A Comprehensive Study of the Degradation of Veterinary Antibiotics by Non-Thermal Plasma: Computational, Experimental, and Biotoxicity Assessments
Abstract
:1. Introduction
2. Computational and Experimental Details
2.1. Computational Modeling Details
2.2. Experimental Details
2.2.1. Plasma Irradiation Experiments
2.2.2. Analytical Methods
2.2.3. Data Analysis
2.2.4. Biotoxicity Assay Details
3. Results and Discussion
3.1. Computational Modeling
3.2. Experimental Results
3.2.1. Plasma Irradiation Assays
3.2.2. Biotoxicity Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madhav, S.; Ahamad, A.; Singh, A.K.; Kushawaha, J.; Chauhan, J.S.; Sharma, S.; Singh, P. Water Pollutants: Sources and Impact on the Environment and Human Health. In Sensors in Water Pollutants Monitoring: Role of Material; Pooja, D., Kumar, P., Singh, P., Patil, S., Eds.; Springer: Singapore, 2020; pp. 43–62. [Google Scholar]
- Arora, N.K.; Mishra, I. United Nations Sustainable Development Goals 2030 and environmental sustainability: Race against time. Environ. Sustain. 2019, 2, 339–342. [Google Scholar] [CrossRef]
- de Ilurdoz, M.S.; Sadhwani, J.J.; Reboso, J.V. Antibiotic removal processes from water & wastewater for the protection of the aquatic environment—A review. J. Water Process Eng. 2022, 45, 102474. [Google Scholar]
- Berkner, S.; Konradi, S.; Schonfeld, J. Antibiotic resistance and the environment--there and back again: Science & Society series on Science and Drugs. EMBO Rep. 2014, 15, 740–744. [Google Scholar] [PubMed]
- Greenwood, D. Chapter 21—Lincosamides. In Antibiotic and Chemotherapy, 9th ed.; Finch, R.G., Greenwood, D., Norrby, S.R., Whitley, R.J., Eds.; W.B. Saunders: London, UK, 2010; pp. 272–275. [Google Scholar]
- Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Cannon, A.; Edwards, S.; Jacobs, M.; Moir, J.W.; Roy, M.A.; Tickner, J.A. An actionable definition and criteria for “sustainable chemistry” based on literature review and a global multisectoral stakeholder working group. RSC Sustain. 2023, 1, 2092–2106. [Google Scholar] [CrossRef]
- Magureanu, M.; Piroi, D.; Mandache, N.B.; David, V.; Medvedovici, A.; Bradu, C.; Parvulescu, V.I. Degradation of antibiotics in water by non-thermal plasma treatment. Water Res. 2011, 45, 3407–3416. [Google Scholar] [CrossRef]
- Pandis, P.K.; Kalogirou, C.; Kanellou, E.; Vaitsis, C.; Savvidou, M.G.; Sourkouni, G.; Zorpas, A.A.; Argirusis, C. Key Points of Advanced Oxidation Processes (AOPs) for Wastewater, Organic Pollutants and Pharmaceutical Waste Treatment: A Mini Review. ChemEngineering 2022, 6, 8. [Google Scholar] [CrossRef]
- Chen, J. Advanced Oxidation Technologies: Photocatalytic Treatment of Wastewater; Wageningen University and Research: Wageningen, The Netherlands, 1997. [Google Scholar]
- Ameta, R.; Chohadia, A.K.; Jain, A.; Punjabi, P.B. Chapter 3—Fenton and Photo-Fenton Processes. In Advanced Oxidation Processes for Waste Water Treatment; Ameta, S.C., Ameta, R., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 49–87. [Google Scholar]
- Yang, C.; Zhong, H.; Deng, J.; Li, M.; Tang, C.; Hu, X.; Zhu, M. Z-scheme γ-Fe2O3/g-C3N4 in Photo-Fenton reaction for oxytetracycline degradation: Mechanism study and DFT calculation. Sep. Purif. Technol. 2025, 354, 129185. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Ajiboye, T.; Onwudiwe, D.C. Mineralization of Antibiotics in Wastewater Via Photocatalysis. Water Air Soil Pollut. 2021, 232, 219. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, J.; Xiao, S.; Zhang, Y.; Zhou, X. Revisiting the Mineralization of Organic Contaminants in Advanced Oxidation Processes. ACS ES&T Water 2023, 3, 3449–3451. [Google Scholar]
- Chen, Z.; An, F.; Zhang, Y.; Liang, Z.; Liu, W.; Xing, M. Single-atom Mo–Co catalyst with low biotoxicity for sustainable degradation of high-ionization-potential organic pollutants. Proc. Natl. Acad. Sci. USA 2023, 120, e2305933120. [Google Scholar] [CrossRef] [PubMed]
- Cvetnić, M.; Novak Stankov, M.; Kovačić, M.; Ukić, Š.; Bolanča, T.; Kušić, H.; Rasulev, B.; Dionysiou, D.D.; Lončarić Božić, A. Key structural features promoting radical driven degradation of emerging contaminants in water. Environ. Int. 2019, 124, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Rayaroth, M.P.; Aravind, U.K.; Boczkaj, G.; Aravindakumar, C.T. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations. Chemosphere 2023, 345, 140203. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, T.; He, S.; Zhou, J.; Wang, T.; Zhu, L. Efficient degradation of antibiotics by non-thermal discharge plasma: Highlight the impacts of molecular structures and degradation pathways. Chem. Eng. J. 2020, 395, 125091. [Google Scholar] [CrossRef]
- Chen, Y.; Long, X.; Huang, R.; Zhang, I.Y.; Yao, G.; Lai, B.; Xiong, Z. Highly efficient electro-cocatalytic Fenton-like reactions for the degradation of recalcitrant naphthenic acids: Exploring reaction mechanisms and environmental implications. Chem. Eng. J. 2022, 450, 138331. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Guo, H.; Ye, T.; Liu, Y.; Cheng, X.; Li, W.; Yang, B.; Du, E. Crucial roles of oxygen and superoxide radical in bisulfite-activated persulfate oxidation of bisphenol AF: Mechanisms, kinetics and DFT studies. J. Hazard. Mater. 2020, 391, 122228. [Google Scholar] [CrossRef]
- Liang, J.; Zhen, P.; Gan, P.; Li, Y.; Tong, M.; Liu, W. DFT Calculation of Nonperiodic Small Molecular Systems to Predict the Reaction Mechanism of Advanced Oxidation Processes: Challenges and Perspectives. ACS EST Eng. 2024, 4, 4–18. [Google Scholar] [CrossRef]
- Meropoulis, S.; Giannoulia, S.; Skandalis, S.; Rassias, G.; Aggelopoulos, C.A. Key-study on plasma-induced degradation of cephalosporins in water: Process optimization, assessment of degradation mechanisms and residual toxicity. Sep. Purif. Technol. 2022, 298, 121639. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, R.; Wang, P.; Mai-Prochnow, A.; McConchie, R.; Li, W.; Zhou, R.; Thompson, E.W.; Ostrikov, K.; Cullen, P.J. Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: Performance, degradation pathways and toxicity evaluation. Chem. Eng. J. 2021, 421, 127730. [Google Scholar] [CrossRef]
- Wu, J.; Xiong, Q.; Liang, J.; He, Q.; Yang, D.; Deng, R.; Chen, Y. Degradation of benzotriazole by DBD plasma and peroxymonosulfate: Mechanism, degradation pathway and potential toxicity. Chem. Eng. J. 2020, 384, 123300. [Google Scholar] [CrossRef]
- Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. [Google Scholar] [CrossRef]
- Qasim, S.; Hsu, S.-Y.; Rossi, E.; Salahshoor, Z.; Lin, C.-H.; Parada, L.P.; Fidalgo, M. Detection of progesterone in aqueous samples by molecularly imprinted photonic polymers. Microchim. Acta 2022, 189, 174. [Google Scholar] [CrossRef]
- Azofra, L.M.; Alkorta, I.; Elguero, J. Theoretical study of the mutarotation of erythrose and threose: Acid catalysis. Carbohydr. Res. 2013, 372, 1–8. [Google Scholar] [CrossRef]
- Lin, H.; Wu, D.-l.; Liu, L.; Jia, D.-z. Theoretical study on molecular structures, intramolecular proton transfer reaction, and solvent effects of 1-phenyl-3-methyl-4-(6-hydro-4-amino-5-sulfo-2,3-pyrazine)-pyrazole-5-one. J. Mol. Struct. THEOCHEM 2008, 850, 32–37. [Google Scholar] [CrossRef]
- Morgante, P.; Autschbach, J. Strategies to Calculate Fukui Functions and Applications to Radicals with SOMO–HOMO Inversion. J. Chem. Theory Comput. 2023, 19, 3929–3942. [Google Scholar] [CrossRef]
- Shen, T.; Wang, X.; Xu, P.; Yang, C.; Li, J.; Wang, P.; Zhang, G. Effect of dielectric barrier discharge plasma on persulfate activation for rapid degradation of atrazine: Optimization, mechanism and energy consumption. Environ. Res. 2022, 212, 113287. [Google Scholar] [CrossRef]
- Zhan, C.-G.; Nichols, J.A.; Dixon, D.A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195. [Google Scholar] [CrossRef]
- Giuliani, L.; De Angelis, L.; Diaz Bukvic, G.; Zanini, M.; Minotti, F.; Errea, M.I.; Grondona, D. Trielectrode plasma reactor for water treatment. J. Appl. Phys. 2020, 127, 223303. [Google Scholar] [CrossRef]
- Rytwo, G.; Zelkind, A.L. Evaluation of Kinetic Pseudo-Order in the Photocatalytic Degradation of Ofloxacin. Catalysts 2022, 12, 24. [Google Scholar] [CrossRef]
- Dutka, B.J.; Kwan, K.K.; Rao, S.S.; Jurkovic, A.; McInnis, R.; Palmateer, G.A.; Hawkins, B. Use of bioassays to evaluate river water and sediment quality. Environ. Toxicol. Water Qual. 1991, 6, 309–327. [Google Scholar] [CrossRef]
- Chan-Keb, C.A.; Agraz-Hernández, C.M.; Perez-Balan, R.A.; Gómez-Solano, M.I.; Maldonado-Montiel, T.; Ake-Canche, B.; Gutiérrez-Alcántara, E.J. Acute toxicity of water and aqueous extract of soils from Champotón river in Lactuca sativa L. Toxicol. Rep. 2018, 5, 593–597. [Google Scholar] [CrossRef]
- Jarwal, N.; Thankachan, P.P. Theoretical study of the Wittig reaction of cyclic ketones with phosphorus ylide. J. Mol. Model. 2015, 21, 87. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Di Meo, S.; Venditti, P. Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxid. Med. Cell. Longev. 2020, 2020, 9829176. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Lin, C.; Liu, Z.; Zhao, Y.; Song, C.; Meng, F.; Song, B.; Zuo, G.; Qi, Q.; Wang, Y.; Yu, L.; et al. Oxygen-mediated dielectric barrier discharge plasma for enhanced degradation of chlorinated aromatic compounds. Sep. Purif. Technol. 2023, 313, 123445. [Google Scholar] [CrossRef]
- Liu, Y.; He, X.; Fu, Y.; Dionysiou, D.D. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes. Chem. Eng. J. 2016, 284, 1317–1327. [Google Scholar] [CrossRef]
- Han, C.-H.; Park, H.-D.; Kim, S.-B.; Yargeau, V.; Choi, J.-W.; Lee, S.-H.; Park, J.-A. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment. Water Res. 2020, 172, 115514. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Huang, Y.; Ma, M.; Liu, K.; Dou, X.; Wang, Z.; Qu, S.; Wang, Z. Engineering the Photocatalytic Behaviors of g/C3N4-Based Metal-Free Materials for Degradation of a Representative Antibiotic. Adv. Funct. Mater. 2020, 30, 2002353. [Google Scholar] [CrossRef]
- Jablonowski, H.; von Woedtke, T. Research on plasma medicine-relevant plasma–liquid interaction: What happened in the past five years? Clin. Plasma Med. 2015, 3, 42–52. [Google Scholar] [CrossRef]
- Magureanu, M.; Bilea, F.; Bradu, C.; Hong, D. A review on non-thermal plasma treatment of water contaminated with antibiotics. J. Hazard. Mater. 2021, 417, 125481. [Google Scholar] [CrossRef]
- Yang, X.; Rosario-Ortiz, F.L.; Lei, Y.; Pan, Y.; Lei, X.; Westerhoff, P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. Environ. Sci. Technol. 2022, 56, 11111–11131. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Sable, S.; Gamal El-Din, M. Advanced oxidation processes for the degradation of dissolved organics in produced water: A review of process performance, degradation kinetics and pathway. Chem. Eng. J. 2022, 429, 132492. [Google Scholar] [CrossRef]
- Yi, R.; Guo, H.; Wang, H.; Du, D.; Zhang, Q.; Yi, C. Multiple production of highly active particles for oxytetracycline degradation in a large volume strong ionization dielectric barrier discharge system: Performance and degradation pathways. Sep. Purif. Technol. 2021, 274, 119103. [Google Scholar] [CrossRef]
- Paola, A.D.; Addamo, M.; Augugliaro, V.; García-López, E.; Loddo, V.; Marcì, G.; Palmisano, L. Photodegradation of lincomycin in aqueous solution. Int. J. Photoenergy 2006, 2006, 047418. [Google Scholar] [CrossRef]
- Massima Mouele, E.S.; Tijani, J.O.; Badmus, K.O.; Pereao, O.; Babajide, O.; Zhang, C.; Shao, T.; Sosnin, E.; Tarasenko, V.; Fatoba, O.O.; et al. Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods—A Review. Int. J. Environ. Res. Public Health 2021, 18, 1683. [Google Scholar] [CrossRef]
- Priac, A.; Badot, P.-M.; Crini, G. Treated wastewater phytotoxicity assessment using Lactuca sativa: Focus on germination and root elongation test parameters. C. R. Biol. 2017, 340, 188–194. [Google Scholar] [CrossRef]
- Valerio, M.E.; García, J.F.; Peinado, F.M. Determination of phytotoxicity of soluble elements in soils, based on a bioassay with lettuce (Lactuca sativa L.). Sci. Total Environ. 2007, 378, 63–66. [Google Scholar] [CrossRef]
- Young, B.J.; Riera, N.I.; Beily, M.E.; Bres, P.A.; Crespo, D.C.; Ronco, A.E. Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicol. Environ. Saf. 2012, 76, 182–186. [Google Scholar] [CrossRef]
- Arkhipchuk, V.V.; Malinovskaya, M.V.; Garanko, N.N. Cytogenetic study of organic and inorganic toxic substances on Allium cepa, Lactuca sativa, and Hydra attenuata cells. Environ. Toxicol. 2000, 15, 338–344. [Google Scholar] [CrossRef]
- Arias-Barreiro, C.R.; Nishizaki, H.; Okubo, K.; Aoyama, I.; Mori, I.C. Ecotoxicological characterization of tannery wastewater in Dhaka, Bangladesh. J. Environ. Biol. 2010, 31, 471–475. [Google Scholar] [PubMed]
- Rukin, P.S.; Freidzon, A.Y.; Scherbinin, A.V.; Sazhnikov, V.A.; Bagaturyants, A.A.; Alfimov, M.V. Vibronic bandshape of the absorption spectra of dibenzoylmethanatoboron difluoride derivatives: Analysis based on ab initio calculations. Phys. Chem. Chem. Phys. 2015, 17, 16997–17006. [Google Scholar] [CrossRef] [PubMed]
- DeMatteo, M.P.; Mei, S.; Fenton, R.; Morton, M.; Baldisseri, D.M.; Hadad, C.M.; Peczuh, M.W. Conformational analysis of methyl 5-O-methyl septanosides: Effect of glycosylation on conformer populations. Carbohydr. Res. 2006, 341, 2927–2945. [Google Scholar] [CrossRef] [PubMed]
- Hollas, D.; Curchod, B.F.E. AtmoSpec–A Tool to Calculate Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds. J. Phys. Chem. A 2024, 128, 8580–8590. [Google Scholar] [CrossRef]
- Kolar, P.; Classen, J.; Hall, S.G. Physicochemical data of p-cresol, butyric acid, and ammonia. Data Brief 2019, 26, 104356. [Google Scholar] [CrossRef]
Antibiotic | Atom | ||||
---|---|---|---|---|---|
OTC | 12a | C | 0.023 | 0.010 | 0.016 |
6 | C | 0.005 | 0.017 | 0.011 | |
4a | C | 0.008 | 0.008 | 0.008 | |
16 | N | 0.010 | 0.001 | 0.005 | |
11a | C | −0.004 | 0.007 | 0.002 | |
29 | C | 0.003 | 0.000 | 0.001 | |
LNC | 20 | N | 0.138 | 0.039 | 0.089 |
29 | C | 0.097 | 0.003 | 0.050 | |
26 | N | 0.117 | −0.049 | 0.034 | |
16 | O | 0.007 | 0.026 | 0.017 | |
3 | O | 0.008 | 0.019 | 0.014 | |
24 | C | 0.061 | −0.034 | 0.013 |
Antibiotic | |||
---|---|---|---|
[kcal/mol] | [eV] | [eV] | |
OTC | −149.2 | −6.5 | 9.0 |
LNC | −145.6 | −6.3 | 8.8 |
Sample | Number of Non-Germinated Seed | Average Radicle Length [cm] |
---|---|---|
H2O | 1 ± 1 | 3.1 ± 0.5 |
OTC 10 mg L−1 non-irradiated | 4 ± 1 | 1.9 ± 0.3 *** |
OTC 10 mg L−1 irradiated 90 min. | 2 ± 1 | 2.7 ± 0.3 |
OTC 1 mg L−1 non-irradiated | 3 ± 1 | 3.0 ± 0.4 |
OTC 1 mg L−1 irradiated 90 min. | 2 ± 1 | 3.5 ± 0.4 |
LNC 10 mg L−1 non-irradiated | 2 ± 1 | 3.1 ± 0.5 |
LNC 10 mg L−1 irradiated 90 min. | 2 ± 1 | 3.6 ± 0.5 |
LNC 1 mg L−1 non-irradiated | 1 ± 1 | 3.3 ± 0.5 |
LNC 1 mg L-1 irradiated 90 min. | 1 ± 1 | 4.0 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz Bukvic, G.; Zanini, M.; Qasim, S.; Lin, C.-H.; Fidalgo, M.M.; Rossi, E.; Grondona, D.; Errea, M.I. A Comprehensive Study of the Degradation of Veterinary Antibiotics by Non-Thermal Plasma: Computational, Experimental, and Biotoxicity Assessments. Water 2024, 16, 3281. https://doi.org/10.3390/w16223281
Díaz Bukvic G, Zanini M, Qasim S, Lin C-H, Fidalgo MM, Rossi E, Grondona D, Errea MI. A Comprehensive Study of the Degradation of Veterinary Antibiotics by Non-Thermal Plasma: Computational, Experimental, and Biotoxicity Assessments. Water. 2024; 16(22):3281. https://doi.org/10.3390/w16223281
Chicago/Turabian StyleDíaz Bukvic, Gema, Matias Zanini, Sally Qasim, Chung-Ho Lin, María Marta Fidalgo, Ezequiel Rossi, Diana Grondona, and María Inés Errea. 2024. "A Comprehensive Study of the Degradation of Veterinary Antibiotics by Non-Thermal Plasma: Computational, Experimental, and Biotoxicity Assessments" Water 16, no. 22: 3281. https://doi.org/10.3390/w16223281
APA StyleDíaz Bukvic, G., Zanini, M., Qasim, S., Lin, C. -H., Fidalgo, M. M., Rossi, E., Grondona, D., & Errea, M. I. (2024). A Comprehensive Study of the Degradation of Veterinary Antibiotics by Non-Thermal Plasma: Computational, Experimental, and Biotoxicity Assessments. Water, 16(22), 3281. https://doi.org/10.3390/w16223281