The Ecological Effect of Ship Canals on Wetlands
Abstract
:1. Introduction
2. Terminologies Used
3. Economic Benefits
4. Wetland Hydrology
4.1. Hydrological Connectivity
4.2. Hydrological Elements
4.2.1. Flow Volume
4.2.2. Flow Exchange
4.2.3. Velocity
4.2.4. Water Level
4.2.5. Climate Change Response
5. Wetland Pollutant
5.1. Nutrients Variation
5.2. Salt Intrusion
5.3. Sediment Pollutants
6. Wetland Botany
6.1. Dislocation and Biomass Loss
6.2. Biodiversity Decreased
7. Wetland Animal
7.1. Biomass Reduction
7.2. Habitat Loss
7.3. Non-Native Species Invasion
8. Potential Mitigation Strategies
8.1. Design and Construction Phase
8.2. Operational Phase
9. Conclusions
9.1. Summary
9.2. Future Research Prospects
Author Contributions
Funding
Conflicts of Interest
References
- JTJ/T 204-1996; The Standard of Basic Technical Terms for Waterway Engineering. People’s Transportation Press: Beijing, China, 1996.
- Batista-Andrade, J.A.; Caldas, S.S.; Batista, R.M.; Castro, I.B.; Fillmann, G.; Primel, E.G. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama. Environ. Pollut. 2018, 234, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Revenga, C.B.J.; Henninger, N.; Kassem, K.; Payne, R. (Eds.) Pilot Analysis of Global Ecosystems: Freshwater Systems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Yang, J.; Zhang, J.C.; Zhuang, J.Y. Multi-resources data based environment assessment of the Grand Canal in Beijing with CEAI model. Procedia Environ. Sci. 2012, 13, 660–669. [Google Scholar] [CrossRef]
- Zhang, Y. The Research on the Function and Social Influence of the Grand Canal in the Northern Song. Ph.D. Thesis, Zhengzhou University, Zhengzhou, China, 2021. [Google Scholar]
- El-Taybany, A.; Moustafa, M.M.; Mansour, M.; Tawfik, A.A. Quantification of the exhaust emissions from seagoing ships in Suez Canal waterway. Alex. Eng. J. 2019, 58, 19–25. [Google Scholar] [CrossRef]
- Wan, Z.; Su, Y.; Li, Z.; Zhang, X.; Zhang, Q.; Chen, J. Analysis of the impact of Suez Canal blockage on the global shipping network. Ocean Coast. Manag. 2023, 245, 106868. [Google Scholar] [CrossRef]
- Montero Llácer, F.J. Panamanian maritime sector management. Mar. Policy 2004, 28, 283–295. [Google Scholar] [CrossRef]
- Guivier, E.; Gilles, A.; Pech, N.; Duflot, N.; Tissot, L.; Chappaz, R. Canals as ecological corridors and hybridization zones for two cyprinid species. Hydrobiologia 2019, 830, 1–16. [Google Scholar] [CrossRef]
- Geyer, B.; Monchambert, J.Y. Canals and water supply in the lower Euphrates valley. Water Hist. 2015, 7, 11–37. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, N.; Xiao, Y.; Cheng, J.; Tang, W. Study on environmental impact identification and evaluation index system of major canal projects. J. Environ. Eng. Technol. 2022, 12, 1860–1866. (In Chinese) [Google Scholar]
- Schiller, I. Maps of Great Infrastructure Development Projects Around the World; Schiller Institute Inc.: Washington, DC, USA, 2018. [Google Scholar]
- Rao, D.V.S.; Rao, K.S.; Iyer, C.S.P.; Chittibabu, P. Possible ecological consequences from the Sethu Samudram Canal Project, India. Mar. Pollut. Bull. 2008, 56, 170–186. [Google Scholar] [CrossRef]
- Bucher, E.H.; Huszar, P.C. Critical environmental costs of the Paraguay-Paraná waterway project in South America. Ecol. Econ. 1995, 15, 3–9. [Google Scholar] [CrossRef]
- Ceylan Baba, E. The risks of mega urban projects creating a dystopia: Canal Istanbul. City Environ. Interact. 2020, 6, 100039. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, X.; Deng, Y. Environmental pollution and shipping feasibility of the Nicaragua Canal. Mar. Pollut. Bull. 2016, 113, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, G.W.Y.; Qu, C.; Li, K.X. Impact of the Carat Canal on the evolution of hub ports under China’s Belt and Road initiative. Transp. Res. Part E Logist. Transp. Rev. 2018, 117, 96–107. [Google Scholar] [CrossRef]
- Xiao, J.Z.; Shen, J.Y.; Ma, S.K.; Li, Z.F.; Duan, Z.H.; Cheng, Y.F.; Xiao, X.W. Multi-path Utilization of Earthwork in Pinglu Canal: Basic Problems and Solutions. Strateg. Study CAE 2024, 26, 7–14. (In Chinese) [Google Scholar] [CrossRef]
- Taylov, V.V.G.; Yang, J. Technical and Economic Issues of Water Supply to Waterways and Cross Range Canals. Port Waterw. Eng. 1979, 27–31. (In Chinese) [Google Scholar] [CrossRef]
- Jing, Y. Study on the Ecological Environmental Change of the Jing-Hang Grand Canal. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2012. [Google Scholar]
- Bujaki, M.L. Parallel Challenges Building the New York and Rideau Canals. Int. J. Hist. Eng. Technol. 2014, 84, 30–51. [Google Scholar] [CrossRef]
- Lin, D. The New Suez Canal Channel and Its Requirements for Ship Dimensions and Searchlights. Ship Boat 2016, 27, 97–101. (In Chinese) [Google Scholar]
- Yang, L. Operation of the Moscow Canal in Russia. Water Resour. Dev. Res. 2002, 2, 60–62. [Google Scholar]
- Feng, S. Introduction to the Kiel Canal—Precautions for Passing Through the Canal. Mar. Technol. 2023, 22–25. (In Chinese) [Google Scholar]
- Liu, J. Comparison of Navigation Services between the Subei Canal and Famous Rivers at Home and Abroad. China Water Transp. 2021, 85–88. (In Chinese) [Google Scholar] [CrossRef]
- MoC. The Panama Canal; MoC: Beijing, China, 2014. [Google Scholar]
- Lv, Y.; Jiang, X. Route selection scheme for water transportation passage of Hunan-Guangxi Canal. Port Waterw. Eng. 2023, 132–137+192. (In Chinese) [Google Scholar] [CrossRef]
- Gao, S.; Jiao, F. The necessity and feasibility of constructing the Gan Yue Canal. China Water Transp. 2020, 27–29. (In Chinese) [Google Scholar] [CrossRef]
- Cathcart, R.B. Kra Canal (Thailand) excavation by nuclear-powered dredges. Int. J. Glob. Environ. Issues 2008, 8, 248–255. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Day, J.W.; Shaffer, G.P.; Cahoon, D.R.; DeLaune, R.D. Canals, backfilling and wetland loss in the Mississippi Delta. Estuar. Coast. Shelf Sci. 2019, 227, 106325. [Google Scholar] [CrossRef]
- Meyer, A.; Huete-Pérez, J.A. Conservation: Nicaragua Canal could wreak environmental ruin. Nature 2014, 506, 287–289. [Google Scholar] [CrossRef]
- Gross, M. Will the Nicaragua Canal connect or divide? Curr. Biol. 2014, 24, R1023–R1025. [Google Scholar] [CrossRef]
- Piper, A.T.; Wright, R.M.; Kemp, P.S. The influence of attraction flow on upstream passage of European eel (Anguilla anguilla) at intertidal barriers. Ecol. Eng. 2012, 44, 329–336. [Google Scholar] [CrossRef]
- Rahel, F.J. Intentional Fragmentation as a Management Strategy in Aquatic Systems. BioScience 2013, 63, 362–372. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Zenetos, A.; Belchior, C.; Cardoso, A.C. Invading European Seas: Assessing pathways of introduction of marine aliens. Ocean Coast. Manag. 2013, 76, 64–74. [Google Scholar] [CrossRef]
- Gabel, F.; Lorenz, S.; Stoll, S. Effects of ship-induced waves on aquatic ecosystems. Sci. Total Environ. 2017, 601–602, 926–939. [Google Scholar] [CrossRef] [PubMed]
- Merchant, N.D.; Pirotta, E.; Barton, T.R.; Thompson, P.M. Monitoring ship noise to assess the impact of coastal developments on marine mammals. Mar. Pollut. Bull. 2014, 78, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y.; Cooke, S.J.; Wolter, C.; Young, N.; Bennett, J.R. On the conservation value of historic canals for aquatic ecosystems. Biol. Conserv. 2020, 251, 108764. [Google Scholar] [CrossRef]
- Finlayson, C.M. Section Introduction: Wetland Ecology. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Oxford, UK, 2022; pp. 1–11. [Google Scholar]
- Wu, H.; Chen, J.; Xu, J.; Zeng, G.; Sang, L.; Liu, Q.; Yin, Z.; Dai, J.; Yin, D.; Liang, J.; et al. Effects of dam construction on biodiversity: A review. J. Clean. Prod. 2019, 221, 480–489. [Google Scholar] [CrossRef]
- Moryadee, S.; Gabriel, S.A.; Rehulka, F.O. The influence of the Panama Canal on global gas trade. J. Nat. Gas Sci. Eng. 2014, 20, 161–174. [Google Scholar] [CrossRef]
- Liu, X.; Wang, T.; Wu, X. Influence of Pinglu Canal construction trasnportation pattern of access to sea in southwest China. Port Waterw. Eng. 2023, 15–22. (In Chinese) [Google Scholar] [CrossRef]
- Andersen, T.; Hove, J.H.; Fagerholt, K.; Meisel, F. Scheduling ships with uncertain arrival times through the Kiel Canal. Marit. Transp. Res. 2021, 2, 100008. [Google Scholar] [CrossRef]
- Zeng, Q.; Lu, T.; Lin, K.-C.; Yuen, K.F.; Li, K.X. The competitiveness of Arctic shipping over Suez Canal and China-Europe railway. Transp. Policy 2020, 86, 34–43. [Google Scholar] [CrossRef]
- Medina, J.; Kim, J.-H.; Lee, E. Did the Panama Canal expansion benefit small U.S. ports? Marit. Transp. Res. 2021, 2, 100013. [Google Scholar] [CrossRef]
- Chen, S.; Li, J.; Yao, Q. Canal and trade: Transportation infrastructure and market integration in China, 1780–1911. J. Comp. Econ. 2024. [Google Scholar] [CrossRef]
- Feyrer, J. Distance, trade, and income—The 1967 to 1975 closing of the Suez canal as a natural experiment. J. Dev. Econ. 2021, 153, 102708. [Google Scholar] [CrossRef]
- Tseng, P.-H.; Pilcher, N. Estimating the emissions potential of marine transportation using the Kra Canal. Marit. Transp. Res. 2022, 3, 100041. [Google Scholar] [CrossRef]
- Graham, N.E.; Georgakakos, K.P.; Vargas, C.; Echevers, M. Simulating the value of El Niño forecasts for the Panama Canal. Adv. Water Resour. 2006, 29, 1665–1677. [Google Scholar] [CrossRef]
- William, J.M.; James, G.G. Wetlands; WILEY Press: Hoboken, NJ, USA, 2000; pp. 107–155. [Google Scholar]
- Lefebvre, G.; Germain, C.; Poulin, B. Contribution of rainfall vs. water management to Mediterranean wetland hydrology: Development of an interactive simulation tool to foster adaptation to climate variability. Environ. Model. Softw. 2015, 74, 39–47. [Google Scholar] [CrossRef]
- Ward, J.V. The Four-Dimensional Nature of Lotic Ecosystems. J. N. Am. Benthol. Soc. 1989, 8, 2–8. [Google Scholar] [CrossRef]
- Yan, S.; Liu, Q.; Sun, T.; Liang, L.; Li, S.; Yuan, X.; Li, M. Research Progress in Wetland Ecohydrological Processes and Their Simulation. Wetl. Sci. 2021, 19, 98–105. (In Chinese) [Google Scholar]
- Robinson, S.J.; Souter, N.J.; Bean, N.G.; Ross, J.V.; Thompson, R.M.; Bjornsson, K.T. Statistical description of wetland hydrological connectivity to the River Murray in South Australia under both natural and regulated conditions. J. Hydrol. 2015, 531, 929–939. [Google Scholar] [CrossRef]
- Bourgeois, B.; González, E.; Vanasse, A.; Aubin, I.; Poulin, M. Spatial processes structuring riparian plant communities in agroecosystems: Implications for restoration. Ecol. Appl. 2016, 26, 2103–2115. [Google Scholar] [CrossRef]
- Kiss, T.; Amissah, G.J.; Fiala, K. Bank Processes and Revetment Erosion of a Large Lowland River: Case Study of the Lower Tisza River, Hungary. Water 2019, 11, 1313. [Google Scholar] [CrossRef]
- Li, Y.; Šimůnek, J.; Zhang, Z.; Huang, M.; Ni, L.; Zhu, L.; Hua, J.; Chen, Y. Water flow and nitrate transport through a lakeshore with different revetment materials. J. Hydrol. 2015, 520, 123–133. [Google Scholar] [CrossRef]
- Sun, R.; Wang, D.; Cao, H.; Wang, Y.; Lu, Z.; Xia, J. Ecological pervious concrete in revetment and restoration of coastal Wetlands: A review. Constr. Build. Mater. 2021, 303, 124590. [Google Scholar] [CrossRef]
- Arnold, E.; Linke, H.; Franke, R. Optimal Control Application for Operational Water Management of a Canal System. IFAC Proc. Vol. 1998, 31, 781–786. [Google Scholar] [CrossRef]
- Segovia, P.; Rajaoarisoa, L.; Nejjari, F.; Puig, V.; Duviella, E. Decentralized control of inland navigation networks with distributaries: Application to navigation canals in the north of France. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 3341–3346. [Google Scholar]
- SCA. Suez Canal Traffic Statistics Annual Report 2019; SCA: Ismailia, Egypt, 2019. [Google Scholar]
- Carse, A. Nature as infrastructure: Making and managing the Panama Canal watershed. Soc. Stud. Sci. 2012, 42, 539–563. [Google Scholar] [CrossRef]
- Xie, S. Influence of Pinglu Canal on salty tide stemming flow to Pearl River Delta. Guangxi Water Resour. Hydropower Eng. 2020, 21–24. (In Chinese) [Google Scholar] [CrossRef]
- Gao, C.; Zhao, K.; Long, X. Analysis of water resources conditions of Jiangxi-Guangdong Canal. Port Waterw. Eng. 2022, 135–138. (In Chinese) [Google Scholar] [CrossRef]
- Kong, X.; He, Q.; Yang, B.; He, W.; Xu, F.; Janssen, A.B.G.; Kuiper, J.J.; van Gerven, L.P.A.; Qin, N.; Jiang, Y.; et al. Hydrological regulation drives regime shifts: Evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Glob. Change Biol. 2017, 23, 737–754. [Google Scholar] [CrossRef]
- Desquesnes, G.; Lozenguez, G.; Doniec, A.; Duviella, É. Distributed MDP for water resources planning and management in inland waterways. IFAC-Pap. 2017, 50, 6576–6581. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Mao, W.; Yan, R.; Tao, Y.; Ling, M.; Ji, Y. Hydrological Regime Analysis of Breeding Period for Four Major Chinese Carps in Downstream of Xinjiang River After Cascade Junction Operation. Water Resour. Power 2023, 41, 18–21. (In Chinese) [Google Scholar]
- Zhu, L.; Wang, X.; Huang, Y.; Liu, B.; Li, Z. Study on Classification Arrangement and Hydraulic Characteristics of Water-Saving Ship Lock Under Ultra-high Head. In Proceedings of PIANC Smart Rivers 2022; Springer: Singapore, 2023; pp. 1553–1564. [Google Scholar]
- Jalili, A.; Li, S.S. Two-layer hydraulic exchange flow through the Burlington Ship Canal. Can. J. Civ. Eng. 2010, 37, 1631–1640. [Google Scholar] [CrossRef]
- SÖZer, A.; ÖZsoy, E. Water Exchange through Canal İstanbul and Bosphorus Strait. Mediterr. Mar. Sci. 2017, 18, 77–86. [Google Scholar] [CrossRef]
- Cieśliński, R.; Chlost, I.; Szydłowski, M. Impact of new, navigable canal through the Vistula spit on the hydrologic balance of the Vistula lagoon (Baltic Sea). J. Mar. Syst. 2024, 241, 103908. [Google Scholar] [CrossRef]
- Li, H.; Zhang, X.; Zhang, L.; Xing, H.; Shi, H. Study on Hydrodynamic Changes and Sediment Diffusion Caused by Dredging Project in Section III Channel of Tieshan Port. Guangxi Sci. 2022, 29, 52–60. (In Chinese) [Google Scholar]
- Walker, K. Serial Weirs, Cumulative Effects: The Lower River Murray, Australia. In Ecology of Desert Rivers; Kingsford, R., Ed.; Cambridge University Press: Cambridge, UK, 2006; pp. 248–279. [Google Scholar]
- Bellmore, J.R.; Pess, G.R.; Duda, J.J.; O’Connor, J.E.; East, A.E.; Foley, M.M.; Wilcox, A.C.; Major, J.J.; Shafroth, P.B.; Morley, S.A.; et al. Conceptualizing Ecological Responses to Dam Removal: If You Remove It, What’s to Come? Bioscience 2019, 69, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Maeck, A.; Lorke, A. Ship-lock–induced surges in an impounded river and their impact on subdaily flow velocity variation. River Res. Appl. 2014, 30, 494–507. [Google Scholar] [CrossRef]
- Ren, X.; He, S.; Li, B. An Erosion-siltation numerical Simulation of Maowei Sea Ecological Restoration Engineering. Trans. Oceanol. Limnol. 2016, 20–28. (In Chinese) [Google Scholar]
- Pour, F.K.; Segovia, P.; Etienne, L.; Duviella, E. An MHE-based MPC strategy for simultaneous energy generation maximization and water level management in inland waterways. IFAC-Pap. 2022, 55, 20–26. [Google Scholar] [CrossRef]
- Karimi Pour, F.; Segovia, P.; Duviella, E.; Puig, V. A two-layer control architecture for operational management and hydroelectricity production maximization in inland waterways using model predictive control. Control Eng. Pract. 2022, 124, 105172. [Google Scholar] [CrossRef]
- Yang, J.; Yu, G.; Wang, L. Flow velocity fluctuation law in restricted middle navigable channel with different ship lock discharge modes. Port Waterw. Eng. 2022, 106–110. (In Chinese) [Google Scholar] [CrossRef]
- Afenyo, M.; Jiang, C.; Ng, A.K.Y. Climate change and Arctic shipping: A method for assessing the impacts of oil spills in the Arctic. Transp. Res. Part D Transp. Environ. 2019, 77, 476–490. [Google Scholar] [CrossRef]
- Armstrong, J.; Preston, J. Alternative railway futures: Growth and/or specialisation? J. Transp. Geogr. 2011, 19, 1570–1579. [Google Scholar] [CrossRef]
- Rose, C.B. Chapter 15—Canals—The past, the present and potential futures. In Sustainable Water Engineering; Charlesworth, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 277–292. [Google Scholar]
- Munoz, D.F.; Moftakhari, H.; Kumar, M.; Moradkhani, H. Compound Effects of Flood Drivers, Sea Level Rise, and Dredging Protocols on Vessel Navigability and Wetland Inundation Dynamics. Front. Mar. Sci. 2022, 9, 906376. [Google Scholar] [CrossRef]
- Bertels, D.; Willems, P. Climate change impact on salinization of drinking water inlets along the Campine Canals, Belgium. J. Hydrol. Reg. Stud. 2022, 42, 101129. [Google Scholar] [CrossRef]
- Jonkeren, O.; Rietveld, P.; van Ommeren, J.; te Linde, A. Climate change and economic consequences for inland waterway transport in Europe. Reg. Environ. Change 2014, 14, 953–965. [Google Scholar] [CrossRef]
- Waltham, N.J.; Connolly, R.M. Global extent and distribution of artificial, residential waterways in estuaries. Estuar. Coast. Shelf Sci. 2011, 94, 192–197. [Google Scholar] [CrossRef]
- Le, L.-T.; Dao, T.-V.-H.; Tran, G.-H.N.; Nguyen, T.-M.T.; Lam, M.-Q.; Vo, T.-B.T.; Nguyen, P.-T.; Tran, Y.-N.P.; Nguyen, N.T.; Lens, P.N.L.; et al. Investigation of canal water quality, sanitation, and hygiene amongst residents living along the side of the canals—A cross—Sectional epidemiological survey at Ho Chi Minh city, Vietnam. Case Stud. Chem. Environ. Eng. 2024, 9, 100700. [Google Scholar] [CrossRef]
- Yang, G.; Jinming, Z. Study on Countermeasures against Water Pollution in Shandong Section of Beijing-Hangzhou Canal. China Water Transp. 2012, 12, 137–138. (In Chinese) [Google Scholar]
- Liu, J.; Lv, B.; Xing, Y.; Li, S. 3D flow structure in entrance area of ship lock approach channel and sediment reduction measures. Port Waterw. Eng. 2022, 126–131+222. (In Chinese) [Google Scholar] [CrossRef]
- Maavara, T.; Parsons, C.T.; Ridenour, C.; Stojanovic, S.; Dürr, H.H.; Powley, H.R.; Van Cappellen, P. Global phosphorus retention by river damming. Proc. Natl. Acad. Sci. USA 2015, 112, 15603–15608. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, W.; Huisman, J.; Maberly, S.C.; Zhang, J.; Yu, J.; Chen, Y.; Tonina, D.; Yi, Q. Hydropower reservoirs on the upper Mekong River modify nutrient bioavailability downstream. Natl. Sci. Rev. 2020, 7, 1449–1457. [Google Scholar] [CrossRef]
- Neal, C.; Martin, E.; Neal, M.; Hallett, J.; Wickham, H.D.; Harman, S.A.; Armstrong, L.K.; Bowes, M.J.; Wade, A.J.; Keay, D. Sewage effluent clean-up reduces phosphorus but not phytoplankton in lowland chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal. Sci. Total Environ. 2010, 408, 5306–5316. [Google Scholar] [CrossRef]
- Lv, X.; Wu, S.; Zhang, Y.; Dai, J.; Li, D. Progress of ecology and environment effect of water diversion project. J. Water Resour. Water Eng. 2015, 26, 38–45. (In Chinese) [Google Scholar]
- Hosper, H.; Meyer, M.L. Control of phosphorus loading and flushing as restoration methods for Lake Veluwe, The Netherlands. Aquat. Ecol. 1986, 20, 183–194. [Google Scholar] [CrossRef]
- Lee, S.O.; Kim, S.; Kim, M.; Lim, K.J.; Jung, Y. The Effect of Hydraulic Characteristics on Algal Bloom in an Artificial Seawater Canal: A Case Study in Songdo City, South Korea. Water 2014, 6, 399–413. [Google Scholar] [CrossRef]
- Jin, X.; Lan, X.; Sun, H.; Hu, B.; Wang, B. Assessment of water quality using benthic diatom and macroinvertebrate assemblages: A case study in an East China canal. Water Biol. Secur. 2024, 3, 100231. [Google Scholar] [CrossRef]
- Huang, T.; Xu, J.; Cai, D. Efficiency of active barriers attaching biofilm as sediment capping to eliminate the internal nitrogen in eutrophic lake and canal. J. Environ. Sci. 2011, 23, 738–743. [Google Scholar] [CrossRef]
- Yi, X.; Jie, L.; Shengfa, Y.; Wenjie, L. Impact of channel deepening on the saltwater intrusion process in the Qinjiang River estuary, Southeast China. Estuar. Coast. Shelf Sci. 2024, 300, 108718. [Google Scholar] [CrossRef]
- Biemond, B.; Vuik, V.; Lambregts, P.; de Swart, H.E.; Dijkstra, H.A. Salt intrusion and effective longitudinal dispersion in man-made canals, a simplified model approach. Estuar. Coast. Shelf Sci. 2024, 298, 108654. [Google Scholar] [CrossRef]
- Steinhagen, S.; Karez, R.; Weinberger, F. Surveying seaweeds from the Ulvales and Fucales in the world’s most frequently used artificial waterway, the Kiel Canal. Bot. Mar. 2019, 62, 51–61. [Google Scholar] [CrossRef]
- Abril, J.M.; Abdel-Aal, M.M. A modelling study on hydrodynamics and pollutant dispersion in the Suez Canal. Ecol. Model. 2000, 128, 1–17. [Google Scholar] [CrossRef]
- Shetaia, S.A.; Nasr, R.A.; Lasheen, E.S.R.; Dar, M.A.; Al-Mur, B.A.; Zakaly, H.M.H. Assessment of heavy metals contamination of sediments and surface waters of Bitter lake, Suez Canal, Egypt: Ecological risks and human health. Mar. Pollut. Bull. 2023, 192, 115096. [Google Scholar] [CrossRef]
- Valdelamar-Villegas, J.; Gomez, J.; de la Rosa, J.D.; Olivero-Verbel, J. Multi-elemental composition and toxicity of bottom sediments from Panama Canal watershed. Ocean Coast. Manag. 2021, 204, 105459. [Google Scholar] [CrossRef]
- Martins, V.; da Silva, E.F.; Sequeira, C.; Rocha, F.; Duarte, A.C. Evaluation of the ecological effects of heavy metals on the assemblages of benthic foraminifera of the canals of Aveiro (Portugal). Estuar. Coast. Shelf Sci. 2010, 87, 293–304. [Google Scholar] [CrossRef]
- Dubovina, M.; Krčmar, D.; Grba, N.; Watson, M.A.; Rađenović, D.; Tomašević-Pilipović, D.; Dalmacija, B. Distribution and ecological risk assessment of organic and inorganic pollutants in the sediments of the transnational Begej canal (Serbia-Romania). Environ. Pollut. 2018, 236, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Martinez, A.; Hornbuckle, K.C.; Mattes, T.E. Potential for polychlorinated biphenyl biodegradation in sediments from Indiana Harbor and Ship Canal. Int. Biodeterior. Biodegrad. 2014, 89, 50–57. [Google Scholar] [CrossRef]
- Peverly, A.A.; O’Sullivan, C.; Liu, L.-Y.; Venier, M.; Martinez, A.; Hornbuckle, K.C.; Hites, R.A. Chicago’s Sanitary and Ship Canal sediment: Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, brominated flame retardants, and organophosphate esters. Chemosphere 2015, 134, 380–386. [Google Scholar] [CrossRef]
- Leslie, H.A.; Brandsma, S.H.; van Velzen, M.J.M.; Vethaak, A.D. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 2017, 101, 133–142. [Google Scholar] [CrossRef]
- Mahoney, T. The Concentration of Microplastics Compared to Relative Population Proximity and Basin Residence Times in Hood Canal and Whidbey Basin in Puget Sound, WA; University of Washington: Seattle, WA, USA, 2017. [Google Scholar]
- Jin, X.; Fu, X.; Lu, W.; Wang, H. The effects of riverside cities on microplastics in river water: A case study on the Southern Jiangsu Canal, China. Sci. Total Environ. 2023, 858, 159783. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Zhai, J.J.; Jiang, Z.B.; Han, J.B. Numerical simulation of saltwater intrusion in a lock with long canal adopting coupled box model and three-dimensional model. In Proceedings of the 36th IAHR World Congress: Deltas of the Future and What Happens Upstream, The Hague, The Netherlands, 28 June–3 July 2015; pp. 181–190. [Google Scholar]
- Weiler, O.; Van De Kerk, A.J.; Meeuse, K.J. Preventing salt intrusion through shipping locks: Recent innovations and results from a pilot setup. In Proceedings of the 36th IAHR World Congress: Deltas of the Future and What Happens Upstream, The Hague, The Netherlands, 28 June–3 July 2015; pp. 233–242. [Google Scholar]
- MacCready, P.; Geyer, W.R. Advances in Estuarine Physics. Annu. Rev. Mar. Sci. 2010, 2, 35–58. [Google Scholar] [CrossRef]
- Oldeman, A.M.; Kamath, S.; Masterov, M.V.; O’Mahoney, T.S.D.; van Heijst, G.J.F.; Kuipers, J.A.M.; Buist, K.A. Numerical study of bubble screens for mitigating salt intrusion in sea locks. Int. J. Multiph. Flow 2020, 129, 103321. [Google Scholar] [CrossRef]
- Ytreberg, E.; Hansson, K.; Hermansson, A.L.; Parsmo, R.; Lagerström, M.; Jalkanen, J.-P.; Hassellöv, I.-M. Metal and PAH loads from ships and boats, relative other sources, in the Baltic Sea. Mar. Pollut. Bull. 2022, 182, 113904. [Google Scholar] [CrossRef]
- Zhu, G. Pollution Characteristics of the Sendiment of the Hangzhou Section of the Grand Canal, China, and Its Pollution Releasing Mechanism and Ecological Effects. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2001. [Google Scholar]
- Rapaglia, J.; Zaggia, L.; Parnell, K.; Lorenzetti, G.; Vafeidis, A.T. Ship-wake induced sediment remobilization: Effects and proposed management strategies for the Venice Lagoon. Ocean Coast. Manag. 2015, 110, 1–11. [Google Scholar] [CrossRef]
- Norén, A.; Karlfeldt Fedje, K.; Strömvall, A.-M.; Rauch, S.; Andersson-Sköld, Y. Integrated assessment of management strategies for metal-contaminated dredged sediments—What are the best approaches for ports, marinas and waterways? Sci. Total Environ. 2020, 716, 135510. [Google Scholar] [CrossRef] [PubMed]
- Rapaglia, J.; Zaggia, L.; Ricklefs, K.; Gelinas, M.; Bokuniewicz, H. Characteristics of ships’ depression waves and associated sediment resuspension in Venice Lagoon, Italy. J. Mar. Syst. 2011, 85, 45–56. [Google Scholar] [CrossRef]
- Prygiel, E.; Superville, P.J.; Dumoulin, D.; Lizon, F.; Prygiel, J.; Billon, G. On biogeochemistry and water quality of river canals in Northern France subject to daily sediment resuspension due to intense boating activities. Environ. Pollut. 2015, 197, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Norström, K.; Wang, K.; Hornbuckle, K.C. Polychlorinated biphenyls in the surficial sediment of Indiana Harbor and Ship Canal, Lake Michigan. Environ. Int. 2010, 36, 849–854. [Google Scholar] [CrossRef]
- Martinez, A.; Hornbuckle, K.C. Record of PCB congeners, sorbents and potential toxicity in core samples in Indiana Harbor and Ship Canal. Chemosphere 2011, 85, 542–547. [Google Scholar] [CrossRef]
- Jiwarungrueangkul, T.; Phaksopa, J.; Sompongchaiyakul, P.; Tipmanee, D. Seasonal microplastic variations in estuarine sediments from urban canal on the west coast of Thailand: A case study in Phuket province. Mar. Pollut. Bull. 2021, 168, 112452. [Google Scholar] [CrossRef]
- Zhuang, L.; Zhang, Y.; Xue, Y.; Ren, Y.; He, J.; Sun, H. Influence of ongoing discharge from multiple wastewater treatment plants on microplastic patterns in small-scale receiving rivers. Sci. Total Environ. 2024, 932, 172880. [Google Scholar] [CrossRef]
- Priyanka, R.; Govindarajulu, B. Transportation of microplastics from the rural area into the urban area of the Kosasthalaiyar River in the metropolitan city of Chennai. Reg. Stud. Mar. Sci. 2023, 66, 103151. [Google Scholar] [CrossRef]
- Day, J.W.; Britsch, L.D.; Hawes, S.R.; Shaffer, G.P.; Reed, D.J.; Cahoon, D. Pattern and process of land loss in the Mississippi Delta: A Spatial and temporal analysis of wetland habitat change. Estuaries 2000, 23, 425–438. [Google Scholar] [CrossRef]
- Bellafiore, D.; Zaggia, L.; Broglia, R.; Ferrarin, C.; Barbariol, F.; Zaghi, S.; Lorenzetti, G.; Manfè, G.; De Pascalis, F.; Benetazzo, A. Modeling ship-induced waves in shallow water systems: The Venice experiment. Ocean Eng. 2018, 155, 227–239. [Google Scholar] [CrossRef]
- Lund-Hansen, L.C.; Petersson, M.; Nurjaya, W. Vertical sediment fluxes and wave-induced sediment resuspension in a shallow-water coastal lagoon. Estuaries 1999, 22, 39–46. [Google Scholar] [CrossRef]
- Mao, L. Study of the Influences of Ship Waves on Cross-Sectional Evolution in Navigable Canals. Ph.D. Thesis, Southeast University, Nanjing, China, 2020. [Google Scholar]
- Li, J.; Shi, B. Research Progress of Ecological Shore Protection for Inland Waterways Based on Ship Running Wave Abatement Function. China Water Transp. 2019, 19, 111–113. (In Chinese) [Google Scholar]
- Nanson, G.C.; Von Krusenstierna, A.; Bryant, E.A.; Renilson, M.R. Experimental measurements of river-bank erosion caused by boat-generated waves on the gordon river, Tasmania. Regul. Rivers Res. Manag. 1994, 9, 1–14. [Google Scholar] [CrossRef]
- Asplund, T.R.; Cook, C.M. Effects of motor boats on submerged aquatic macrophytes. J. Lake Reserv. Manag. 1997, 13, 1–12. [Google Scholar] [CrossRef]
- Murphy, K.J.; Eaton, J.W. Effects of Pleasure-Boat Traffic on Macrophyte Growth in Canals. J. Appl. Ecol. 1983, 20, 713–729. [Google Scholar] [CrossRef]
- Wang, Y. Evaluation and Restoration Technology of Mangrove Ecosystem; Science Press: Beijing, China, 2013. [Google Scholar]
- Greenwood, E.F. The changing flora of the Lancaster Canal in West Lancaster (v.c. 60). Watsonia 2005, 25, 231–253. [Google Scholar]
- Silinski, A.; Heuner, M.; Schoelynck, J.; Puijalon, S.; Schröder, U.; Fuchs, E.; Troch, P.; Bouma, T.J.; Meire, P.; Temmerman, S. Effects of Wind Waves versus Ship Waves on Tidal Marsh Plants: A Flume Study on Different Life Stages of Scirpus maritimus. PLoS ONE 2015, 10, e0118687. [Google Scholar] [CrossRef]
- Shao, D.; Zhou, W.; Bouma, T.J.; Asaeda, T.; Wang, Z.B.; Liu, X.; Sun, T.; Cui, B. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure. Ann. Bot. 2020, 125, 291–300. [Google Scholar] [CrossRef]
- Ewing, K.; McKee, K.; Mendelssohn, I.; Hester, M. A comparison of indicators of sublethal salinity stress in the salt marsh grass, Spartina patens (Ait.) Muhl. Aquat. Bot. 1995, 52, 59–74. [Google Scholar] [CrossRef]
- Heinselman, M.L. Restoring fire to the ecosystems of the Boundary Waters Canoe Area, Minnesota. Quat. Res. 1973, 3, 329–382. (In Chinese) [Google Scholar] [CrossRef]
- Boedeltje, G.; Smolders, A.J.P.; Roelofs, J.G.M.; Van Groenendael, J.M. Constructed shallow zones along navigation canals: Vegetation establishment and change in relation to environmental characteristics. Aquat. Conserv. Mar. Freshw. Ecosyst. 2001, 11, 453–471. [Google Scholar] [CrossRef]
- Salgado, J.; Vélez, M.I.; González-Arango, C.; Rose, N.L.; Yang, H.; Huguet, C.; Camacho, J.S.; O’Dea, A. A century of limnological evolution and interactive threats in the Panama Canal: Long-term assessments from a shallow basin. Sci. Total Environ. 2020, 729, 138444. [Google Scholar] [CrossRef] [PubMed]
- Guareschi, S.; Wood, P.J. Biological Invasions of River Ecosystems: A Flow of Implications, Challenges, and Research Opportunities. In Imperiled: The Encyclopedia of Conservation; DellaSala, D.A., Goldstein, M.I., Eds.; Elsevier: Oxford, UK, 2022; pp. 485–498. [Google Scholar]
- Gollasch, S.; Galil, B.S.; Cohen, A.N. Bridging Divides, Maritime Canals as Invasion Corridors; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Lipkin, Y. Marine algal and sea-grass flora of the suez canal. Isr. J. Zool. 1972, 21, 405–446. [Google Scholar] [CrossRef]
- Tsiamis, K.; Panayotidis, P.; Zenetos, A. Alien marine macrophytes in Greece: A review. Bot. Mar. 2008, 51, 237–246. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, Y.; Li, J.; Shi, Z.; Zhang, Q.; Li, L.; Kang, B.; Du, Z.; Luo, J.; He, M.; et al. Invasion stage and competition intensity co-drive reproductive strategies of native and invasive saltmarsh plants: Evidence from field data. Sci. Total Environ. 2024, 954, 176383. [Google Scholar] [CrossRef]
- Bereza, D.; Shenkar, N. Shipping voyage simulation reveals abiotic barriers to marine bioinvasions. Sci. Total Environ. 2022, 837, 155741. [Google Scholar] [CrossRef]
- Zhang, N.; Han, Z.; Cheng, J.; Xiao, Y.; Gao, Y.; Liu, J. Identification of aquatic ecological influence along Pinglu Canalinland waterway. Port Waterw. Eng. 2024, 123–128. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.H.; Yin, P.; Zhang, L.; Yin, H.B. Effects of Sendiment Dredging on the Reduction in Sediment Internal Loading of Lake Taihu and the Self-recovery Ability of Benthic Organism. Environ. Sci. 2023, 44, 828–838. (In Chinese) [Google Scholar]
- Jägerbrand, A.K.; Brutemark, A.; Barthel Svedén, J.; Gren, I.-M. A review on the environmental impacts of shipping on aquatic and nearshore ecosystems. Sci. Total Environ. 2019, 695, 133637. [Google Scholar] [CrossRef]
- Gabel, F.; Garcia, X.F.; Schnauder, I.; Pusch, M.T. Effects of ship-induced waves on littoral benthic invertebrates. Freshw. Biol. 2012, 57, 2425–2435. [Google Scholar] [CrossRef]
- Verhelst, P.; Baeyens, R.; Reubens, J.; Benitez, J.-P.; Coeck, J.; Goethals, P.; Ovidio, M.; Vergeynst, J.; Moens, T.; Mouton, A. European silver eel (Anguilla anguilla L.) migration behaviour in a highly regulated shipping canal. Fish. Res. 2018, 206, 176–184. [Google Scholar] [CrossRef]
- Silva, S.; Lowry, M.; Macaya-Solis, C.; Byatt, B.; Lucas, M.C. Can navigation locks be used to help migratory fishes with poor swimming performance pass tidal barrages? A test with lampreys. Ecol. Eng. 2017, 102, 291–302. [Google Scholar] [CrossRef]
- Renardy, S.; Takriet, A.; Benitez, J.-P.; Dierckx, A.; Baeyens, R.; Coeck, J.; Pauwels, I.S.; Mouton, A.; Archambeau, P.; Dewals, B.; et al. Trying to choose the less bad route: Individual migratory behaviour of Atlantic salmon smolts (Salmo salar L.) approaching a bifurcation between a hydropower station and a navigation canal. Ecol. Eng. 2021, 169, 106304. [Google Scholar] [CrossRef]
- Smith, J.A.; Hightower, J.E. Effect of Low-Head Lock-and-Dam Structures on Migration and Spawning of American Shad and Striped Bass in the Cape Fear River, North Carolina. Trans. Am. Fish. Soc. 2012, 141, 402–413. [Google Scholar] [CrossRef]
- Tao, J.; Gao, Y.; Qiao, Y.; Zheng, H.; Wang, X.; Wan, L.; Chang, J. Hydroacoustic observation of fish spatial patterns and behavior in the ship lock and adjacent areas of Gezhouba Dam, Yangtze River. Acta Ecol. Sin. 2010, 30, 233–239. [Google Scholar] [CrossRef]
- Dickerson, K.D.; Medley, K.A.; Havel, J.E. Spatial variation in zooplankton community structure is related to hydrologic flow units in the Missouri river, USA. River Res. Appl. 2010, 26, 605–618. [Google Scholar] [CrossRef]
- Havel, J.E.; Medley, K.A.; Dickerson, K.D.; Angradi, T.R.; Bolgrien, D.W.; Bukaveckas, P.A.; Jicha, T.M. Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 2009, 628, 121–135. [Google Scholar] [CrossRef]
- Kolarova, N.; Napiórkowski, P. The influence of locks on zooplankton in canals (the Bydgoszcz Canal and the Noteć Canal, Poland). Ecohydrol. Hydrobiol. 2023. [Google Scholar] [CrossRef]
- Morton, R.M. Hydrology and fish fauna of canal developments in an intensively modified Australian estuary. Estuar. Coast. Shelf Sci. 1989, 28, 43–58. [Google Scholar] [CrossRef]
- Fritts, A.K.; Knights, B.C.; Stanton, J.C.; Milde, A.S.; Vallazza, J.M.; Brey, M.K.; Tripp, S.J.; Devine, T.E.; Sleeper, W.; Lamer, J.T.; et al. Lock operations influence upstream passages of invasive and native fishes at a Mississippi River high-head dam. Biol. Invasions 2021, 23, 771–794. [Google Scholar] [CrossRef]
- Wolter, C. Rapid changes of fish assemblages in artificial lowland waterways. Limnologica 2001, 31, 27–35. [Google Scholar] [CrossRef]
- Pygott, J.R.; O’Hara, K.; Eaton, J.W. Fish community structure and management in navigated British canals. In Proceedings of the Management of Freshwater Fisheries, Goteborg, Sweden, 31 May–3 June 1988; pp. 547–557. [Google Scholar]
- Penczak, T.; O’Hara, K. Accuracy of fish population estimates in a navigation canal with heavy traffic. Fish. Res. 1998, 35, 191–198. [Google Scholar] [CrossRef]
- Strayer, D.L. Alien species in fresh waters: Ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 2010, 55, 152–174. [Google Scholar] [CrossRef]
- Rahel, B.M.; Diepersloot, R.J.; de Jongh, B.M.; Visseren, F.; Kelder, J.C.; Suttorp, M.-J.; Plokker, T.W. Role of acute phase reactants and infection as predictors for major adverse clinical events and angina pectoris after percutaneous coronary intervention. J. Am. Coll. Cardiol. 2002, 39, 273. [Google Scholar] [CrossRef]
- Ros, M.; Ashton, G.V.; Lacerda, M.B.; Carlton, J.T.; Vázquez-Luis, M.; Guerra-García, J.M.; Ruiz, G.M. The Panama Canal and the transoceanic dispersal of marine invertebrates: Evaluation of the introduced amphipod Paracaprella pusilla Mayer, 1890 in the Pacific Ocean. Mar. Environ. Res. 2014, 99, 204–211. [Google Scholar] [CrossRef]
- Zakaria, H.Y. Article Review: Lessepsian migration of zooplankton through Suez Canal and its impact on ecological system. Egypt. J. Aquat. Res. 2015, 129–144. [Google Scholar] [CrossRef]
- Galil, B.S.; Marchini, A.; Occhipinti-Ambrogi, A. East is east and West is west? Management of marine bioinvasions in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 2018, 201, 7–16. [Google Scholar] [CrossRef]
- Putland, R.L.; Brey, M.K.; Mensinger, A.F. Exploring how vessel activity influences the soundscape at a navigation lock on the Mississippi River. J. Environ. Manag. 2021, 296, 112720. [Google Scholar] [CrossRef]
- Rius, M.; Shenkar, N. Ascidian introductions through the Suez Canal: The case study of an Indo-Pacific species. Mar. Pollut. Bull. 2012, 64, 2060–2068. [Google Scholar] [CrossRef]
- Moy, P.B. An electronic invasive species barrier in the Chicago Sanitary and Ship Canal. IAGLR Conf. Program Abstr. 2006, 49, 132–133. [Google Scholar]
- Nehring, S. Four arguments why so many alien species settle into estuaries, with special reference to the German river Elbe. Helgol. Mar. Res. 2006, 60, 127–134. [Google Scholar] [CrossRef]
- Hanafiah, M.M.; Leuven, R.; Sommerwerk, N.; Tockner, K.; Huijbregts, M.A.J. Including the Introduction of Exotic Species in Life Cycle Impact Assessment: The Case of Inland Shipping. Environ. Sci. Technol. 2013, 47, 13934–13940. [Google Scholar] [CrossRef]
- Clarkson, R.W. Effectiveness of electrical fish barriers associated with the Central Arizona Project. North Am. J. Fish. Manag. 2004, 24, 94–105. [Google Scholar] [CrossRef]
- Shiganova, T.A.; Kamakin, A.M.; Pautova, L.A.; Kazmin, A.S.; Roohi, A.; Dumont, H.J. Chapter Two—An impact of non-native species invasions on the Caspian Sea biota. In Advances in Marine Biology; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2023; Volume 94, pp. 69–157. [Google Scholar]
- Kim, J.; Mandrak, N.E. Assessing the potential movement of invasive fishes through the Welland Canal. J. Great Lakes Res. 2016, 42, 1102–1108. [Google Scholar] [CrossRef]
- Parker, A.D.; Glover, D.C.; Finney, S.T.; Rogers, P.B.; Stewart, J.G.; Simmonds, R.L. Direct observations of fish incapacitation rates at a large electrical fish barrier in the Chicago Sanitary and Ship Canal. J. Great Lakes Res. 2015, 41, 396–404. [Google Scholar] [CrossRef]
- Keetels, G.; Uittenbogaard, R.; Cornelisse, J.; Villars, N.; Pagee, H.V. Field study and supporting analysis of air curtains and other measures to reduce salinity transport through shipping locks. Irrig. Drain. 2011, 60, 42–50. [Google Scholar] [CrossRef]
- Boedeltje, G.; Bakker, J.P.; ter Heerdt, G.N.J. Potential role of propagule banks in the development of aquatic vegetation in backwaters along navigation canals. Aquat. Bot. 2003, 77, 53–69. [Google Scholar] [CrossRef]
Name | Length (km) | Channel Classes/Water Depth | Connecting Rivers/Oceans | Nationality | Status | Author [Ref.] |
---|---|---|---|---|---|---|
The Beijing–Hangzhou Grand Canal | 1794 | Part of the canal for ships of 1000 tons | Qiantang River, Yangtze River, Huai River, Yellow River, and Hai River | China | completed | Jing [20] |
The Erie Canal | 563 | 50–60 tons | Hudson River, Lake Erie | USA | Bujaki [21] | |
The Suez Canal | 192.5 | The ship’s draft reaches 20.12 m | The Mediterranean Sea, Red Sea | Egypt | Lin [22] | |
The Moscow Canal | 128 | 10,000 tons | Moscow River, Volga River | Russia | Yang [23] | |
The Kiel Canal | 99.8 | Water depth 11.0 m | North Sea, Baltic Sea | Germany | Feng [24] | |
The Panama Canal | 81.3 | Allows 14,000 TEU vessels to sail | Pacific, Atlantic | The Republic of Panama | Liu [25], MoC [26] | |
The Plinglu Canal | 143 | 5000 ton | Rongjiang River, Qinjiang River | China | under construction | Han et al. [11] |
The Xianggui Canal | About 1200 | Above 1000 ton | The Yangtze River, Xijiang River | China | planning | Lv and Jiang [27] |
The Gan Yu Canal | About 1300 | The Yangtze River, the Pearl River | China | Gao and Jiao [28] | ||
The Sethu Samudram Canal | About 260 | 12 m | The Arabian Sea, the Bay of Bengal | India | Rao et al. [13] | |
The Istanbul Canal | About 45 | 25 m | Black Sea, Marmara Sea | Türkiye | Ceylan Baba [15] | |
The Nicaragua Canal | About 276 | 28 m | Pacific, Caribbean Sea | Nicaragua | Chen et al. [16] | |
The Kra Canal | About 102 | 25 m | Gulf of Thailand, Myanmar Sea | Thailand | Cathcart [29] |
Name | Water Quality Problem | Pollutant | Possible Reasons | Author [Ref.] |
---|---|---|---|---|
The East Zhejiang Canal | Eutrophication | Phosphorus | Wastewater discharges | Jin et al. [97] |
The Kennet and Avon Canal | Eutrophication | Phosphorus | Effluent sources | Neal et al. [93] |
The Grand Canal in Yangzhou | Eutrophication | Nitrogen | External loading | Huang et al. [98] |
The Plinglu Canal | Salt intrusion | Salt | Channel deepening | Yi et al. [99] |
The Ghent–Terneuzen Canal | Salt intrusion | Salt | Ship passing ship locks | Biemond et al. [100] |
The Kiel Canal | Salt intrusion | Salt | Ship passing ship locks | Steinhagen et al. [101] |
The Suez Canal | Salt intrusion | Salt | Ship passing ship locks | Abril and Abdel-Aal [102] |
Heavy mental pollution | Cd | Related to marine ships and vessels discharge | Shetaia et al. [103] | |
The Panama Canal | Heavy mental pollution | V, Sr and so on | Traffic vessels’ maintenance and emissions | Valdelamar-Villegas et al. [104] |
The canals of Aveiro | Heavy mental pollution | Cu, Pb, Zn and so on | Industrial discharges along the coast | Martins et al. [105] |
The Begej Canal | Heavy mental pollution and carcinogen | Hg, Cr, Pb and so on, PAH dibenzo[a,h] anthracene, | Recipient of wastewater and run-off from the surrounding agricultural land during periods of heavy rain | Dubovina et al. [106] |
The Chicago’s Sanitary and Ship Canal | Carcinogen | PAHs and PCBs | Water reclamation plant effluent | Liang et al. [107], Peverly et al. [108] |
The Amsterdam Canal | Microplastics | Wastewater treatment plants discharge | Leslie et al. [109] | |
The Hood Canal | Microplastics | / | Mahoney [110] | |
The South Jiangsu Canal | Microplastics | Wastewater treatment plants discharge | Jin et al. [111] |
Name | Invasion Species | Author [Ref.] |
---|---|---|
The Panama Canal | Schizopods | Ros et al. [168] |
The Suez Canal | Zooplankton Ascidians | Zakaria [169] Rius and Shenkar [172] |
The Chicago Sanitary and Ship Canal | Fishes (Hypophthalmichthys nobilis and Hypophthalmichthys molitrix) | Moy [173] |
Canals connecting to river Elbe | Macrozoobenthos | Nehring [174] |
The Rhine–Main–Danube Canal | Fishes | Hanafiah et al. [175] |
The Central Arizona Project canal | Fishes | Clarkson [176] |
The Volga–Don Canal | Benthic foulers, macrophytes, zooplankton | Shiganova et al. [177] |
The Welland Canal | Fishes | Kim and Mandrak [178] |
Impact Category | Impact and Consequences | ||
---|---|---|---|
Hydrological process | Hydrological connectivity | Stepped ship locks cut off wetland’s longitudinal hydrological connectivity. The revetment construction and widening of narrow rivers may disrupt hydrological horizontal connections. | |
Hydrological elements | Flow volume | The streamflow in ship canals is regulated partly according to the channel classes, ship flows, and ship lock operation regulations. | |
Flow exchange | Canals would reduce a two-layer hydraulic exchange flow. | ||
Velocity | Between ship locks, the water velocity was reduced, and the impounded reach was replaced lotic habitats with lentic habitats. | ||
Water level | A sudden increase or reduction in discharge during ship lock operations would induce water-level fluctuations. | ||
Climate change response | High water surface elevations during floods can hinder safe navigation. Low water levels during a drought would reduce the transport capacity of waterway transport. | ||
Pollutant process | Nutrients | The problem of eutrophication often occurs in ship canals. Ships discharge polluted water. Large amounts of domestic, agricultural, and industrial wastewater are discharged into the canal. | |
Salt intrusion | Canals connecting rivers and the sea or estuaries by ship locks would lead to serious saltwater intrusion. | ||
Sediment pollutants | Heavy metals, PAHs, PCBs, and microplastics are detected in canal water and sediment. | ||
Botany | Dislocation and biomass loss | Ship-induced waves lead to wetland botany dislocation and biomass loss. | |
Biodiversity decreased | The primary cause of indirect consequences is the salt and flow stress caused by canals which change hydrodynamics and distribution of water resources, causing biological diversity reduction in the plants of wetlands. | ||
Animal | Biomass reduction | Ecological losses occur as a result of canal construction and operation. Ships can collide with aquatic organisms. | |
Habitat loss | Multiple ship lock cascades would change the original surroundings, leading to habitat fragmentation. Shipping activities increase underwater noise and have a negative impact on aquatic activity. | ||
Biological invasion | Cross-basin canals may cause biological invasion via river connection and shipping. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Z.; Yin, D.; Zhao, R.; Liu, Z.; Cheng, R.; Lin, G.; Jia, H. The Ecological Effect of Ship Canals on Wetlands. Water 2024, 16, 3324. https://doi.org/10.3390/w16223324
Han Z, Yin D, Zhao R, Liu Z, Cheng R, Lin G, Jia H. The Ecological Effect of Ship Canals on Wetlands. Water. 2024; 16(22):3324. https://doi.org/10.3390/w16223324
Chicago/Turabian StyleHan, Zhaoxing, Dingkun Yin, Ruixue Zhao, Zijing Liu, Runhe Cheng, Guanwei Lin, and Haifeng Jia. 2024. "The Ecological Effect of Ship Canals on Wetlands" Water 16, no. 22: 3324. https://doi.org/10.3390/w16223324
APA StyleHan, Z., Yin, D., Zhao, R., Liu, Z., Cheng, R., Lin, G., & Jia, H. (2024). The Ecological Effect of Ship Canals on Wetlands. Water, 16(22), 3324. https://doi.org/10.3390/w16223324