Enhancement of Trihalomethane Adsorption Capacity Using Chitosan-Modified Coconut Shell Activated Carbon: Adsorption Characteristics and Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation and Characterization of (CS/CAC)
2.3. Batch Adsorption Experiments
2.4. Fixed-Bed Study
2.5. Recycling Experiments
3. Results and Discussion
3.1. Characterization
3.2. Adsorption Studies
3.2.1. Adsorption of THMs over Time
3.2.2. Effect of Adsorbent Amount
3.2.3. Effect of pH
3.2.4. Effect of Initial Concentration
3.3. Adsorption Isotherm Study
3.4. Adsorption Kinetics Study
3.5. Thermodynamic Analysis
3.6. Test Using Fixed-Bed Column
Effect of Bed Height and Flow Rate
3.7. Desorption Studies and Reusability
3.8. Comparison of the Result Obtained in This Study with Other Published Works
4. Conclusions
- The optimum value of pH was in the range of 4–8, so there would be no need to adjust the pH values of the contaminated solutions. The maximum adsorption was reached at pH 7, where the adsorbed removals of TCM, BDCM, DBCM, and TBM were 50.95%, 43.09%, 36.66%, and 32.23%, respectively.
- The adsorption isotherm experiment demonstrated that the adsorption of THMs could be accurately characterized by both Freundlich and Langmuir models. Furthermore, THM adsorption was best characterized by the pseudo-second-order kinetic model and was an endothermic reaction. In addition, after four regeneration cycles, the adsorption performance only decreased by approximately 10%, meaning that CS/CAC could be recovered and reused for THM removal.
- According to the results of the continuous adsorption experiments, the testing performed using a 2 mL·min−1 flow rate showed a 20% greater removal efficiency compared to a 4 mL·min−1 flow rate and a 15% greater removal efficiency when using a 4 cm bed instead of a 2 cm bed.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, J.; Zhai, H.; Zhang, X.; Liu, J.; Sharma, V.K. Effects of ozone dose on brominated DBPs in subsequent chlor (am) ination: A comprehensive study of aliphatic, alicyclic and aromatic DBPs. Water Res. 2024, 250, 121039. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sayes, C.M.; Sharma, V.K.; Li, Y.; Zhang, X.J.C. Addition of lemon before boiling chlorinated tap water: A strategy to control halogenated disinfection byproducts. Chemosphere 2021, 263, 127954. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.S.; Summers, R.S.; Cook, S.M. Control of pre-formed halogenated disinfection byproducts with reuse biofiltration. Environ. Sci. Technol. 2023, 57, 2516–2526. [Google Scholar] [CrossRef] [PubMed]
- Roque, M.I.; Gomes, J.; Reva, I.; Valente, A.J.; Simões, N.E.; Morais, P.V.; Durães, L.; Martins, R.C.J.W. An Opinion on the Removal of Disinfection Byproducts from Drinking Water. Water 2023, 15, 1724. [Google Scholar] [CrossRef]
- Zhang, C.; Roccaro, P.; Yan, M.; Korshin, G.V.J.C. Interpretation of the formation of unstable halogen-containing disinfection by-products based on the differential absorbance spectroscopy approach. Chemosphere 2021, 268, 129241. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Hu, Z.; Li, X.; Li, M.; Wang, Y.; Zhang, Z.; Liang, X.J.C. Overlooked inorganic DBPs in trichloroisocyanuric acid (TCCA) disinfected indoor swimming pool: Evidences from concentration, cytotoxicity, and human health risk. Chemosphere 2023, 335, 139061. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, Y.-L.; Liu, C.; Lu, W.-Q.; Zeng, Q.J. Impacts of disinfection byproduct exposures on male reproductive health: Current evidence, possible mechanisms and future needs. Chemosphere 2023, 331, 138808. [Google Scholar] [CrossRef]
- Ramírez, Á.; Muñoz-Morales, M.; de la Morena, A.; Sánchez, N.; Peñuela, L.; Sánchez, A.; Llanos, J.J. Screening of technologies for limiting the occurrence of disinfection by-products in urban water systems. J. Water Process. Eng. 2023, 53, 103660. [Google Scholar] [CrossRef]
- Astuti, M.P.; Taylor, W.S.; Lewis, G.D.; Padhye, L.P. Surface-modified activated carbon for N-nitrosodimethylamine removal in the continuous flow biological activated carbon columns. J. Hazard. Mater. 2023, 455, 131518. [Google Scholar] [CrossRef]
- Liao, Y.; Tang, M.; Li, M.; Shi, P.; Li, A.; Zhang, Y.; Pan, Y. Control strategies for disinfection byproducts by ion exchange resin, nanofiltration and their sequential combination. Front. Environ. Sci. Eng. 2023, 17, 125. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- He, X.; Elkouz, M.; Inyang, M.; Dickenson, E.; Wert, E.C. Ozone regeneration of granular activated carbon for trihalomethane control. J. Hazard. Mater. 2017, 326, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Ndagijimana, P.; Liu, X.; Xu, Q.; Li, Z.; Pan, B.; Liao, X.; Wang, Y.J. Nanoscale zero-valent iron/silver@ activated carbon-reduced graphene oxide: Efficient removal of trihalomethanes from drinking water. Sci. Total. Environ. 2022, 839, 156228. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Lin, Y.-L.; Xu, B.; Wang, L.-P.; Gao, Z.-C.; Gao, N.-Y. Adsorption of haloforms onto GACs: Effects of adsorbent properties and adsorption mechanisms. Chem. Eng. J. 2018, 349, 849–859. [Google Scholar] [CrossRef]
- Xiao, J.; Gao, B.; Yue, Q.; Gao, Y.; Li, Q. Removal of trihalomethanes from reclaimed-water by original and modified nanoscale zero-valent iron: Characterization, kinetics and mechanism. Chem. Eng. J. 2015, 262, 1226–1236. [Google Scholar] [CrossRef]
- Xiao, J.; Yue, Q.; Gao, B.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q.; Wang, Y. Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water. Chem. Eng. J. 2014, 253, 63–72. [Google Scholar] [CrossRef]
- Isaac, R.; Siddiqui, S.; Aldosari, O.F.; Uddin, M.K. Magnetic biochar derived from Juglans regia for the adsorption of Cu2+ and Ni2+: Characterization, modelling, optimization, and cost analysis. J. Saudi Chem. Soc. 2023, 27, 101749. [Google Scholar] [CrossRef]
- Kaczorowska, M.A.; Bożejewicz, D. The Application of Chitosan-Based Adsorbents for the Removal of Hazardous Pollutants from Aqueous Solutions—A Review. Sustainability 2024, 16, 2615. [Google Scholar] [CrossRef]
- Liu, W.; Lin, T.; Zhang, X.; Jiang, F.; Yan, X.; Chen, H. Adsorption of perfluoroalkyl acids on granular activated carbon supported chitosan: Role of nanobubbles. Chemosphere 2022, 309, 136733. [Google Scholar] [CrossRef]
- Lekene, R.B.N.; Ankoro, N.O.; Kouotou, D.; Yemeli, G.B.N.; Benedoue, S.A.; Nsami, J.N.; Mbadkam, J.K. High-quality low-cost activated carbon/chitosan biocomposite for effective removal of nitrate ions from aqueous solution: Isotherm and kinetics studies. Biomass-Convers. Biorefinery 2023, 14, 20855–20872. [Google Scholar] [CrossRef]
- Mo, G.; Xiao, J.; Gao, X. To enhance the Cd2+ adsorption capacity on coconut shell-derived biochar by chitosan modifying: Performance and mechanism. Biomass-Convers. Biorefinery 2023, 13, 16737–16752. [Google Scholar] [CrossRef]
- Kumar, A.; Patra, C.; Rajendran, H.K.; Narayanasamy, S. Activated carbon-chitosan based adsorbent for the efficient removal of the emerging contaminant diclofenac: Synthesis, characterization and phytotoxicity studies. Chemosphere 2022, 307, 135806. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shan, H.; Pang, Y.; Zhan, H.; Zeng, C. Iron modified chitosan/coconut shell activated carbon composite beads for Cr (VI) removal from aqueous solution. Int. J. Biol. Macromol. 2023, 224, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhai, H.; Zhou, Y. Formation of disinfection byproducts from algal organic matter exposed to monochloramine: Effects of monochloramine dosages, pH, and bromide concentrations. Water Air Soil Pollut. 2020, 231, 207. [Google Scholar] [CrossRef]
- Zhai, H.; Cheng, S.; Zhang, L.; Luo, W.; Zhou, Y. Formation characteristics of disinfection byproducts from four different algal organic matter during chlorination and chloramination. Chemosphere 2022, 308, 136171. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, W.; Zhai, H.; Cheng, S.; Wu, W. Performance of public drinking water purifiers in control of trihalomethanes, antibiotics and antibiotic resistance genes. Chemosphere 2024, 352, 141459. [Google Scholar] [CrossRef] [PubMed]
- Hydari, S.; Sharififard, H.; Nabavinia, M.; Parvizi, M. A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chem. Eng. J. 2012, 193, 276–282. [Google Scholar] [CrossRef]
- Medany, S.S.; Hefnawy, M.A.; Fadlallah, S.A.; El-Sherif, R.M. Zinc oxide–chitosan matrix for efficient electrochemical sensing of acetaminophen. Chem. Pap. 2024, 78, 3049–3061. [Google Scholar] [CrossRef]
- Sharififard, H.; Rezvanpanah, E.; Rad, S.H. A novel natural chitosan/activated carbon/iron bio-nanocomposite: Sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process. Bioresour. Technol. 2018, 270, 562–569. [Google Scholar] [CrossRef]
- Ngouateu, R.; Kouotou, D.; Belibi, P. Review. Kinetics and equilibrium studies of the adsorption of phenol and methylene blue onto cola nut shell based activated carbon. Water Air Soil Pollut. 2015, 7, 1. [Google Scholar]
- Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases and Liquids; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 1987.
- Lu, C.; Chung, Y.-L.; Chang, K.-F. Adsorption of trihalomethanes from water with carbon nanotubes. Water Res. 2005, 39, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Hu, H.; Ren, H. Dissolved organic matter (DOM) removal from biotreated coking wastewater by chitosan-modified biochar: Adsorption fractions and mechanisms. Bioresour. Technol. 2020, 297, 122281. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gao, Y.; Gao, B.; Tan, X.; Zhao, Y.-Q.; Yue, Q.; Wang, Y. Characteristics of diethylenetriamine-crosslinked cotton stalk/wheat stalk and their biosorption capacities for phosphate. J. Hazard. Mater. 2011, 192, 1690–1696. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Li, Y.; Luan, Z.; Di, Z.; Wang, H.; Tian, B.; Jia, Z. Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett. 2003, 376, 154–158. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant adsorption isotherms: A review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef]
- Ossman, M.E.; Mansour, M.S. Removal of Cd (II) ion from wastewater by adsorption onto treated old newspaper: Kinetic modeling and isotherm studies. Int. J. Ind. Chem. 2013, 4, 13. [Google Scholar] [CrossRef]
- López-Luna, J.; Ramírez-Montes, L.E.; Martinez-Vargas, S.; Martínez, A.I.; Mijangos-Ricardez, O.F.; González-Chávez, M.d.C.A.; Carrillo-González, R.; Solís-Domínguez, F.A.; Cuevas-Díaz, M.d.C.; Vázquez-Hipólito, V. Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Appl. Sci. 2019, 1, 950. [Google Scholar] [CrossRef]
- Lu, C.; Chung, Y.-L.; Chang, K.-F. Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes. J. Hazard. Mater. 2006, 138, 304–310. [Google Scholar] [CrossRef]
- Cunha, G.; Romão, L.; Santos, M.; Costa, A.; Alexandre, M.d. A green strategy for desorption of trihalomethanes adsorbed by humin and reuse of the fixed bed column. J. Hazard. Mater. 2012, 209, 9–17. [Google Scholar] [CrossRef]
- Diniz, V.; Rath, S.J. Adsorption of aqueous phase contaminants of emerging concern by activated carbon: Comparative fixed-bed column study and in situ regeneration methods. J. Hazard. Mater. 2023, 459, 132197. [Google Scholar] [CrossRef]
- Lekene, R.B.N.; Kouotou, D.; Ankoro, N.O.; Kouoh, A.P.-M.S.; Ndi, J.N.; Ketcha, J.M. Development and tailoring of amino-functionalized activated carbon based Cucumerupsi manni Naudin seed shells for the removal of nitrate ions from aqueous solution. J. Saudi Chem. Soc. 2021, 25, 101316. [Google Scholar] [CrossRef]
- Cunha, G.d.C.; Romão, L.; Santos, M.; Araújo, B.; Navickiene, S.; De Pádua, V. Adsorption of trihalomethanes by humin: Batch and fixed bed column studies. Bioresour. Technol. 2010, 101, 3345–3354. [Google Scholar] [CrossRef] [PubMed]
Adsorbents | BET Specific Surface Area/ (m2/g) | Pore Volume/ (cm3/g) | The Average Pore Diameter/ (nm) |
---|---|---|---|
CAC | 1254 | 0.782 | 2.495 |
CS | 1.752 | 0.007 | 15.768 |
CS/CAC | 968 | 0.589 | 2.017 |
Isotherm Models | Parameters | Adsorbates | |||
---|---|---|---|---|---|
TCM | BDCM | DBCM | TBM | ||
Langmuir | qmax (µg/g) | 187.27 | 114.29 | 93.28 | 89.61 |
KL (L/µg) | 0.0291 | 0.0554 | 0.0687 | 0.0644 | |
RL | 0.29 | 0.20 | 0.18 | 0.20 | |
R2 | 0.992 | 0.995 | 0.994 | 0.994 | |
Freundlich | Kf (µg/g) | 6.01 | 6.65 | 6.49 | 5.91 |
n | 1.24 | 1.34 | 1.36 | 1.35 | |
R2 | 0.988 | 0.988 | 0.992 | 0.992 | |
Temkin | Bt (J/mol) | 38.50 | 30.17 | 25.73 | 24.23 |
Kt (L/µg) | 0.46 | 0.59 | 0.67 | 0.64 | |
R2 | 0.761 | 0.763 | 0.784 | 0.786 |
Kinetics Models | Parameters | Adsorbates | |||
---|---|---|---|---|---|
TCM | BDCM | DBCM | TBM | ||
Qe,(exp) | 40.32 | 38.76 | 37.94 | 38.73 | |
PFO | Qe,(cal) | 5.45 | 7.41 | 12.73 | 9.96 |
K1 × 10−5 | 0.39 | 0.45 | 0.58 | 0.44 | |
R2 | 0.894 | 0.851 | 0.759 | 0.843 | |
PSO | Qe,(cal) | 40.44 | 38.87 | 37.95 | 38.94 |
K2 × 10−3 | 4.65 | 3.54 | 2.18 | 2.19 | |
R2 | 0.999 | 0.999 | 0.999 | 0.999 | |
Elovich | β | 0.513 | 0.471 | 0.396 | 0.330 |
α | 2,227,479.21 | 192,671.23 | 7067.54 | 1106.09 | |
R2 | 0.971 | 0.970 | 0.973 | 0.972 | |
IPD | Kid | 0.611 | 0.613 | 0.648 | 0.711 |
I | 24.211 | 22.229 | 19.664 | 19.008 |
THMs | Temp (K) | ∆G° (KJ/mol) | ∆H° (KJ/mol) | ∆S° (KJ/mol) |
---|---|---|---|---|
TCM | 278 | −2.85 | 13.80 | 58.97 |
298 | −3.17 | |||
318 | −5.29 | |||
BDCM | 278 | −2.91 | 13.97 | 59.75 |
298 | −3.22 | |||
318 | −5.38 | |||
DBCM | 278 | −2.79 | 11.61 | 50.97 |
298 | −3.05 | |||
318 | −4.90 | |||
TBM | 278 | −2.48 | 8.99 | 40.63 |
298 | −2.72 | |||
318 | −4.16 |
Adsorbents | THMs | Initial Concentrations (µg/L) | M/V (g/l) | SBET (m2/g) | Adsorption Capacity (µg/g) | Ref. |
---|---|---|---|---|---|---|
Activated carbon/nanoscale zero-valent iron (NZVI/AC) | TCM | 42.19 | 1.80 | 87.4 | 20.86 | [16] |
BDCM | 43.93 | 22.45 | ||||
DBCM | 45.71 | 24.58 | ||||
TBM | 10.18 | 5.57 | ||||
Humin | TCM | 250 | 10 | 84.75 | 18.65 | [43] |
BDCM | 19.25 | |||||
DBCM | 19.5 | |||||
TBM | 20.58 | |||||
Carbon nanotubes (CNTs) | TCM | 200 | 0.40 | 225 to 295 | 110 | [32] |
BDCM | 60 | |||||
DBCM | 50 | |||||
TBM | 50 | |||||
TCM | 3200 | 0.40 | 1510 | |||
BDCM | 780 | |||||
DBCM | 720 | |||||
TBM | 640 | |||||
Powdered activated carbon | TCM | 200 | 0.40 | 900 | 63 | |
BDCM | 89 | |||||
DBCM | 108 | |||||
TBM | 119 | |||||
TCM | 3200 | 0.40 | 980 | |||
BDCM | 1200 | |||||
DBCM | 1290 | |||||
TBM | 1520 | |||||
Nanoscale zero-valent iron/silver@activated carbon-reduced graphene oxide ((nZVI/Ag@AC-RGO) | TCM | 800 | 0.20 | 770.54 | 3814.7 | [13] |
BDCM | 3973.4 | |||||
DBCM | 4000 | |||||
TBM | 4000 | |||||
GAC A (acid washing carbon) | TCM | 1000 | 0.50 | 671 | 1710 | [14] |
TBM | 1910 | |||||
GAC B (coconut shell carbon) | TCM | 1063 | 1750 | |||
TBM | 1910 | |||||
GAC C (briquetting carbon) | TCM | 927 | 1610 | |||
TBM | 1820 | |||||
GAC D (coal carbon) | TCM | 1097 | 1580 | |||
TBM | 1860 | |||||
GAC E (fibred carbon) | TCM | 1059 | 1720 | |||
TBM | 1870 | |||||
Multiwalled carbon nanotubes (MWCNTs) | TCM | 1600 | 0.40 | 225 to 295 | 820 | [39] |
BDCM | 470 | |||||
DBCM | 440 | |||||
TBM | 390 | |||||
Chitosan-modified coconut shell activated carbon (CS/CAC) | TCM | 15.46 | 0.25 | 968 | 39.91 | This article |
BDCM | 16.2 | 38.07 | ||||
DBCM | 16.47 | 36.1 | ||||
TBM | 18.16 | 37.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.A.S.; Zhai, H.; Khu, S.-T. Enhancement of Trihalomethane Adsorption Capacity Using Chitosan-Modified Coconut Shell Activated Carbon: Adsorption Characteristics and Mechanisms. Water 2024, 16, 3304. https://doi.org/10.3390/w16223304
Ahmed SAS, Zhai H, Khu S-T. Enhancement of Trihalomethane Adsorption Capacity Using Chitosan-Modified Coconut Shell Activated Carbon: Adsorption Characteristics and Mechanisms. Water. 2024; 16(22):3304. https://doi.org/10.3390/w16223304
Chicago/Turabian StyleAhmed, Saber A. S., Hongyan Zhai, and Soon-Thiam Khu. 2024. "Enhancement of Trihalomethane Adsorption Capacity Using Chitosan-Modified Coconut Shell Activated Carbon: Adsorption Characteristics and Mechanisms" Water 16, no. 22: 3304. https://doi.org/10.3390/w16223304
APA StyleAhmed, S. A. S., Zhai, H., & Khu, S. -T. (2024). Enhancement of Trihalomethane Adsorption Capacity Using Chitosan-Modified Coconut Shell Activated Carbon: Adsorption Characteristics and Mechanisms. Water, 16(22), 3304. https://doi.org/10.3390/w16223304