Optimal Design of Water Distribution System Using Improved Life Cycle Energy Analysis: Development of Optimal Improvement Period and Unit Energy Formula
Abstract
:1. Introduction
2. Methodology
2.1. Overview
2.2. Metaheuristic Optimization Algorithm for Optimal Water Distribution System Design
2.3. Establishment of Optimal Improvement Period
2.4. The LCEA Model Using a New Unit Energy Equation
2.4.1. New Unit Energy Equation
2.4.2. Energy Calculation for Design of Water Distribution System
2.5. Development of New Resilience Index Using Insufficient Pressure
3. Results
3.1. Study Area
3.2. Optimal WDS Design Using Improved LCEA Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bolognesi, A.; Bragalli, C.; Marchi, A.; Artina, S. Genetic heritage evolution by stochastic transmission in the optimal design of water distribution networks. Adv. Eng. Softw. 2010, 41, 792–801. [Google Scholar] [CrossRef]
- Diao, K.; Jung, D.; Farmani, R.; Fu, G.; Butler, D.; Lansey, K. Modular interdependency analysis for water distribution systems. Water Res. 2021, 201, 117320. [Google Scholar] [CrossRef] [PubMed]
- Alperovits, E.; Shamir, U. Design of optimal water distribution systems. Water Resour. Res. 1977, 13, 885–900. [Google Scholar] [CrossRef]
- Geem, Z.W. Optimal cost design of water distribution networks using harmony search. Eng. Optim. 2006, 38, 259–277. [Google Scholar] [CrossRef]
- Shakhsi-Niaei, M.; Esfandarani, M.S. Multi-objective deterministic and robust models for selecting optimal pipe materials in water distribution system planning under cost, health, and environmental perspectives. J. Clean. Prod. 2019, 207, 951–960. [Google Scholar] [CrossRef]
- Lansey, K.E.; Mays, L.W. Optimization model for water distribution system design. J. Hydraul. Eng. 1989, 115, 1401–1418. [Google Scholar] [CrossRef]
- Reca, J.; Martínez, J. Genetic algorithms for the design of looped irrigation water distribution networks. Water Resour. Res. 2006, 42, W05416. [Google Scholar] [CrossRef]
- Jung, D.; Kang, D.; Kim, J.H. Development of a hybrid harmony search for water distribution system design. KSCE J. Civ. Eng. 2018, 22, 1506–1514. [Google Scholar] [CrossRef]
- Lee, E.H. Application of self-adaptive vision-correction algorithm for water-distribution problem. KSCE J. Civ. Eng. 2021, 25, 1106–1115. [Google Scholar] [CrossRef]
- Ryu, Y.M.; Lee, E.H. Application of Modified Hybrid Vision Correction Algorithm for Water Distribution Systems in Civil Engineering. KSCE J. Civ. Eng. 2023, 27, 3617–3631. [Google Scholar] [CrossRef]
- Lee, E.H.; Lee, H.M.; Yoo, D.G.; Kim, J.H. Application of a meta-heuristic optimization algorithm motivated by a vision correction procedure for civil engineering problems. KSCE J. Civ. Eng. 2018, 22, 2623–2636. [Google Scholar] [CrossRef]
- Saldarriaga, J.; Páez, D.; Salcedo, C.; Cuero, P.; López, L.L.; León, N.; Celeita, D. A direct approach for the near-optimal design of water distribution networks based on power use. Water 2020, 12, 1037. [Google Scholar] [CrossRef]
- Sangroula, U.; Han, K.H.; Koo, K.M.; Gnawali, K.; Yum, K.T. Optimization of water distribution networks using genetic algorithm based SOP–WDN program. Water 2022, 14, 851. [Google Scholar] [CrossRef]
- Lee, S.; Yoo, D.G.; Jung, D.; Kim, J.H. Optimal life cycle design of water pipe system using genetic algorithm. J. Korea Acad. -Ind. Coop. Soc. 2015, 16, 4216–4227. [Google Scholar]
- Risch, E.; Gutierrez, O.; Roux, P.; Boutin, C.; Corominas, L. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems. Water Res. 2015, 77, 35–48. [Google Scholar] [CrossRef]
- Shamir, U.; Howard, C.D. An analytic approach to scheduling pipe replacement. J.-Am. Water Work. Assoc. 1979, 71, 248–258. [Google Scholar] [CrossRef]
- Sharp, W.W.; Walski, T.M. Predicting internal roughness in water mains. J.-Am. Water Work. Assoc. 1988, 80, 34–40. [Google Scholar] [CrossRef]
- Mononobe, N. Hydraulics. Iwanami 1960, 155–158. [Google Scholar]
- Male, J.W.; Walski, T.M.; Slutsky, A.H. Analyzing water main replacement policies. J. Water Resour. Plan. Manag. 1990, 116, 362–374. [Google Scholar] [CrossRef]
- Kleiner, Y.; Adams, B.J.; Rogers, J.S. Long-term planning methodology for water distribution system rehabilitation. Water Resour. Res. 1988, 34, 2039–2051. [Google Scholar] [CrossRef]
- Filion, Y.R.; MacLean, H.L.; Karney, B.W. Life-cycle energy analysis of a water distribution system. J. Infrastruct. Syst. 2004, 10, 120–130. [Google Scholar] [CrossRef]
- Todini, E. Looped water distribution networks design using a resilience index based heuristic approach. Urban Water 2000, 2, 115–122. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Tinebra, A.; Renschler, C.; Fragiadakis, M. New resilience index for urban water distribution networks. J. Struct. Eng. 2016, 142, C4015014. [Google Scholar] [CrossRef]
- Choi, Y.H.; Lee, H.M.; Yoo, D.G.; Kim, J.H. Optimal design of water supply system using multi-objective harmony search algorithm. J. Korean Soc. Water Wastewater 2015, 29, 293–303. [Google Scholar] [CrossRef]
- Mandl, C.E. A survey of mathematical optimization models and algorithms for designing and extending irrigation and wastewater networks. Water Resour. Res. 1981, 17, 769–775. [Google Scholar] [CrossRef]
- Monbaliu, J.; Jo, J.; Fraisse, C.W.; Vadas, R.G. Computer aided design of pipe networks. Tech. Rev. -Mitsubishi Heavy Ind. 1990, 2, 789–797. [Google Scholar]
- Gessler, J.; Walski, T.M. Water Distribution System Optimization (No. WES/TR/EL-85-11); Army Engineer Waterways Experiment Station Vicksburg MS Environmental Lab: Vicksburg, MA, USA, 1985. [Google Scholar]
- Su, Y.C.; Mays, L.W.; Duan, N.; Lansey, K.E. Reliability-based optimization model for water distribution systems. J. Hydraul. Eng. 1987, 113, 1539–1556. [Google Scholar] [CrossRef]
- Vasan, A.; Simonovic, S.P. Optimization of water distribution network design using differential evolution. J. Water Resour. Plan. Manag. 2010, 136, 279–287. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Maier, H.R.; Simpson, A.R.; Zecchin, A.C.; Foong, W.K.; Phang, K.Y.; Seah, H.Y.; Tan, C.L. Ant colony optimization for design of water distribution systems. J. Water Resour. Plan. Manag. 2003, 129, 200–209. [Google Scholar] [CrossRef]
- Reca, J.; Martínez, J.; Gil, C.; Baños, R. Application of several meta-heuristic techniques to the optimization of real looped water distribution networks. Water Resour. Manag. 2008, 22, 1367–1379. [Google Scholar] [CrossRef]
- Baek, C.W. Development of Optimal Decision-Making System for Rehabilitation of Water Distribution Systems Using ReHS. Master’s Thesis, Korea University, Seoul, Republic of Korea, 2002. [Google Scholar]
- Kim, J.H.; Kim, T.G.; Kim, J.H.; Yoon, Y.N. A study on the pipe network system design using non-linear programming. J. Korean Water Resour. Assoc. 1994, 27, 59–67. [Google Scholar]
- Menon, K.K.; Narulkar, S.M. Application of heuristic-based algorithm in water distribution network design. J. Water Resour. Pollut. Stud. 2016, 1, 1–14. [Google Scholar]
- U.S. Environmental Protection Agency (US EPA). EPANET 2.0 User’s Manual; US EPA: Washington, DC, USA, 2000. [Google Scholar]
- Jinesh Babu, K.S.; Mohan, S. Extended period simulation for pressure-deficient water distribution network. J. Comput. Civ. Eng. 2012, 26, 498–505. [Google Scholar] [CrossRef]
- Mahmoud, H.A.; Savić, D.; Kapelan, Z. New pressure-driven approach for modeling water distribution networks. J. Water Resour. Plan. Manag. 2017, 143, 04017031. [Google Scholar] [CrossRef]
- Hamed, M.M.; Elsayad, M.A.; Mahfouz, S.Y.; Khadr, W.M.H. Graphical user interface for water distribution network pressure-driven analysis using artificial elements. Sustain. Water Resour. Manag. 2022, 8, 89. [Google Scholar] [CrossRef]
- Khadr, W.M.H.; Hamed, M.M.; Nashwan, M.S. Pressure Driven analysis of water distribution systems for preventing siphonic flow. J. Hydro-Environ. Res. 2022, 44, 102–109. [Google Scholar] [CrossRef]
- Lee, S.Y. Research on Life Cycle Energy Analysis of Water Distribution System. Master’s Thesis, Korea University, Seoul, Republic of Korea, 2014. [Google Scholar]
- Korea Energy Economics Institute. Available online: https://www.keei.re.kr/main.nsf/index.html?open&p=%2Fweb_keei%2Fchange.nsf%2FUnitConverF&s=%3FOpenForm (accessed on 25 August 2023).
- Korean Statistical Information Service. Available online: https://kosis.kr/statHtml-/statHtml.do?orgId=388&tblId=TX_38804_A010 (accessed on 25 August 2023).
- Beker, B.A.; Kansal, M.L. Fuzzy logic-based integrated performance evaluation of a water distribution network. AQUA—Water Infrastruct. Ecosyst. Soc. 2022, 71, 490–506. [Google Scholar] [CrossRef]
- Jung, D.; Kang, D.; Kim, J.H.; Lansey, K. Robustness-based design of water distribution systems. J. Water Resour. Plan. Manag. 2014, 140, 04014033. [Google Scholar] [CrossRef]
- Pagano, A.; Sweetapple, C.; Farmani, R.; Giordano, R.; Butler, D. Water distribution networks resilience analysis: A comparison between graph theory-based approaches and global resilience analysis. Water Resour. Manag. 2019, 33, 2925–2940. [Google Scholar] [CrossRef]
- Rossman, L.; Woo, H.; Tryby, M.; Shang, F.; Janke, R.; Haxton, T. EPANET 2.2 User Manual; Report EPA/600/r-20/133; Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
- Yoon, J.S.; Yoo, D.G.; Lee, H.M.; Kim, J.H. Optimal leakage detection model of water distribution systems using semi-pressure driven analysis and harmony search. J. Korean Soc. Hazard Mitig. 2012, 12, 23–32. [Google Scholar] [CrossRef]
Operators (Full Name) | Description | |
---|---|---|
CGS (Centralized Global Search) | An operator that proceeds with a search after setting a new search range using the optimal value of the current iteration and the median value of the search range - | |
MTF (Modulation Transfer Function) | A method for adjusting the decision variable based on the distance between the best value among the existing optimal solutions and the new solution using an operator that mimics lens brightness adjustment in the process of manufacturing glasses | |
Parameters (Full name) | Description | Value of range (General value) |
MHR (Modified Hybrid Rate) | A parameter used in the process of searching for a new solution, a probability parameter that determines whether fine-tuning (search method using CF, AF, and MTF) is executed | 0~0.36 (Self-adaptive) |
CGSR (Centralized Global Search Rate) | Probability parameter that determines whether CGS is executed | 0~1 (Self-adaptive) |
CF (Compression Factor) | A method of reducing the range of region search as the number of iterations increases with an operator that mimics the compression process in the process of manufacturing glasses | 0~100 (30) |
AF (Astigmatic Correction) | A method of setting and searching the range of region search based on the angle of the astigmatism axis set by the user with an operator that mimics the astigmatism correction process in the process of manufacturing glasses | 0~180 (45) |
DR (Division Rate) | A probability parameter that determines the direction to be searched within the search range during the process of searching for a new solution | 0~1 (0.1) |
Previous Function [14] | R2 | |
---|---|---|
Fabrication | 0.9962 | |
Disposal | 0.9952 | |
Linear function | R2 | |
Fabrication | 0.9788 | |
Disposal | 0.9789 | |
Log function | R2 | |
Fabrication | 0.9298 | |
Disposal | 0.9308 | |
Exponential function | R2 | |
Fabrication | 0.9992 | |
Disposal | 0.9989 | |
2nd-order polynomial function | R2 | |
Fabrication | 0.9962 | |
Disposal | 0.9952 | |
3rd-order polynomial function | R2 | |
Fabrication | 0.9963 | |
Disposal | 0.9979 | |
4th-order polynomial function | R2 | |
Fabrication | 1.0000 | |
Disposal | 1.0000 |
Stage | Formula | Description |
---|---|---|
Fabrication | This stage includes various processes such as raw material extraction, material processing and production, and pipe fabrication. The energy consumed in these processes can be defined as the fabrication energy. | |
Maintenance | The maintenance process of a WDS comprises the rehabilitation, repair, and replacement of pipes, owing to aging or pipe failure. Maintenance energy defines all the energy consumed during the maintenance stage. Lee et al. (2015) defined recycling energy as the benefit obtained from the improved flow rate resulting from the rehabilitation of pipes during the maintenance process [41]. | |
Disposal | The disposal stage involves the disposal of pipes that constitute the WDS. Disposal energy is the energy consumed purely for the disposal of pipes, which includes the energy required for the disposal of pipes during replacement as well as that consumed during the disposal of pipes in the maintenance stage. |
Diameter (mm) | Cost (USD/m) | Diameter (mm) | Cost (USD/m) | Diameter (mm) | Cost (USD/m) | Diameter (mm) | Cost (USD/m) |
---|---|---|---|---|---|---|---|
80 | 37.890 | 125 | 40.563 | 200 | 47.624 | 300 | 62.109 |
100 | 38.933 | 150 | 42.554 | 250 | 54.125 | 350 | 71.524 |
Parameter | Value |
---|---|
CG | 190 |
CGSR | 0 |
DR1 | 0.1 |
DR2 | 0.7 |
CF | 30 |
AG | 45 |
Analysis by Cost | Cost-Based Design | Energy-Based Design |
Mean cost (USD) | 177,064.779 | 177,492.181 |
Best cost (USD) | 177,010.359 | 177,010.359 |
Worst cost (USD) | 177,020.938 | 177,141.106 |
Standard deviation | 21.172 | 130.392 |
Analysis by energy | Cost-based design | Energy-based design |
Mean energy (GJ) | 805.549 | 578.210 |
Best energy (GJ) | 757.747 | 478.317 |
Worst energy (GJ) | 788.369 | 535.783 |
Standard deviation | 9.480 | 21.034 |
Location | Pipe Diameter (mm) | Location | Pipe Diameter (mm) | ||
---|---|---|---|---|---|
Cost-Based Optimal Design | Energy-Based Optimal Design | Cost-Based Optimal Design | Energy-Based Optimal Design | ||
1 | 47.624 | 47.624 | 16 | 37.89 | 37.89 |
2 | 40.563 | 42.554 | 17 | 37.89 | 37.89 |
3 | 40.563 | 38.933 | 18 | 37.89 | 37.89 |
4 | 38.933 | 38.933 | 19 | 37.89 | 37.89 |
5 | 37.89 | 37.89 | 20 | 37.89 | 37.89 |
6 | 37.89 | 37.89 | 21 | 37.89 | 37.89 |
7 | 37.89 | 37.89 | 22 | 37.89 | 37.89 |
8 | 37.89 | 37.89 | 23 | 37.89 | 37.89 |
9 | 37.89 | 37.89 | 24 | 37.89 | 37.89 |
10 | 37.89 | 37.89 | 25 | 37.89 | 37.89 |
11 | 37.89 | 37.89 | 26 | 37.89 | 37.89 |
12 | 37.89 | 37.89 | 27 | 37.89 | 37.89 |
13 | 37.89 | 37.89 | 28 | 37.89 | 37.89 |
14 | 37.89 | 37.89 | 29 | 37.89 | 37.89 |
15 | 37.89 | 37.89 | 30 | 37.89 | 37.89 |
Cost-Based Optimal Design | Energy-Based Optimal Design | |
---|---|---|
Total energy expenditure * (GJ) | 805.549 | 494.769 |
Total energy expenditure per year (GJ/year) | 33.565 | 20.615 |
Life cycle (year) | 24 | 24 |
(GJ) | 173.730 | 174.560 |
(GJ) | 418.806 | 426.196 |
(GJ) | 24.623 | 0.000 |
(GJ) | 173.730 | 174.560 |
(GJ) | 23.195 | 23.310 |
(GJ) | 8.535 | 303.858 |
Cost per year (USD/year) | 7375.432 | 7377.704 |
Cost (USD) | 177,010.359 | 177,064.903 |
Pipe Failure Scenario | Cost-Based Optimal Design (A) | Energy-Based Optimal Design (B) | Difference (%) | Pipe Failure Scenario | Cost-Based Optimal Design (A) | Energy-Based Optimal Design (B) | Difference (%) |
---|---|---|---|---|---|---|---|
1 | 0.0000 | 0.0000 | 0 | 16 | 1.0000 | 1.0000 | 0.0000 |
2 | 0.1490 | 0.1548 | 3.7628 | 17 | 1.0000 | 1.0000 | 0.0000 |
3 | 0.4975 | 0.5001 | 0.5263 | 18 | 1.0000 | 1.0000 | 0.0000 |
4 | 0.4807 | 0.4831 | 0.4893 | 19 | 0.9544 | 1.0000 | 4.5599 |
5 | 0.8055 | 0.8526 | 5.5220 | 20 | 0.9079 | 0.9543 | 4.8716 |
6 | 0.7996 | 0.8050 | 0.6776 | 21 | 1.0000 | 1.0000 | 0.0000 |
7 | 0.8941 | 0.8953 | 0.1262 | 22 | 0.8062 | 0.8083 | 0.2669 |
8 | 0.9041 | 0.9048 | 0.0852 | 23 | 0.8054 | 0.8116 | 0.7576 |
9 | 0.9078 | 1.0000 | 9.2176 | 24 | 0.9023 | 0.9063 | 0.4498 |
10 | 0.9543 | 1.0000 | 4.5744 | 25 | 0.9541 | 1.0000 | 4.5888 |
11 | 1.0000 | 1.0000 | 0.0000 | 26 | 0.8096 | 0.8118 | 0.2779 |
12 | 1.0000 | 1.0000 | 0.0000 | 27 | 0.8479 | 0.8496 | 0.1972 |
13 | 0.9077 | 0.9545 | 4.9062 | 28 | 1.0000 | 1.0000 | 0.0000 |
14 | 1.0000 | 1.0000 | 0.0000 | 29 | 0.8936 | 0.8947 | 0.1170 |
15 | 1.0000 | 1.0000 | 0.0000 | 30 | 0.9494 | 0.9500 | 0.0639 |
100 | 110 | 120 | 130 | 140 | 150 | |
Mean Cost (USD) | 177,071.823 | 177,015.813 | 177,021.255 | 177,064.903 | 177,015.636 | 177,031.778 |
Best Cost (USD) | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 |
Worst Cost (USD) | 177,294.363 | 177,064.903 | 177,064.903 | 177,026.697 | 177,063.124 | 177,064.903 |
Standard Deviation | 78.212 | 16.363 | 21.793 | 24.957 | 15.830 | 26.253 |
Selection | ||||||
160 | 170 | 180 | 190 | 200 | - | |
Mean Cost (USD) | 177,026.521 | 177,026.685 | 177,031.600 | 177,015.427 | 177,026.158 | - |
Best Cost (USD) | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | - |
Worst Cost (USD) | 177,064.903 | 177,064.779 | 177,064.903 | 177,061.038 | 177,064.903 | - |
Standard Deviation | 24.692 | 24.938 | 26.033 | 15.204 | 24.149 | - |
Selection | O | - |
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
Mean Cost (USD) | 177,015.427 | 177,029.236 | 177,784.975 | 179,523.054 | 183,325.455 | 184,490.049 |
Best Cost (USD) | 177,010.359 | 177,014.772 | 177,583.053 | 178,884.215 | 181,980.392 | 183,364.440 |
Worst Cost (USD) | 177,061.038 | 177,064.903 | 178,028.545 | 180,156.294 | 184,345.112 | 185,891.822 |
Standard Deviation | 15.204 | 22.111 | 134.937 | 396.245 | 707.003 | 877.799 |
Selection | O | |||||
0.6 | 0.7 | 0.8 | 0.9 | 1.0 | - | |
Mean Cost (USD) | 184,521.035 | 192,010.403 | 191,279.585 | 194,634.407 | 198,455.637 | - |
Best Cost (USD) | 182,186.073 | 188,093.943 | 182,095.278 | 190,812.490 | 195,333.524 | - |
Worst Cost (USD) | 187,807.926 | 194,201.503 | 194,767.095 | 197,291.409 | 201,015.790 | - |
Standard Deviation | 1532.913 | 1933.878 | 3502.999 | 1826.033 | 1872.217 | - |
Selection | - |
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
Mean Cost (USD) | 177,119.522 | 177,015.427 | 177,015.813 | 177,015.813 | 177,015.801 | 177,015.813 |
Best Cost (USD) | 177,061.038 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 |
Worst Cost (USD) | 177,216.720 | 177,061.038 | 177,064.903 | 177,064.903 | 177,064.779 | 177,064.903 |
Standard Deviation | 57.427 | 15.204 | 16.363 | 16.363 | 16.326 | 16.363 |
Selection | O | |||||
0.6 | 0.7 | 0.8 | 0.9 | 1.0 | - | |
Mean Cost (USD) | 177,015.813 | 177,015.813 | 177,015.813 | 177,033.023 | 177,015.801 | - |
Best Cost (USD) | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | - |
Worst Cost (USD) | 177,064.903 | 177,064.903 | 177,064.903 | 177,236.998 | 177,064.779 | - |
Standard Deviation | 16.363 | 16.363 | 16.363 | 67.992 | 16.326 | - |
Selection | - |
0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | |
Mean Cost (USD) | 177,199.296 | 177,039.121 | 177,043.797 | 177,042.471 | 177,036.864 | 177,031.753 |
Best Cost (USD) | 177,014.772 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 |
Worst Cost (USD) | 177,828.255 | 177,085.639 | 177,072.511 | 177,064.779 | 177,064.779 | 177,064.779 |
Standard Deviation | 222.011 | 29.482 | 27.392 | 26.242 | 26.523 | 26.222 |
Selection | ||||||
0.6 | 0.7 | 0.8 | 0.9 | 1.0 | - | |
Mean Cost (USD) | 177,020.881 | 177,015.427 | 177,026.697 | 177,015.801 | 177,021.255 | - |
Best Cost (USD) | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | - |
Worst Cost (USD) | 177,064.903 | 177,061.038 | 177,064.903 | 177,064.779 | 177,064.903 | - |
Standard Deviation | 21.062 | 15.204 | 24.957 | 16.326 | 21.793 | - |
Selection | O | - |
0 | 10 | 20 | 30 | 40 | 50 | |
Mean Cost (USD) | 177,053.963 | 177,026.311 | 177,026.520 | 177,015.427 | 177,026.697 | 177,021.243 |
Best Cost (USD) | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 |
Worst Cost (USD) | 177,286.754 | 177,064.779 | 177,064.779 | 177,061.038 | 177,064.903 | 177,064.779 |
Standard Deviation | 81.170 | 24.386 | 24.689 | 15.204 | 24.957 | 21.768 |
Selection | O | |||||
60 | 70 | 80 | 90 | 100 | - | |
Mean Cost (USD) | 177,026.311 | 177,021.243 | 177,021.225 | 177,015.813 | 177,015.813 | - |
Best Cost (USD) | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | - |
Worst Cost (USD) | 177,064.779 | 177,064.779 | 177,068.339 | 177,064.903 | 177,064.903 | - |
Standard Deviation | 24.386 | 21.768 | 21.793 | 16.363 | 16.363 | - |
Selection | - |
0 | 15 | 30 | 45 | 60 | 75 | 90 | |
Mean Cost (USD) | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 |
Best Cost (USD) | 177,015.801 | 177,021.078 | 177,020.881 | 177,015.427 | 177,020.869 | 177,026.323 | 177,020.869 |
Worst Cost (USD) | 177,064.779 | 177,064.779 | 177,064.903 | 177,061.038 | 177,064.779 | 177,064.903 | 177,064.779 |
Standard Deviation | 16.326 | 21.440 | 21.062 | 15.204 | 21.036 | 24.406 | 21.036 |
Selection | O | ||||||
105 | 120 | 135 | 150 | 165 | 180 | - | |
Mean Cost (USD) | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | 177,010.359 | - |
Best Cost (USD) | 177,042.110 | 177,031.778 | 177,015.801 | 177,026.336 | 177,025.937 | 177,026.311 | - |
Worst Cost (USD) | 177,064.903 | 177,064.903 | 177,064.779 | 177,064.903 | 177,064.779 | 177,064.779 | - |
Standard Deviation | 25.958 | 26.253 | 16.326 | 24.425 | 23.815 | 24.386 | - |
Selection | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, Y.m.; Lee, E.H. Optimal Design of Water Distribution System Using Improved Life Cycle Energy Analysis: Development of Optimal Improvement Period and Unit Energy Formula. Water 2024, 16, 3300. https://doi.org/10.3390/w16223300
Ryu Ym, Lee EH. Optimal Design of Water Distribution System Using Improved Life Cycle Energy Analysis: Development of Optimal Improvement Period and Unit Energy Formula. Water. 2024; 16(22):3300. https://doi.org/10.3390/w16223300
Chicago/Turabian StyleRyu, Yong min, and Eui Hoon Lee. 2024. "Optimal Design of Water Distribution System Using Improved Life Cycle Energy Analysis: Development of Optimal Improvement Period and Unit Energy Formula" Water 16, no. 22: 3300. https://doi.org/10.3390/w16223300
APA StyleRyu, Y. m., & Lee, E. H. (2024). Optimal Design of Water Distribution System Using Improved Life Cycle Energy Analysis: Development of Optimal Improvement Period and Unit Energy Formula. Water, 16(22), 3300. https://doi.org/10.3390/w16223300