The Influence of Waters of Lake Baikal on the Spatiotemporal Dynamics of Phytoplankton in the Irkutsk Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Microscopy
2.2. Statistical Analysis
3. Results and Discussion
3.1. Temporal Monthly Changes in the Phytoplankton Community at the SB Station near the Source of the Angara River During the Open Water Period in 2023
3.2. Seasonal Dynamics of Quantitative Characteristics and Species Structure of Phytoplankton in Southern Baikal and the Irkutsk Reservoir in 2023
3.3. Correlation of Parameters of the Aquatic Environment with Quantitative Indicators of Phytoplankton and Its Structure
3.4. Changes in the Concentration of Nutrients and the Growth of Different Groups of Microalgae
3.5. Comparison of the Obtained Data with Previous Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hällfors, H.; Uusitalo, L. Early Warning Indicators: Phytoplankton. Indicators of the Good Environmental Status of Food Webs in the Baltic Sea. Status of Food Webs in the Baltic Sea GES-REG Project Final Report on Food Web Indicators, September 2013. 2013, pp. 52–64. Available online: http://gesreg.msi.ttu.ee/fi/tulokset (accessed on 24 September 2024).
- Tamelander, T.; Heiskanen, A.-S. Effects of spring bloom phytoplankton dynamics and hydrography on the composition of settling material in the coastal northern Baltic Sea. J. Mar. Syst. 2004, 52, 217–234. [Google Scholar] [CrossRef]
- Spilling, K.; Lindström, M. Phytoplankton life cycle transformations lead to species-specific effects on sediment processes in the Baltic Sea. Cont. Shelf Res. 2008, 28, 2488–2495. [Google Scholar] [CrossRef]
- Cloern, J.E.; Foster, S.Q.; Kleckner, A.E. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences 2014, 11, 2477–2501. [Google Scholar] [CrossRef]
- Hällfors, H.; Backer, H.; Leppänen, J.-M.; Hällfors, S.; Hällfors, G.; Kuosa, H. The northern Baltic Sea phytoplankton communities in 1903–1911 and 1993–2005: A comparison of historical and modern species data. Hydrobiologia 2013, 707, 109–133. [Google Scholar] [CrossRef]
- Salmaso, N.; Tolotti, M. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia 2021, 848, 251–284. [Google Scholar] [CrossRef]
- Viitasalo, M.; Bonsdorf, E. Global climate change and the Baltic Sea ecosystem: Direct and indirect effects on species, communities and ecosystem functioning. Earth Syst. Dyn. 2022, 13, 711–747. [Google Scholar] [CrossRef]
- Vidal, T.; Calado, A.J.; Moita, M.T.; Cunha, M.R. Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin) over a four-year period. PLoS ONE 2017, 12, e0177237. [Google Scholar] [CrossRef]
- Assmy, P.; Kvernvik, A.C.; Hop, H.; Hoppe, C.J.M.; Chierici, M.D.; David, T.; Duarte, P.; Fransson, A.; García, L.M.; Patuła, W.; et al. Seasonal plankton dynamics in Kongsfjorden during two years of contrasting environmental conditions. Prog. Oceanogr. 2023, 213, 102996. [Google Scholar] [CrossRef]
- Xu, S.; Xiao, Y.; Youwei, X.; Su, L.; Cai, Y.; Zhanhui, Q.; Liu, Y.; Chen, Z.; Lakshmikandan, M. Effects of seasonal variations and environmental factors on phytoplankton community structure and abundance in Beibu Gulf, China. Ocean Coast. Manag. 2024, 248, 106982. [Google Scholar] [CrossRef]
- Suikkanen, S.; Pulina, S.; Engström-Öst, J.; Lehtiniemi, M.; Lehtinen, S.; Brutemark, A. Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 2013, 8, e66475. [Google Scholar] [CrossRef]
- Jeppesen, E.; Meerhoff, M.; Davidson, T.A.; Trolle, D.; Sondergaard, M.; Lauridsen, T.L.; Beklioğlu, M.; Brucet, S.; Volta, P.; Gonzalez-Bergonzoni, I.; et al. Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Int. J. Limnol. 2014, 73, 88–111. [Google Scholar] [CrossRef]
- Henson, S.A.; Beaulieu, C.; Ilyina, T.; John, J.G.; Long, M.; Seferian, R.; Tjiputra, J.; Sarmiento, J.L. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 2017, 8, 14682. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, S.; Meier, H.E.M.; Andersson, H.; Höglund, A.; Dieterich, C.; Gröger, M.; Hordoir, R.; Eilola, K. Baltic Sea ecosystem response to various nutrient load scenarios in present and future climates. Clim. Dyn. 2018, 52, 3369–3387. [Google Scholar] [CrossRef]
- Salo, T.; Mattila, J.; Eklöf, J. Long-term warming affects ecosystem functioning through species turnover and intraspecific trait variation. Oikos 2020, 129, 283–295. [Google Scholar] [CrossRef]
- Izmest’eva, L.R.; Moore, M.V.; Hampton, S.E.; Ferwerda, C.J.; Gray, D.K.; Woo, K.H.; Pislegina, H.V.; Krashchuk, L.S.; Shimaraeva, S.V.; Silow, E.A. Lake-wide physical and biological trends associated with warming in Lake Baikal. J. Great Lakes Res. 2016, 42, 6–17. [Google Scholar] [CrossRef]
- Reavie, E.D.; Cai, M.; Twiss, M.R.; Carrick, H.J.; Davis, T.W.; Johengen, T.H.; Gossiaux, D.; Smith, D.E.; Palladino, D.; Burtner, A.; et al. Winter–spring diatom production in Lake Erie is an important driver of summer hypoxia. J. Great Lakes Res. 2016, 42, 608–618. [Google Scholar] [CrossRef]
- Uusitalo, L.; Fleming-Lehtinen, V.; Hällfors, H.; Jaanus, A.; Hällfors, S.; London, L. A novel approach for estimating phytoplankton biodiversity. ICES J. Mar. Sci. 2013, 70, 408–417. [Google Scholar] [CrossRef]
- Finni, T.; Kononen, K.; Olsonen, R.; Wallström, K. The history of cyanobacterial blooms in the Baltic Sea. Ambio 2001, 30, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, J.; Henriksen, P.; Heiskanen, A.S. Summer algal blooms in shallow estuaries: Definition, mechanisms, and link to eutrophication. Limnol. Oceanogr. 2007, 52, 370–384. [Google Scholar] [CrossRef]
- Kahru, M.; Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 2014, 11, 3619–3633. [Google Scholar] [CrossRef]
- Jurgensone, I.; Carstensen, J.; Ikauniece, A.; Kalveka, B. Long-term changes and controlling factors of phytoplankton community in the Gulf of Riga (Baltic Sea). Estuaries Coasts 2011, 34, 1205–1219. [Google Scholar] [CrossRef]
- Forsstrӧm, L.; Sorvari, S.; Korhola, A.; Rautio, M. Seasonality of phytoplankton in subarctic Lake Saanajӓrvi in NW Finnish Lapland. Polar Biol. 2005, 28, 846–861. [Google Scholar] [CrossRef]
- Olenina, I.; Wasmund, N.; Hajdu, S.; Jurgensone, I.; Gromisz, S.; Kownacka, J.; Toming, K.; Vaici, D.; Olenin, S. Assessing impacts of invasive phytoplankton: The Baltic Sea case. Mar. Pollut. Bull. 2010, 60, 1691–1700. [Google Scholar] [CrossRef]
- Datsenko, Y.S. Features and differences of abiotic components in lakes and reservoirs ecosystems (review). Geoecology Russ. J. Appl. Ecol. 2022, 1, 39–47. (In Russian) [Google Scholar] [CrossRef]
- Atazadeh, E.; Gell, P.; Mill, K.; Barton, A.; Newall, P. Community structure and ecological responses to hydrological changes in benthic algal assemblages in a regulated river: Application of algal metrics and multivariate techniques in river management. Environ. Sci. Pollut. Res. 2021, 28, 39805–39825. [Google Scholar] [CrossRef]
- Wu, Q.; Qiuhua, L.; Luo, H.; Chen, Q.; Chen, H.; Dong, Y.; Li, S. Comparison in phytoplankton diversity-productivity-community stability between river-type reservoir and lake-type reservoir. J. Oceanol. Limnol. 2022, 40, 1485–1507. [Google Scholar] [CrossRef]
- Karnaukhova, G.A. Hydrochemistry of the Angara and reservoirs of the Angara cascade. Water Resour. 2008, 35, 71–79. (In Russian) [Google Scholar] [CrossRef]
- Grachev, M.A. On the Current State of Lake Baikal Ecosystem; Sibirskoe Otdelenie Rossiyskoy Akademii Nauk: Novosibirsk, Russia, 2002; pp. 1–153. (In Russian) [Google Scholar]
- Kozhova, O.M. Fitoplankton Irkutskogo Vodokhranilishcha (Phytoplankton of the Irkutsk Reservoir); Nauka: Moscow, Russia, 1964; pp. 41–114. (In Russian) [Google Scholar]
- Vorobyova, S.S. Fitoplankton Vodoemov Angary (Phytoplankton of Water Bodies Formed on the Angara River); Nauka: Novosibirsk, Russia, 1995; pp. 1–126. (In Russian) [Google Scholar]
- Popovskaya, G.I.; Firsova, A.D.; Bessudova, A.Y.; Sakirko, M.V.; Suturin, А.N.; Likhoshway, Y.V. Phytoplankton of the Irkutsk Reservoir as an indicator of water quality. Oceanol. Hydrobiol. Stud. 2012, 2, 29–38. [Google Scholar] [CrossRef]
- Popovskaya, G.I.; Genkal, S.I.; Likhoshway, Y.V. Diatoms of the Plankton of Lake Baikal: Atlas and Key; Nauka: Novosibirsk, Russia, 2016; pp. 1–180. [Google Scholar]
- Firsova, A.; Galachyants, Y.; Bessudova, A.; Titova, L.; Sakirko, M.; Marchenkov, A.; Hilkhanova, D.; Nalimova, M.; Buzevich, V.; Mikhailov, I.; et al. Environmental factors affecting distribution and diversity of phytoplankton in the Irkutsk Reservoir ecosystem in June 2023. Diversity 2023, 15, 1070. [Google Scholar] [CrossRef]
- Bessudova, A.; Galachyants, Y.; Firsova, A.; Hilkhanova, D.; Marchenkov, A.; Nalimova, M.; Sakirko, M.; Likhoshway, Y. Seasonal dynamics of the silica-scaled chrysophytes as potential markers of climate change in natural model: Deep cold lake–shallow warmer reservoir. Sustainability 2024, 16, 7299. [Google Scholar] [CrossRef]
- Firsova, A.; Galachyants, Y.; Bessudova, A.; Mikhailov, I.; Titova, L.; Marchenkov, A.; Hilkhanova, D.; Nalimova, M.; Buzevich, V.; Likhoshway, Y. Summer phytoplankton species composition and abundance in the southern basin of Lake Baikal and Irkutsk Reservoir. Limnol. Freshw. Biol. 2023, 6, 204–228. [Google Scholar] [CrossRef]
- Taiyun, W.; Simko, V.R. Package ‘Corrplot’: Visualization of a Correlation Matrix (Version 0.92). 2021. Available online: https://github.com/taiyun/corrplot (accessed on 29 September 2023).
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. R Package Version 4.7-1. 2022. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 24 September 2024).
- Oksanen, J.; Simpson, G.L.; Blanchet, G.F.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.5-6. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 5 August 2024).
- Kolde, R. pheatmap: Pretty Heatmaps_. R package Version 1.0.12. 2019. Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 24 September 2024).
- Bodenhofer, U.; Kothmeier, A.; Hochreiter, S. APCluster: An R package for affinity propagation clustering. Bioinformatics 2011, 27, 2463–2464. [Google Scholar] [CrossRef] [PubMed]
- Belyaeva, P.G. Spatial-temporal changes of phytoplankton of Kama Reservoir. Proc. Samara Sci. Cent. Russ. Acad. Sci. 2015, 17, 733–738. (In Russian) [Google Scholar]
- Struktura i Funktsionirovaniem Ekosistemy Rybinskogo Vodokhranilishcha v Nachale XXI veka (Structure and Functioning of the Ecosystem of the Rybinsk Reservoir at the Beginning of the 21st Century); Rossiyskaya Akademia Nauk: Moscow, Russia, 2018; pp. 1–456. (In Russian)
- Gvozdareva, M.; Lubina, O.; Melnikova, A. The development of plankton communities in the Kuibyshev Reservoir in the zone of influence of the Cheboksary hydroelectric power plant. Hydroecology 2021, 3, 23–29. (In Russian) [Google Scholar] [CrossRef]
- Liu, C.; Sun, X.; Su, L.; Cai, J.; Zhang, L.; Guo, L. Assessment of phytoplankton community structure and water quality in the Hongmen Reservoir. Water Qual. Res. J. 2021, 56, 19–30. [Google Scholar] [CrossRef]
- Tran, T.-H.-Y.; Trang, L.T.; Dang, P.D.; Tran, T.T.; Nguyen, T.V.; Nguyen-Ngoc, L.; Pham, T.L. Seasonal variation of phytoplankton functional groups in Tuyen Lam Reservoir, Central Highlands, Vietnam. Dalat Univ. J. Sci. 2022, 13, 25–35. [Google Scholar] [CrossRef]
- Nwonumara, G.N.; Elebe, F.A.; Nwibo, O.D. The physico-chemical variables and phytoplankton of Ufiobodo and Ebonyi Reservoirs, Ebonyi State, Nigeria. Zoologist 2023, 21, 41–48. [Google Scholar] [CrossRef]
- Korneva, L.G.; Solovyeva, V.V. Golden algae (Chrysophyta) in plankton of the Volga River reservoirs: Taxonomic structure, dynamics of diversity, and abundance. Inland Water Biol. 2017, 10, 168–175. [Google Scholar] [CrossRef]
- Korneva, L.G. Phytoplankton of Reservoirs of the Volga Basin; Kostroma Printing House: Kostroma, Russia, 2015; p. 284. [Google Scholar]
- Ochieng, B.; Mbao, E.O.; Zhang, Z.; Shi, L.; Liu, Q. Phytoplankton community structure of Tang-Pu Reservoir: Status and ecological assessment in relation to physicochemical variability. Environ. Monit. Assess 2022, 194, 382. [Google Scholar] [CrossRef]
- Popovskaya, G.I. Phytoplankton dynamics of pelagial of Baikal (1964–1974). In Biologicheskaya Produktivnost’ Pelagiali Baykala i yeye Izmenchivost’ [Biological Productivity of the Pelagial of Baikal and Its Variability]; Nauka: Novosibirsk, Russia, 1977; pp. 5–39. (In Russian) [Google Scholar]
- Izmest’eva, L.R.; Kozhova, O.M. Dolgosrochnoye Prognozirovaniye Sostoyaniya Ekosistem (Long-Term Forecasting of Ecosystem Conditions); Nauka: Novosibirsk, Russia, 1988; pp. 1–235. (In Russian) [Google Scholar]
- Malashenkov, D.V.; Mosharova, I.V.; Ilinskiy, V.V.; Mosharov, S.A. Use of phytoplankton functional classification and microbiological parameters for environmental assessment of coastal waters of Southern Baikal. Inland Water Biol. 2022, 15, 3–13. [Google Scholar] [CrossRef]
- Sakharova, E.G.; Korneva, L.G. Phytoplankton in the mouth area of the Rybinsk Reservoir tributary. Inland Water Biol. 2023, 16, 61–66. [Google Scholar] [CrossRef]
- Vorobyova, S.S. Phytoplankton of the Ust’-Ilimsk Reservoir. In Biologiya Ust’Ilimskogo Vodokhranilishcha (Biology of the Ust’-Ilimsk Reservoir); Nauka: Novosibirsk, Russia, 1987; pp. 8–75. (In Russian) [Google Scholar]
- Kozhova, O.M.; Shirobokova, N.P. Phytoplankton of the Bratsk Reservoir and prediction of its state. In Dolgosrochnoe Prognozirovanie Sostoyaniya Ekosistem (Long-Term Prognosis of Ecosystem State); Nauka: Novosibirsk, Russia, 1988; pp. 69–92. (In Russian) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firsova, A.; Galachyants, Y.; Bessudova, A.; Hilkhanova, D.; Titova, L.; Nalimova, M.; Buzevich, V.; Marchenkov, A.; Sakirko, M.; Likhoshway, Y. The Influence of Waters of Lake Baikal on the Spatiotemporal Dynamics of Phytoplankton in the Irkutsk Reservoir. Water 2024, 16, 3284. https://doi.org/10.3390/w16223284
Firsova A, Galachyants Y, Bessudova A, Hilkhanova D, Titova L, Nalimova M, Buzevich V, Marchenkov A, Sakirko M, Likhoshway Y. The Influence of Waters of Lake Baikal on the Spatiotemporal Dynamics of Phytoplankton in the Irkutsk Reservoir. Water. 2024; 16(22):3284. https://doi.org/10.3390/w16223284
Chicago/Turabian StyleFirsova, Alena, Yuri Galachyants, Anna Bessudova, Diana Hilkhanova, Lubov Titova, Maria Nalimova, Vasilisa Buzevich, Artyom Marchenkov, Maria Sakirko, and Yelena Likhoshway. 2024. "The Influence of Waters of Lake Baikal on the Spatiotemporal Dynamics of Phytoplankton in the Irkutsk Reservoir" Water 16, no. 22: 3284. https://doi.org/10.3390/w16223284
APA StyleFirsova, A., Galachyants, Y., Bessudova, A., Hilkhanova, D., Titova, L., Nalimova, M., Buzevich, V., Marchenkov, A., Sakirko, M., & Likhoshway, Y. (2024). The Influence of Waters of Lake Baikal on the Spatiotemporal Dynamics of Phytoplankton in the Irkutsk Reservoir. Water, 16(22), 3284. https://doi.org/10.3390/w16223284