Dynamics of Changes in the Surface Area of Water Bodies in Subsidence Basins in Mining Areas
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
- The area of Bytom in numbers ranging from 25 (total area: 4.13 hectares) in 1881–1902 to 75 (area: 58.38 hectares) in 1989 [75];
- The area of Sosnowiec in numbers ranging from 3 (area: 14 ha) in 1891 to 60 (area: 38 ha) in 1985 [76];
- The Rawa River catchment area in numbers ranging from 6 (area: 5 ha) in 1902 to 46 (area: 91 ha) in 1994 [11];
- The area of Chorzów, ranging in number from just 4 in 1990 to 48 in 1994 [79];
- The catchment area of the Bytomka River in numbers ranging from 14 (area: 3 ha) in 1902 to 82 (area: 82 ha) in 1994 [11].
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Steffen, W.; Crutzen, P.J.; McNeill, J.R. The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature. Ambio 2007, 36, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.; Maslin, M. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Ciupa, T.; Suligowski, R. Impact of the City on the Rapid Increase in the Runoff and Transport of Suspended and Dissolved Solids During Rainfall—The Example of the Silnica River (Kielce, Poland). Water 2020, 12, 2693. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, C.; Wang, J.; Sun, Q.; He, X.; Cao, G.; Zhao, Y.; Yan, L.; Gong, B. Using storage of coal-mining subsidence area for minimizing flood. J. Hydrol. 2019, 572, 571–581. [Google Scholar] [CrossRef]
- Zhu, X.; Zha, F.; Cheng, H.; Zheng, L.; Liu, H.; Huang, W.; Yan, Y.; Dai, L.; Fang, S.; Yang, X. Spatial Pattern Reconstruction of Water and Land Resources in Coal Mining Subsidence Areas within Urban Regions. Sustainability 2022, 14, 11397. [Google Scholar] [CrossRef]
- Mancini, F.; Stecchi, F.; Zanni, M.; Gabbianelli, G. Monitoring ground subsidence induced by salt mining in the city of Tuzla (Bosnia and Herzegovina). Environ. Geol. 2009, 58, 381–389. [Google Scholar] [CrossRef]
- Quanyuan, W.; Jiewu, P.; Shanzhong, Q.; Yiping, L.; Congcong, H.; Tingxiang, L.; Limei, H. Impacts of coal mining subsidence on the surface landscape in Longkou city, Shandong Province of China. Environ. Earth Sci. 2009, 59, 783–791. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Loupasakis, C.; Angelitsa, V.; Rozos, D.; Spanou, N. Mining geohazards—Land subsidence caused by the dewatering of opencast coal mines: The case study of the Amyntaio coal mine, Florina, Greece. Nat. Hazards 2014, 70, 675–691. [Google Scholar] [CrossRef]
- Machowski, R.; Rzetala, M.A.; Rzetala, M.; Solarski, M. Geomorphological and hydrological effects of subsidence and land use change in industrial and urban areas. Land Degrad. Dev. 2016, 27, 1740–1752. [Google Scholar] [CrossRef]
- Solarski, M.; Machowski, R.; Rzetala, M.; Rzetala, M.A. Hypsometric changes in urban areas resulting from multiple years of mining activity. Sci. Rep. 2022, 12, 2982. [Google Scholar] [CrossRef] [PubMed]
- Galloway, D.L.; Coplin, L.S.; Ingebritsen, S.E. Effects of Land Subsidence in the Greater Houston Area. In Managing Urban Water Supply; Water Science and Technology Library; Agthe, D.E., Billings, R.B., Buras, N., Eds.; Springer: Dordrecht, The Netherlands, 2003; Volume 46. [Google Scholar] [CrossRef]
- Deliormanli, A.H. Assessment of coal mining subsidence damage in Soma-Turkey coalfield using fem modelling. Arch. Min. Sci. 2012, 57, 179–192. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Hu, Z.; Yu, Y.; Shao, F. Boundary demarcation of the damaged cultivated land caused by coal mining subsidence. Bull. Eng. Geol. Environ. 2014, 73, 621–633. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Jankowski, A.T.; Molenda, T.; Rzetala, M. Reservoirs in subsidence basins and depression hollows in the Silesian Upland—Selected hydrological matters. Limnol. Rev. 2001, 1, 143–150. [Google Scholar]
- Ilie, O.; Dacian, M. Ground surface subsidence as effect of underground mining of the thick coal seams in the Jiu Valley Basin. Arch. Min. Sci. 2012, 57, 547–577. [Google Scholar] [CrossRef]
- Pacheco-Martínez, J.; Hernandez-Marín, M.; Burbey, J.T.; González-Cervantes, N.; Ortíz-Lozano, J.A.; Zermeño-De-Leon, M.E.; Solís-Pinto, A. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, México. Eng. Geol. 2013, 164, 172–186. [Google Scholar] [CrossRef]
- Abdikan, S.; Arıkan, M.; Sanli, F.B.; Cakir, Z. Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ. Earth Sci. 2014, 71, 4081–4089. [Google Scholar] [CrossRef]
- Singh, K.B. Pot-hole subsidence in Son-Mahanadi Master Coal Basin. Eng. Geol. 2007, 89, 88–97. [Google Scholar] [CrossRef]
- Donnelly, L. Coal mining subsidence in the UK. Geological Society, London, Eng. Geol. Spec. Publ. 2020, 29, 291–309. [Google Scholar] [CrossRef]
- Guzy, A.; Malinowska, A.A. Assessment of the impact of the spatial extent of land subsidence and aquifer system drainage induced by underground mining. Sustainability 2020, 12, 7871. [Google Scholar] [CrossRef]
- Sopata, P.; Stoch, T.; Wojcik, A.; Mrochen, D. Land surface subsidence due to mining-induced tremors in the upper Silesian coal basin (Poland)—Case study. Remote Sens. 2020, 12, 3923. [Google Scholar] [CrossRef]
- Akcin, H.; Kutoglu, H.S.; Kemaldere, H.; Deguchi, T.; Koksal, E. Monitoring subsidence effects in the urban area of Zonguldak Hardcoal Basin of Turkey by InSAR-GIS integration. Nat. Hazards Earth Syst. Sci. 2010, 10, 1807–1814. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Křístková, V.; Fuka, M.; Kubečka, K.; Bouchal, T. An indicative method for determination of the most hazardous changes in slopes of the subsidence basins in underground coal mining area in Ostrava (Czech Republic). Environ. Monit. Assess. 2013, 185, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Unlu, T.; Akcin, H.; Yilmaz, O. An integrated approach for the prediction of subsidence for coal mining basins. Eng. Geol. 2013, 166, 186–203. [Google Scholar] [CrossRef]
- Jung, Y.B.; Song, W.K.; Cheon, D.A.; Lee, D.K.; Park, J.Y. Simple method for the identification of subsidence susceptibility above underground coal mines in Korea. Eng. Geol. 2014, 178, 121–131. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Li, H.Z.; Zhang, H.J.; Zhang, Y.W.; Zhang, X.W. Improving reliability of prediction results of mine surface subsidence of Northern Pei County for reusing land resources. Appl. Sci. 2020, 10, 8385. [Google Scholar] [CrossRef]
- Dang, V.K.; Nguyen, T.D.; Dao, N.H.; Duong, T.L.; Dinh, X.V.; Weber, C. Land subsidence induced by underground coal mining at Quang Ninh, Vietnam: Persistent scatterer interferometric synthetic aperture radar observation using Sentinel-1 data. Int. J. Remote Sens. 2021, 42, 3563–3582. [Google Scholar] [CrossRef]
- Cabala, J.M.; Cmiel, S.R.; Idziak, A.F. Environmental impact of mining activity in the Upper Silesian Coal Basin (Poland). Geol. Belg. 2004, 7, 225–229. [Google Scholar]
- Rahmonov, O.; Cabała, J.; Krzysztofik, R. Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant. Biology 2021, 10, 1242. [Google Scholar] [CrossRef]
- Dulias, R. The Impact of Mining on the Landscape, A Study of the Upper Silesian Coal Basin in Poland; Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Czaja, S. Changes in Water Relations Under the Conditions of Strong Anthropopression (a Case Study of Katowice Conurbation); University of Silesia: Katowice, Poland, 1999; 189p. [Google Scholar]
- Jankowski, A.T. Anthropogenic Changes in Water Conditions in Industrialized and Urbanized Areas (Based on the Example of the Rybnik Coal District); University of Silesia: Katowice, Poland, 1986; 277p. [Google Scholar]
- Konstantynowicz, E. Geology of Mineral Deposits; University of Silesia: Katowice, Poland, 1994; 496p. [Google Scholar]
- Szpetkowski, S. Characteristics of the impact of mining operations on the rock mass and the ground surface. In Surface Protection Against Mining Damage; Śląsk Publishing Hause: Katowice, Poland, 1980; pp. 39–77. [Google Scholar]
- Singh, K.B.; Dhar, B.B. Sinkhole subsidence due to mining. Geotech. Geol. Eng. 1997, 15, 327–341. [Google Scholar] [CrossRef]
- Sahu, P.; Lokhande, R.D. An Investigation of Sinkhole Subsidence and its Preventive Measures in Underground Coal Mining. Procedia Earth Planet. Sci. 2015, 11, 63–75. [Google Scholar] [CrossRef]
- De Bruyn, I.A.; Bell, F.G. The occurrence of sinkholes and subsidence depressions in the far west Rand and Gauteng Province, South Africa, and their engineering implications. Environ. Eng. Geosci. 2001, 7, 281–295. [Google Scholar] [CrossRef]
- Harnischmacher, S. Quantification of mining subsidence in the Ruhr District (Germany). Géomorphologie Relief Process. Environ. 2010, 16, 261–274. [Google Scholar] [CrossRef]
- Darmody, R.G.; Bauer, R.; Barkley, D.; Clarke, S.; Hamilton, D. Agricultural impacts of longwall mine subsidence: The experience in Illinois, USA and Queensland, Australia. Int. J. Coal Sci. Technol. 2014, 1, 207–212. [Google Scholar] [CrossRef]
- Peng, J.B.; Sun, X.H.; Wang, W.; Sun, G.C. Characteristics of land subsidence, earth fissures and related disaster chain effects with respect to urban hazards in Xi’an, China. Environ. Earth Sci. 2016, 75, 1190. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, X.; Dong, X.; Wei, X.; Jiang, C.; Tang, Q. Using δ34S–SO4 and δ18O–SO4 to trace the sources of sulfate in different types of surface water from the Linhuan coal-mining subsidence area of Huaibei, China. Ecotoxicol. Environ. Saf. 2019, 181, 231–240. [Google Scholar] [CrossRef]
- Cui, R.; Hu, Z.; Wang, P.; Han, J.; Zhang, X.; Jiang, X.; Cao, Y. Crop Classification and Growth Monitoring in Coal Mining Subsidence Water Areas Based on Sentinel Satellite. Remote Sens. 2023, 15, 5095. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processin, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring—Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Herndon, K.; Muench, R.; Cherrington, E.; Griffin, R. An Assessment of Surface Water Detection Methods for Water Resource Management in the Nigerien Sahel. Sensors 2020, 20, 431. [Google Scholar] [CrossRef]
- Emami, H.; Zarei, A. Modelling lake water’s surface changes using environmental and remote sensing data: A case study of lake Urmia. Remote Sens. Appl. Soc. Environ. 2021, 23, 100594. [Google Scholar] [CrossRef]
- Morgan, J.L.; Gergel, S.E.; Coops, N.C. Aerial Photography: A Rapidly Evolving Tool for Ecological Management. BioScience 2010, 60, 47–59. [Google Scholar] [CrossRef]
- Bakrač, S.; Marković, V.; Drobnjak, S.; Đorđević, D.; Stamenković, N. Using historical aerial photography for monitoring of environment changes: A case study of Bovan Lake, Eastern Serbia. J. Environ. Eng. Landsc. Manag. 2021, 29, 305–317. [Google Scholar] [CrossRef]
- Wantuch-Matla, D.; Dorocki, S.; Kroczak, R. Spatial, Functional, and Landscape Changes in a Medium-Sized Post-Industrial City Based on Aerial Photo Analysis: The Case of Gorlice (Poland). Sustainability 2023, 15, 11821. [Google Scholar] [CrossRef]
- Pi, X.; Luo, Q.; Feng, L.; Xu, Y.; Tang, J.; Liang, X.; Ma, E.; Cheng, R.; Fensholt, R.; Brandt, M.; et al. Mapping global lake dynamics reveals the emerging roles of small lakes. Nat. Commun. 2022, 13, 5777. [Google Scholar] [CrossRef]
- Cho, M.S.; Park, J. Spatiotemporal lake area changes influenced by climate change over 40 years in the Korean Peninsula. Sci. Rep. 2024, 14, 1144. [Google Scholar] [CrossRef]
- Valta-Hulkkonen, K.; Kanninen, A.; Ilvonen, R.; Leka, J. Assessment of aerial photography as a method for monitoring aquaticvegetation in lakes of varying trophic status. Boreal Environ. Res. 2005, 10, 57–66. [Google Scholar]
- Kaczmarek, H. Using of the aerial photogrammetry and terrain measuring in monitoring shore zone of Jeziorsko Reservoir—Warta river, Central Poland). Landf. Anal. 2010, 13, 19–26. [Google Scholar]
- Necsoiu, M.; Dinwiddie, C.L.; Walter, G.R.; Larsen, A.; Stothoff, S.A. Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska. Environ. Res. Lett. 2013, 8, 025007. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, G.; Zheng, S.; Sun, C.; Kong, X.; Liu, Z. Land Cover Change Detection in Urban Lake Areas Using Multi-Temporary Very High Spatial Resolution Aerial Images. Water 2018, 10, 1. [Google Scholar] [CrossRef]
- Mozafari, M.; Hosseini, Z.; Fijani, E.; Eskandari, R.; Siahpoush, S.; Ghader, F. Effects of climate change and human activity on lakedrying in Bakhtegan Basin, southwest Iran. Sustain. Water Resour. Manag. 2022, 8, 109. [Google Scholar] [CrossRef]
- Wilk, Z.; Adamczyk, A.F.; Nałęcki, T. The Impact of Mining Activities on the Aquatic Environment in Poland; Central Program of Basic Research. 04.10. Protection and Shaping of the Natural Environment; SGGW-AR Publishing House: Warsaw, Poland, 1990; 220p. [Google Scholar]
- Geological Institute. Geological Map of Upper Silesian Coal Mining, 1:50000; Geological Institute: Warsaw, Poland, 1954. [Google Scholar]
- Białecka, B.; Biały, W. Post-Mining Areas—Opportunities Threats. Case Study; PA NOVA SA.: Gliwice, Poland, 2014. [Google Scholar]
- Cabała, J.; Żaba, J. Geological structure of the urban area, characteristics of hard coal deposits and the state of their development within the city limits. In Monograph: Sosnowiec—The Image of the City and its History; Museum in Sosnowiec: Sosnowiec, Poland, 2016; pp. 48–66. [Google Scholar]
- Dulias, R. Physical Geography of the Silesian Upland; University of Silesia: Katowice, Poland, 2018; 214p. [Google Scholar]
- Wypych, A.; Kowanetz, L. Field evaporation and evapotranspiration. In Hydrology of Poland, 1st ed.; Jokiel, P., Marszelewski, W., Pociask-Karteczka, J., Eds.; PWN: Warszawa, Poland, 2017; pp. 44–49. [Google Scholar]
- Rösler, A. Comparasion of evaporation conditions from a sunken and floating pans on Lake Sława. Limnol. Rev. 2002, 2, 333–341. [Google Scholar]
- Choiński, A. Physical Limnology of Poland; Adam Mickiewicz University: Poznań, Poland, 2007; 547p. [Google Scholar]
- Rzetala, M.; Jagus, A. New lake district in Europe: Origin and hydrochemical characteristics. Water Environ. J. 2011, 26, 108–117. [Google Scholar] [CrossRef]
- Machowski, R.; Rzetala, M.A.; Rzetala, M. Water bodies in subsidence basins as new sedimentary basins and local erosion bases—Selected examples from the Silesian Upland. In Proceedings of the 19th International Multidisciplinary Scientific GeoConference SGEM 2019, Sofia, Bulgaria, 30 June–6 July 2019; Volume 19, pp. 625–632. [Google Scholar] [CrossRef]
- Jankowski, A.T.; Rzetala, M. Status of limnological research in the Upper Silesian Region. In Lakes and Artificial Water Reservoirs—Functioning, Revitalization and Protection; Jankowski, A.T., Rzetala, M., Eds.; University of Silesia—Faculty of Earth Sciences, Polish Limnological Society; Polish Geographical Society: Sosnowiec, Poland, 2004; pp. 101–115. [Google Scholar]
- Gutry-Korycka, M.; Werner-Więckowska, H. (Eds.) Guide to Hydrographic Field Studies; PWN: Warszawa, Poland, 1989; 275p. [Google Scholar]
- Lange, W. (Ed.) Methods of Physiolimnological Research; Gdańsk University Press: Gdańsk, Poland, 1993; 175p. [Google Scholar]
- Bajkiewicz-Grabowska, E.; Magnuszewski, A.; Mikulski, Z. Hydrometry. PWN: Warszawa, Poland, 1993; 313p. [Google Scholar]
- Runge, J. Research Methods in Socio-Economic Geography—Elements of Methodology, Selected Research Tools; University of Silesia: Katowice, Poland, 2007; 700p. [Google Scholar]
- Dwucet, K.; Wach, J. Calculation of land surface changes caused by deep mining exploitation on the example of Katowice voivodeship. In A guide to Exercises in Environmental Protection; University of Economics: Katowice, Poland, 1994; pp. 95–97. [Google Scholar]
- Jankowski, A.T. Anthropogenic water reservoirs in Bytom area in the period 1811–1989. Shap. Geogr. Environ. Nat. Prot. Ind. Urban. Areas 1991, 3, 21–30. [Google Scholar]
- Czaja, S. Changes in Spatial Development and Surface Hydrographic Network in the Area of the City of Sosnowiec in the Years 1783–1985. In Sosnowiec Yearbook; City Hall: Sosnowiec, Poland, 1994; pp. 84–88. [Google Scholar]
- Czaja, S. Changes in land use and surface hydrographic network in the area of the city of Katowice in the years 1801–1985. Geogr. Stud. Diss. 1995, 19, 7–23. [Google Scholar]
- Czaja, S. Anthropogene Umweltveränderungen im oberschlesischen Industriegebiet (GOP). Untersuchungen am Beispiel der Stadt Swietochlowice. Geowissenschaften 1997, 15, 396–401. [Google Scholar]
- Czaja, S.; Rzetała, M. Changes in land use and surface hydrographic network in the area of the city of Chorzów from the end of the 18th century to the present day. In Chorzów Notebooks; Museum in Chorzów: Chorzów, Poland, 1998; Volume 3, pp. 22–36. [Google Scholar]
- Wita, P.; Szafraniec, J.E.; Absalon, D.; Woznica, A. Lake bottom relief reconstruction and water volume estimation based on the subsidence rate of the post-mining area (Bytom, Southern Poland). Sci. Rep. 2024, 14, 5230. [Google Scholar] [CrossRef]
- He, T.; Xiao, W.; Zhao, Y.-L.; Deng, X.; Hu, Z. Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sens. Environ. 2020, 242, 111742. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, L.; Li, X.; Qu, X.; Yin, J.; Zhao, X.; Liu, Y. The oasis regional small and medium lake water transparency monitoring research and impact factor analysis based on field data combined with high resolution GF-1 satellite data. J. Freshw. Ecol. 2021, 36, 77–96. [Google Scholar] [CrossRef]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Dyba, K.; Ermida, S.; Ptak, M.; Piekarczyk, J.; Sojka, M. Evaluation of Methods for Estimating Lake Surface Water Temperature Using Landsat 8. Remote Sens. 2022, 14, 3839. [Google Scholar] [CrossRef]
- Bresciani, M.; Stroppiana, D.; Odermatt, D.; Morabito, G.; Giardino, C. Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes. Sci. Total Environ. 2011, 409, 3083–3091. [Google Scholar] [CrossRef] [PubMed]
- Damtew, Y.T.; Verbeiren, B.; Awoke, A.; Triest, L. Satellite Imageries and Field Data of Macrophytes Reveal a Regime Shift of a Tropical Lake (Lake Ziway, Ethiopia). Water 2021, 13, 396. [Google Scholar] [CrossRef]
- Geoportal Województwa Śląskiego—Regionalna Infrastruktura Informacji Przestrzennej—ORSIP 2.0 (Geoportal of the Silesian Province—Regional Spatial Information Infrastructure—ORSIP 2.0). Available online: https://geoportal.orsip.pl (accessed on 31 May 2024).
- Hackeloeer, A.; Klasing, K.; Krisp, J.M.; Meng, L. Georeferencing: A review of methods and applications. Ann. GIS 2014, 20, 61–69. [Google Scholar] [CrossRef]
- The Wojewódzki Ośrodek Dokumentacji Geodezyjnej i Kartograficznej (Provincial Surveying and Cartographic Documentation Centre) in Katowice. Available online: https://www.wodgik.katowice.pl (accessed on 31 May 2024).
- Lange, O.; Banasiński, A. Teory of Statistics; PWE: Warszawa, Poland, 1968; 318p. [Google Scholar]
- Runge, J. Selected Issues of Spatial Analysis in Geographical Research; University of Silesia: Katowice, Poland, 1992; 140p. [Google Scholar]
- Solarski, M.; Pradela, A. The course of ice phenomena in the water reservoir in the subsidence basin in the winter season 2008/2009. Shap. Geogr. Environ. Nat. Prot. Ind. Urban. Areas 2010, 42, 70–79. [Google Scholar]
- Guzy, A.; Witkowski, W.T. Land Subsidence Estimation for Aquifer Drainage Induced by Underground Mining. Energies 2021, 14, 4658. [Google Scholar] [CrossRef]
- Harnischmacher, S.; Zepp, H. Mining and its impact on the earth surface in the Ruhr District (Germany). Z. Geomorphol. 2014, 58, 3–22. [Google Scholar] [CrossRef]
- Marschalko, M.; Yilmaz, I.; Lamich, D.; Drusa, M.; Kubečková, D.; Peňaz, T.; Burkotová, T.; Slivka, V.; Bednárik, M.; Krčmář, D.; et al. Unique documentation, analysis of origin and development of an undrained depression in a subsidence basin caused by underground coal mining (Kozinec, Czech Republic). Environ. Earth Sci. 2014, 72, 11–20. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Su, L.; Chen, X.; Liu, C.; Sun, A. A boundary model of terrain reconstruction in a coal-mining subsidence waterlogged area. Environ. Earth Sci. 2021, 80, 187. [Google Scholar] [CrossRef]
- Johnson, K.S. Subsidence hazards due to evaporite dissolution in the United States. Environ. Geol. 2005, 48, 395–409. [Google Scholar] [CrossRef]
- Vishwakarma, A.K.; Behera, T.; Rai, R.; Sonkar, A.K.; Singh, A.P.; Shrivastva, B.K. Impact assessment of coal mining induced subsidence on native soil of South Eastern Coal Fields: India. Geomech. Geophys. Geo-Energ. Geo-Resour. 2020, 6, 31. [Google Scholar] [CrossRef]
- Rzetala, M.A. The role of vegetation in filling-up of artificial lakes with deposits (case of water bodies in southern Poland). In Proceedings of the 15th International Multidiscyplinary Scientific Geoconferences SGEM 2015, Albena, Bulgaria, 18–24 June 2015; Volume 1, pp. 485–492. [Google Scholar] [CrossRef]
Year | Area | Shoreline Length | Length | Width | Elongation Ratio RE | |||
---|---|---|---|---|---|---|---|---|
Mean Value | Maximum | |||||||
[ha] | RA [%] | [m] | RSL [%] | [m] | [m] | [m] | ||
The Brandka water body in Bytom | ||||||||
1996 | 9.22 | 54.4 | 2290.0 | 74.9 | 872.0 | 106.0 | 187.0 | 8.23 |
2003 | 22.36 | 131.9 | 3234.0 | 105.7 | 981.0 | 228.0 | 506.0 | 4.30 |
2009 | 21.84 | 128.8 | 4216.0 | 137.8 | 982.0 | 222.0 | 552.0 | 4.42 |
2013 | 17.64 | 104.1 | 2992.0 | 97.8 | 946.0 | 186.0 | 431.0 | 5.09 |
2015 | 17.13 | 101.1 | 2830.0 | 92.5 | 947.0 | 181.0 | 425.0 | 5.23 |
2018 | 17.58 | 103.7 | 3042.0 | 99.4 | 962.0 | 183.0 | 411.0 | 5.26 |
2019 | 17.26 | 101.8 | 3192.0 | 104.3 | 949.0 | 182.0 | 422.0 | 5.21 |
2021 | 17.32 | 102.2 | 3193.0 | 104.4 | 954.0 | 182.0 | 427.0 | 5.24 |
2022 | 17.27 | 101.9 | 3250.0 | 106.2 | 960.0 | 180.0 | 414.0 | 5.33 |
2023 | 16.95 | 100.0 | 3059.0 | 100.0 | 943.0 | 180.0 | 397.0 | 5.24 |
The water body in the Szotkówka River valley in Połomia | ||||||||
1996 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2003 | 5.65 | 33.3 | 1624.0 | 129.8 | 587.0 | 96.0 | 155.0 | 6.09 |
2009 | 19.35 | 114.0 | 2108.0 | 146.3 | 703.0 | 275.0 | 378.0 | 2.56 |
2013 | 14.96 | 88.1 | 2376.0 | 138.1 | 581.0 | 257.0 | 367.0 | 2.26 |
2015 | 14.05 | 82.7 | 2243.0 | 132.8 | 582.0 | 241.0 | 370.0 | 2.41 |
2018 | 15.92 | 93.8 | 2156.0 | 142.1 | 634.0 | 251.0 | 377.0 | 2.53 |
2019 | 15.56 | 91.6 | 2308.0 | 144.5 | 632.0 | 246.0 | 378.0 | 2.57 |
2021 | 15.57 | 91.7 | 2347.0 | 149.0 | 647.0 | 240.0 | 374.0 | 2.70 |
2022 | 15.70 | 92.5 | 2419.0 | 147.8 | 651.0 | 241.0 | 371.0 | 2.70 |
2023 | 16.98 | 100.0 | 2401.0 | 100.0 | 680.0 | 250.0 | 379.0 | 2.72 |
The Bory water body in Sosnowiec | ||||||||
1996 | 0.00 1 | 0.00 | 0.0 1 | 0.00 | 0.0 2 | 0.0 2 | 0.0 2 | 0.00 2 |
2003 | 4.57 1 | 31.5 | 1543.0 1 | 41.1 | 224.0 2 | 103.0 2 | 140.0 2 | 2.17 2 |
2009 | 11.11 1 | 76.6 | 2431.0 1 | 64.8 | 229.0 2 | 78.0 2 | 108.0 2 | 2.94 2 |
2013 | 17.15 1 | 118.3 | 4063.0 1 | 108.3 | 241.0 2 | 89.0 2 | 133.0 2 | 2.71 2 |
2015 | 16.68 1 | 115.0 | 4223.0 1 | 112.6 | 289.0 2 | 89.0 2 | 134.0 2 | 3.25 2 |
2018 | 15.63 1 | 107.8 | 3836.0 1 | 102.3 | 271.0 2 | 85.0 2 | 131.0 2 | 3.19 2 |
2019 | 15.25 1 | 105.2 | 3937.0 1 | 105.0 | 271.0 2 | 84.0 2 | 128.0 2 | 3.23 2 |
2021 | 15.10 1 | 104.1 | 3870.0 1 | 103.2 | 270.0 2 | 84.0 2 | 129.0 2 | 3.21 2 |
2022 | 14.94 1 | 103.0 | 3983.0 1 | 106.2 | 272.0 2 | 82.0 2 | 130.0 2 | 3.32 2 |
2023 | 14.50 1 | 100.0 | 3751.0 1 | 100.0 | 275.0 2 | 79.0 2 | 127.0 2 | 3.48 2 |
Parameter | Area | Shoreline Length | Length | Width | Elongation Ratio RE | |
---|---|---|---|---|---|---|
Mean Value | Maximum | |||||
[ha] | [m] | [m] | [m] | [m] | ||
The Brandka water body in Bytom | ||||||
Minimum | 9.22 | 2290.0 | 872.0 | 106.0 | 187.0 | 4.30 |
1st quartile | 17.16 | 3004.5 | 946.3 | 180.3 | 411.8 | 5.12 |
Median | 17.30 | 3125.5 | 951.5 | 182.0 | 423.5 | 5.24 |
3rd quartile | 17.63 | 3223.8 | 961.5 | 185.3 | 430.0 | 5.26 |
Maximum | 22.36 | 4216.0 | 982.0 | 228.0 | 552.0 | 8.23. |
Arithmetic mean | 17.46 | 3129.8 | 949.6 | 183.0 | 417.2 | 5.36 |
Standard deviation | 3.52 | 476.1 | 30.6 | 32.5 | 94.2 | 1.07 |
Slope (linear regression) | 0.0911 | 12.8785 | 1.4027 | 0.8884 | 3.3204 | −0.0544 |
R2 (linear regression) | 0.0526 | 0.0575 | 0.1655 | 0.0587 | 0.0976 | 0.2014 |
The water body in the Szotkówka River valley in Połomia | ||||||
Minimum | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1st quartile | 14.28 | 2120.0 | 583.3 | 240.3 | 367.8 | 2.44 |
Median | 15.57 | 2275.5 | 633.0 | 243.5 | 372.5 | 2.57 |
3rd quartile | 15.87 | 2368.8 | 650.0 | 250.8 | 377.8 | 2.70 |
Maximum | 19.35 | 2419.0 | 703.0 | 275.0 | 379.0 | 6.09 |
Arithmetic mean | 13.37 | 1998.2 | 569.7 | 209.7 | 314.9 | 2.65 |
Standard deviation | 5.89 | 740.1 | 204.3 | 88.8 | 130.4 | 1.46 |
Slope (linear regression) | 0.5410 | 72.1675 | 17.1901 | 8.2822 | 12.8984 | 0.0155 |
R2 (linear regression) | 0.6638 | 0.7469 | 0.5560 | 0.6836 | 0.7684 | 0.0089 |
The Bory water body in Sosnowiec | ||||||
Minimum | 0.00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.00 |
1st quartile | 11.96 | 2761.0 | 232.0 | 79.8 | 127.3 | 2.77 |
Median | 15.02 | 3853.0 | 270.5 | 84.0 | 129.5 | 3.20 |
3rd quartile | 15.54 | 3971.5 | 271.8 | 88.0 | 132.5 | 3.25 |
Maximum | 17.15 | 4223.0 | 289.0 | 103.0 | 140.0 | 3.48 |
Arithmetic mean | 12.49 | 3163.7 | 234.2 | 77.3 | 116.0 | 2.75 |
Standard deviation | 5.72 | 1401.1 | 85.1 | 28.1 | 41.6 | 1.04 |
Slope (linear regression) | 0.5668 | 144.2038 | 7.9972 | 1.7956 | 3.2353 | 0.1047 |
R2 (linear regression) | 0.7719 | 0.8320 | 0.6943 | 0.3217 | 0.4754 | 0.7998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzetala, M.A.; Machowski, R.; Solarski, M.; Rzetala, M. Dynamics of Changes in the Surface Area of Water Bodies in Subsidence Basins in Mining Areas. Water 2024, 16, 3280. https://doi.org/10.3390/w16223280
Rzetala MA, Machowski R, Solarski M, Rzetala M. Dynamics of Changes in the Surface Area of Water Bodies in Subsidence Basins in Mining Areas. Water. 2024; 16(22):3280. https://doi.org/10.3390/w16223280
Chicago/Turabian StyleRzetala, Martyna A., Robert Machowski, Maksymilian Solarski, and Mariusz Rzetala. 2024. "Dynamics of Changes in the Surface Area of Water Bodies in Subsidence Basins in Mining Areas" Water 16, no. 22: 3280. https://doi.org/10.3390/w16223280
APA StyleRzetala, M. A., Machowski, R., Solarski, M., & Rzetala, M. (2024). Dynamics of Changes in the Surface Area of Water Bodies in Subsidence Basins in Mining Areas. Water, 16(22), 3280. https://doi.org/10.3390/w16223280