhang, G.M.; Cai, Y.J.; Wang, Q.Y.; Zhou, Z.Y.; Ding, Y.R.; Zubair, M. Effect of substrate load on anaerobic fermentation of rice straw with rumen liquid as inoculum: Hydrolysis and acidogenesis efficiency, enzymatic activities and rumen bacterial community structure. Waste Manag. 2021, 124, 235–243. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Zhang, G.M.; Chen, L.; Yang, N.; Wu, Y.; Fang, W.; Zhang, R.; Wang, X.Y.; Fu, C.; Zhang, P.Y. Volatile fatty acid production in anaerobic fermentation of food waste saccharified residue: Effect of substrate concentration. Waste Manag. 2023, 164, 29–36. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Lu, M.; Shangguan, Y.; Liu, X. Mechanism of dielectric barrier plasma technology to improve the quantity and quality of short chain fatty acids in anaerobic fermentation of cyanobacteria. Waste Manag. 2023, 155, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Sun, M.Y.; Xu, J.F.; Gong, T.C.; Ye, M.Y.; Xiao, Y.; Yang, T.X. Effect of biochar derived from biogas residue on methane production during dry anaerobic fermentation of kitchen waste. Waste Manag. 2022, 149, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hu, W.Y.; Zheng, X.; Liu, Y.W.; Niu, Q.Q.; Chen, Y.G. Valorization of food waste into short-chain fatty acids via enzymatic pretreatment: Effects of fermentation-pH on acid-producing processes and microbial metabolic functions. Waste Manag. 2023, 167, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Sengar, A.; Basheer, F.; Farooqi, I.H.; Isa, M.H. Anaerobic digestion in the elimination of antibiotics and antibiotic-resistant genes from the environment—A comprehensive review. J. Environ. Chem. Eng. 2022, 10, 106423. [Google Scholar] [CrossRef]
- Han, R.; Zhu, D.R.; Xing, J.W.; Li, Q.H.; Li, Y.; Chen, L.S. The effect of temperature fluctuation on the microbial diversity and community structure of rural household biogas digesters at Qinghai Plateau. Arch. Microbiol. 2020, 202, 525–538. [Google Scholar] [CrossRef]
- Hanajima, D.; Aoyagi, T.; Hori, T. Survival of free-living Acholeplasma in aerated pig manure slurry revealed by 13C-labeled bacterial biomass probing. Front. Microbiol. 2015, 6, 1206. [Google Scholar] [CrossRef]
- Yang, Q.X.; Tian, T.T.; Niu, T.Q.; Wang, P.L. Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environ. Pollut. 2017, 229, 188–198. [Google Scholar] [CrossRef]
- Wang, Y.L.; Han, K.; Wang, D.B.; Yi, N.; Teng, Y.J.; Wang, W.J.; Liu, L.; Wang, H.J. Revealing the mechanisms of Triclosan affecting of methane production from waste activated sludge. Bioresour. Technol. 2020, 312, 123505. [Google Scholar] [CrossRef]
- Lin, W.S.; Niu, B.; Yi, J.L.; Deng, Z.R.; Song, J.; Chen, Q. Toxicity and Metal Corrosion of Glutaraldehyde-Didecyldimethylammonium Bromide as a Disinfectant Agent. BioMed Res. Int. 2018, 2018, 9814209. [Google Scholar] [CrossRef]
- Han, X.M.; Wang, Z.W.; Wang, X.Y.; Zheng, X.; Ma, J.X.; Wu, Z.C. Microbial responses to membrane cleaning using sodium hypochlorite in membrane bioreactors: Cell integrity, key enzymes and intracellular reactive oxygen species. Water Res. 2016, 88, 293–300. [Google Scholar] [CrossRef]
- Singh, A.; Shah, I.A.; Yadav, J.; Sharma, P.; Kant, R.; Iype, E.; Rana, S.; Kumar, I. Organo-Catalyzed Enantioselective [4+2] Annulation of Glutaraldehyde and C3-Indolyl-imines to Access Indol-3-yl-piperidines. Eur. J. Org. Chem. 2023, 26, e202300901. [Google Scholar] [CrossRef]
- Huang, X.L.; Zhang, J.Z. Kinetic spectrophotometric determination of submicromolar orthophosphate by molybdate reduction. Microchem. J. 2008, 89, 58–71. [Google Scholar] [CrossRef]
- Liu, X.H.; Liu, R.Y.; Yang, Q.; Cui, B.; Wu, W.J.; Zhao, X.Y.; Wang, Y.X. Achieving and control of partial denitrification in anoxic-oxic process of real municipal wastewater treatment plant. Bioresour. Technol. 2021, 341, 125765. [Google Scholar] [CrossRef] [PubMed]
- Gale, P.M.; Reddy, K.R.; Graetz, D.A. Mineralization of Sediment Organic-Matter under Anoxic Conditions. J. Environ. Qual. 1992, 21, 394–400. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, B.; Cui, Y.X.; Sun, D.Z.; Wang, X.Z. Iron(III) reduction-induced phosphate precipitation during anaerobic digestion of waste activated sludge. Sep. Purif. Technol. 2015, 143, 6–11. [Google Scholar] [CrossRef]
- Hildebrand, F.; Moitinho-Silva, L.; Blasche, S.; Jahn, M.T.; Gossmann, T.I.; Huerta-Cepas, J.; Hercog, R.; Luetge, M.; Bahram, M.; Pryszlak, A.; et al. Antibiotics-induced monodominance of a novel gut bacterial order. Gut 2019, 68, 1781–1790. [Google Scholar] [CrossRef]
- Li, Y.X.; Ling, J.Y.; Xue, J.H.; Huang, J.W.; Zhou, X.; Wang, F.; Hou, W.E.; Zhao, J.B.; Xu, Y.B. Acute stress of the typical disinfectant glutaraldehyde-didecyldimethylammonium bromide (GD) on sludge microecology in livestock wastewater treatment plants: Effect and its mechanisms. Water Res. 2022, 227, 119342. [Google Scholar] [CrossRef]
- Paul, D.; Chakraborty, R.; Mandal, S.M. Biocides and health-care agents are more than just antibiotics: Inducing cross to co-resistance in microbes. Ecotoxicol. Environ. Saf. 2019, 174, 601–610. [Google Scholar] [CrossRef]
- Jang, H.M.; Kim, J.H.; Ha, J.H.; Park, J.M. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 2014, 165, 174–182. [Google Scholar] [CrossRef]
Materials | TS/% | VS/% | pH |
---|---|---|---|
Pig manure | 27.57 ± 0.23 | 20.91 ± 0.19 | 7.32 |
sludge | 2.51 ± 0.18 | 1.52 ± 0.16 | 7.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, F.; Wu, L.; He, S.; Liang, P.; Zhang, L.; Wu, Z.; Zhang, T.; Liu, Y.; Liu, X.; et al. Insights into the Acute Stress of Glutaraldehyde Disinfectant on Short-Term Wet Anaerobic Digestion System of Pig Manure: Dose Response, Performance Variation, and Microbial Community Structure. Water 2024, 16, 3279. https://doi.org/10.3390/w16223279
Wu Y, Li F, Wu L, He S, Liang P, Zhang L, Wu Z, Zhang T, Liu Y, Liu X, et al. Insights into the Acute Stress of Glutaraldehyde Disinfectant on Short-Term Wet Anaerobic Digestion System of Pig Manure: Dose Response, Performance Variation, and Microbial Community Structure. Water. 2024; 16(22):3279. https://doi.org/10.3390/w16223279
Chicago/Turabian StyleWu, Yongming, Fangfei Li, Liuxing Wu, Shifu He, Peiyu Liang, Lei Zhang, Zhijian Wu, Tao Zhang, Yajun Liu, Xiangmin Liu, and et al. 2024. "Insights into the Acute Stress of Glutaraldehyde Disinfectant on Short-Term Wet Anaerobic Digestion System of Pig Manure: Dose Response, Performance Variation, and Microbial Community Structure" Water 16, no. 22: 3279. https://doi.org/10.3390/w16223279
APA StyleWu, Y., Li, F., Wu, L., He, S., Liang, P., Zhang, L., Wu, Z., Zhang, T., Liu, Y., Liu, X., Huang, X., Zhu, L., Wang, M., & Deng, M. (2024). Insights into the Acute Stress of Glutaraldehyde Disinfectant on Short-Term Wet Anaerobic Digestion System of Pig Manure: Dose Response, Performance Variation, and Microbial Community Structure. Water, 16(22), 3279. https://doi.org/10.3390/w16223279