An Innovative Deep-Learning Technique for Fuel Demand Estimation in Maritime Transportation: A Step Toward Sustainable Development and Environmental Impact Mitigation
Abstract
:1. Introduction
2. Literature Review
3. Study Area Description
3.1. Jazan Port, Saudi Arabia
3.2. Fujairah Port, United Arab Emirates
4. Methodology
4.1. CNNs
4.2. Bi-LSTM
4.3. Proposed Model
- Vessel Characteristics: type, size, weight, and engine specifications.
- Weather Conditions: wind speed and temperature.
- Sea states: wave height, current speed and direction.
- Navigation Specifics: distance traveled, speed, and port stay durations.
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saidi, S.; Mani, V.; Mefteh, H.; Shahbaz, M.; Akhtar, P. Dynamic Linkages between Transport, Logistics, Foreign Direct Investment, and Economic Growth: Empirical Evidence from Developing Countries. Transp. Res. Part A Policy Pract. 2020, 141, 277–293. [Google Scholar] [CrossRef]
- Wang, H.; Han, J.; Su, M.; Wan, S.; Zhang, Z. The Relationship between Freight Transport and Economic Development: A Case Study of China. Res. Transp. Econ. 2021, 85, 100885. [Google Scholar] [CrossRef]
- Lane, J.M.; Pretes, M. Maritime Dependency and Economic Prosperity: Why Access to Oceanic Trade Matters. Mar. Policy 2020, 121, 104180. [Google Scholar] [CrossRef]
- Lun, Y.H.V.; Lai, K.; Cheng, T.C.E.; Yang, D. International Trade and Shipping. In The Impact of the English Civil War on the Economy of London, 1642–1650; Springer International Publishing: Cham, Switzerland, 2017; pp. 163–200. ISBN 9781315239057. [Google Scholar]
- Edih, U.O.; Faghawari, N.; Agboro, D.O. Port Operation’s Efficiency and Revenue Generation in Global Maritime Trade: Implications for National Growth and Development in Nigeria. J. Money Bus. 2023, 3, 184–196. [Google Scholar] [CrossRef]
- Omdehghiasi, H.; Mojtahedi, A.; Farajpour, I. A Parametric Stability Analysis of the Offshore Jacket Launch: A Case Study in the Persian Gulf. Mar. Syst. Ocean Technol. 2018, 13, 87–102. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Z.; Liu, J.; Zhou, A. Water Resource Utilization Assessment in China Based on the Dynamic Relationship between Economic Growth and Water Use. Water 2024, 16, 1325. [Google Scholar] [CrossRef]
- Oloruntobi, O.; Mokhtar, K.; Gohari, A.; Asif, S.; Chuah, L.F. Sustainable Transition towards Greener and Cleaner Seaborne Shipping Industry: Challenges and Opportunities. Clean. Eng. Technol. 2023, 13, 100628. [Google Scholar] [CrossRef]
- Li, C.; Xu, Y.; Zheng, H.; Wang, Z.; Han, H.; Zeng, L. Artificial Intelligence, Resource Reallocation, and Corporate Innovation Efficiency: Evidence from China’s Listed Companies. Resour. Policy 2023, 81, 103324. [Google Scholar] [CrossRef]
- Fratila (Adam), A.; Gavril (Moldovan), I.A.; Nita, S.C.; Hrebenciuc, A. The Importance of Maritime Transport for Economic Growth in the European Union: A Panel Data Analysis. Sustainability 2021, 13, 7961. [Google Scholar] [CrossRef]
- Sekar, M. Impact of Port Infrastructure on Economic Development With Special Reference to Major Ports in India. Manag. Account. J. 2023, 58, 57–60. [Google Scholar] [CrossRef]
- Koilo, V. Sustainability Issues in Maritime Transport and Main Challenges of the Shipping Industry. Environ. Econ. 2019, 10, 48–65. [Google Scholar] [CrossRef]
- Dargin, J. The Pathway to a Green Gulf: A Review and Analysis of the Evolution of Saudi Arabia, Qatar, and the United Arab Emirates’ Climate Change Positions. Carbon Clim. Law Rev. 2021, 15, 313–341. [Google Scholar] [CrossRef]
- Shokatian-Beiragh, M.; Banan-Dallalian, M.; Golshani, A.; Allahdadi, M.N.; Samiee-Zenoozian, M. The Effectiveness of Mangrove Forests as a Nature-Based Solution against Flood Risk under an Extreme Weather Event. Reg. Stud. Mar. Sci. 2024, 77, 103630. [Google Scholar] [CrossRef]
- Merlo, S.; Gabarrell Durany, X.; Pedroso Tonon, A.; Rossi, S. Marine Microalgae Contribution to Sustainable Development. Water 2021, 13, 1373. [Google Scholar] [CrossRef]
- Barreiro, J.; Zaragoza, S.; Diaz-Casas, V. Review of Ship Energy Efficiency. Ocean Eng. 2022, 257, 111594. [Google Scholar] [CrossRef]
- Handayani, M.P.; Kim, H.; Lee, S.; Lee, J. Navigating Energy Efficiency: A Multifaceted Interpretability of Fuel Oil Consumption Prediction in Cargo Container Vessel Considering the Operational and Environmental Factors. J. Mar. Sci. Eng. 2023, 11, 2165. [Google Scholar] [CrossRef]
- Chen, Z.S.; Lam, J.S.L.; Xiao, Z. Prediction of Harbour Vessel Fuel Consumption Based on Machine Learning Approach. Ocean Eng. 2023, 278, 114483. [Google Scholar] [CrossRef]
- Fan, A.; Yang, J.; Yang, L.; Wu, D.; Vladimir, N. A Review of Ship Fuel Consumption Models. Ocean Eng. 2022, 264, 112405. [Google Scholar] [CrossRef]
- Zhou, T.; Hu, Q.; Hu, Z.; Zhen, R. An Adaptive Hyper Parameter Tuning Model for Ship Fuel Consumption Prediction under Complex Maritime Environments. J. Ocean Eng. Sci. 2022, 7, 255–263. [Google Scholar] [CrossRef]
- Zhang, M.; Tsoulakos, N.; Kujala, P.; Hirdaris, S. A Deep Learning Method for the Prediction of Ship Fuel Consumption in Real Operational Conditions. Eng. Appl. Artif. Intell. 2024, 130, 107425. [Google Scholar] [CrossRef]
- Poulsen, R.T.; Viktorelius, M.; Varvne, H.; Rasmussen, H.B.; von Knorring, H. Energy Efficiency in Ship Operations—Exploring Voyage Decisions and Decision-Makers. Transp. Res. Part D Transp. Environ. 2022, 102, 103120. [Google Scholar] [CrossRef]
- Durlik, I.; Miller, T.; Cembrowska-Lech, D.; Krzemińska, A.; Złoczowska, E.; Nowak, A. Navigating the Sea of Data: A Comprehensive Review on Data Analysis in Maritime IoT Applications. Appl. Sci. 2023, 13, 9742. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, H.; Ma, X.; Zhang, Y. Optimization of ship speed and fleet deployment under carbon emissions policies for container shipping. Transport 2019, 34, 260–274. [Google Scholar] [CrossRef]
- Abdelzaher, M.A.; Farahat, E.M.; Abdel-Ghafar, H.M.; Balboul, B.A.A.; Awad, M.M. Environmental Policy to Develop a Conceptual Design for the Water–Energy–Food Nexus: A Case Study in Wadi-Dara on the Red Sea Coast, Egypt. Water 2023, 15, 780. [Google Scholar] [CrossRef]
- Shui, L.; Pan, X.; Chen, X.; Chang, F.; Wan, D.; Liu, D.; Hu, M.; Li, S.; Wang, Y. Pollution Characteristics and Ecological Risk Assessment of Heavy Metals in Sediments of the Three Gorges Reservoir. Water 2020, 12, 1798. [Google Scholar] [CrossRef]
- Solakivi, T.; Paimander, A.; Ojala, L. Cost Competitiveness of Alternative Maritime Fuels in the New Regulatory Framework. Transp. Res. Part D Transp. Environ. 2022, 113, 103500. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S. Introduction of Maritime Transportation. In Applications of Machine Learning and Data Analytics Models in Maritime Transportation; Institution of Engineering and Technology: London, UK, 2022; pp. 1–7. [Google Scholar]
- Pérez Lespier, L.; Long, S.; Shoberg, T.; Corns, S. A Model for the Evaluation of Environmental Impact Indicators for a Sustainable Maritime Transportation Systems. Front. Eng. Manag. 2019, 6, 368–383. [Google Scholar] [CrossRef]
- Vlasenko, L.; Niyazbekova, S.; Khalilova, M.; Andrianova, L.; Annenskaya, N.; Brovkina, N.; Guseva, I.; Abalakina, T.; Matrosov, S.; Abdusattarova, S. Development of Maritime Transport: Features and Financial Component in Market Conditions. Transp. Res. Procedia 2022, 63, 1410–1419. [Google Scholar] [CrossRef]
- Moreno-Gutiérrez, J.; Calderay, F.; Saborido, N.; Boile, M.; Rodríguez Valero, R.; Durán-Grados, V. Methodologies for Estimating Shipping Emissions and Energy Consumption: A Comparative Analysis of Current Methods. Energy 2015, 86, 603–616. [Google Scholar] [CrossRef]
- Gosasang, V.; Chandraprakaikul, W.; Kiattisin, S. A Comparison of Traditional and Neural Networks Forecasting Techniques for Container Throughput at Bangkok Port. Asian J. Shipp. Logist. 2011, 27, 463–482. [Google Scholar] [CrossRef]
- AbuAl-Foul, B.M. Forecasting Energy Demand in Jordan Using Artificial Neural Networks. Top. Middle East. N. Afr. Econ. Electron. J. 2012, 14, 473–478. [Google Scholar]
- Oludolapo, O.A.; Adisa, J.A.; Pule, K.A. Comparing Performance of MLP and RBF Neural Network Models for Predicting South Africa’s Energy Consumption. J. Energy S. Afr. 2012, 23, 40–46. [Google Scholar] [CrossRef]
- Bialystocki, N.; Konovessis, D. On the Estimation of Ship’s Fuel Consumption and Speed Curve: A Statistical Approach. J. Ocean Eng. Sci. 2016, 1, 157–166. [Google Scholar] [CrossRef]
- Yan, R.; Wang, S.; Du, Y. Development of a Two-Stage Ship Fuel Consumption Prediction and Reduction Model for a Dry Bulk Ship. Transp. Res. Part E Logist. Transp. Rev. 2020, 138, 101930. [Google Scholar] [CrossRef]
- Le, L.T.; Lee, G.; Park, K.-S.; Kim, H. Neural Network-Based Fuel Consumption Estimation for Container Ships in Korea. Marit. Policy Manag. 2020, 47, 615–632. [Google Scholar] [CrossRef]
- Işıklı, E.; Aydın, N.; Bilgili, L.; Toprak, A. Estimating Fuel Consumption in Maritime Transport. J. Clean. Prod. 2020, 275, 124142. [Google Scholar] [CrossRef]
- Xie, X.; Sun, B.; Li, X.; Olsson, T.; Maleki, N.; Ahlgren, F. Fuel Consumption Prediction Models Based on Machine Learning and Mathematical Methods. J. Mar. Sci. Eng. 2023, 11, 738. [Google Scholar] [CrossRef]
- Su, M.; Lee, H.J.; Wang, X.; Bae, S.-H. Fuel Consumption Cost Prediction Model for Ro-Ro Carriers: A Machine Learning-Based Application. Marit. Policy Manag. 2024, 1–21. [Google Scholar] [CrossRef]
- Gender Considerations and Entrepreneurship Development in Fujairah, United Arab Emirates. J. Entrep. Proj. Manag. 2023, 7, 1–10. [CrossRef]
- Hamed, A.; Manaf Bohari, A. Adoption of Big Data Analytics in Medium-Large Supply Chain Firms in Saudi Arabia. Knowl. Perform. Manag. 2022, 6, 62–74. [Google Scholar] [CrossRef]
- Eduardo, A.V.S.; Muhammad, K.R.; Sami, A.-G.; Jihad, S.; Mesfer, M.A.-Z.; Antonio, N. A Monumental Flood Mitigation Channel in Saudi Arabia. Stroit. Mater. 2022, 32–41. [Google Scholar] [CrossRef]
- Zhang, Q.; Shan, Q.; Li, T. Large Port Energy Management Based on Distributed Optimization. In Proceedings of the 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Guangzhou, China, 13–15 November 2020; IEEE: New York, NY, USA, 2020; pp. 108–113. [Google Scholar]
- Alshareef, M.H.; Aljahdali, B.M.; Alghanmi, A.F.; Sulaimani, H.T. Spatial Analysis and Risk Evaluation for Port Crisis Management Using Integrated Soft Computing and GIS-Based Models: A Case Study of Jazan Port, Saudi Arabia. Sustainability 2024, 16, 5131. [Google Scholar] [CrossRef]
- El-Rawy, M.; Fathi, H.; Abdalla, F.; Alshehri, F.; Eldeeb, H. An Integrated Principal Component and Hierarchical Cluster Analysis Approach for Groundwater Quality Assessment in Jazan, Saudi Arabia. Water 2023, 15, 1466. [Google Scholar] [CrossRef]
- Najmi, A.; Albratty, M.; Al-Rajab, A.J.; Alhazmi, H.A.; Javed, S.A.; Ahsan, W.; Rehman, Z.; Hassani, R.; Alqahtani, S.S. Heavy Metal Contamination in Leafy Vegetables Grown in Jazan Region of Saudi Arabia: Assessment of Possible Human Health Hazards. Int. J. Environ. Res. Public Health 2023, 20, 2984. [Google Scholar] [CrossRef]
- Alhmoudi, S.A.O.; Aldhanhani, H.R.A.; Ridouane, F.L.; Ateeg, M.; Al Moalla, A.; Mirza, S.B. Study the Impact of the Anthropogenic Activities on the Marine Environment of Fujairah Offshore Waters of UAE Based on Baseline Surveys and Buoy Data. J. Mar. Sci. 2024, 2024, 1998158. [Google Scholar] [CrossRef]
- Celeghin, A.; Borriero, A.; Orsenigo, D.; Diano, M.; Méndez Guerrero, C.A.; Perotti, A.; Petri, G.; Tamietto, M. Convolutional Neural Networks for Vision Neuroscience: Significance, Developments, and Outstanding Issues. Front. Comput. Neurosci. 2023, 17, 1153572. [Google Scholar] [CrossRef]
- Hajizadeh Javaran, M.R.; Rajabi, M.M.; Kamali, N.; Fahs, M.; Belfort, B. Encoder–Decoder Convolutional Neural Networks for Flow Modeling in Unsaturated Porous Media: Forward and Inverse Approaches. Water 2023, 15, 2890. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Wu, R.; Zhao, H. Enhancing Dissolved Oxygen Concentrations Prediction in Water Bodies: A Temporal Transformer Approach with Multi-Site Meteorological Data Graph Embedding. Water 2023, 15, 3029. [Google Scholar] [CrossRef]
- Tian, Q.; Gao, H.; Tian, Y.; Jiang, Y.; Li, Z.; Guo, L. Runoff Prediction in the Xijiang River Basin Based on Long Short-Term Memory with Variant Models and Its Interpretable Analysis. Water 2023, 15, 3184. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, H.; Bai, M.; Xu, Y.; Dong, S.; Rao, H.; Ming, W. A Comprehensive Review of Methods for Hydrological Forecasting Based on Deep Learning. Water 2024, 16, 1407. [Google Scholar] [CrossRef]
- Bin Syed, M.A.; Ahmed, I. A CNN-LSTM Architecture for Marine Vessel Track Association Using Automatic Identification System (AIS) Data. Sensors 2023, 23, 6400. [Google Scholar] [CrossRef] [PubMed]
- Bansod, P.J.; Mohan, U.; Yadav, D.K.; Singh, Y.; Sharmila, P.; Chauhan, A. An Innovative Method for Fuel Consumption and Maintenance Cost of Heavy-Duty Vehicles Based on SR-GRU-CNN Algorithm. In Proceedings of the 2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS), IEEE, Pudukkottai, India, 11–13 December 2023; pp. 811–816. [Google Scholar]
- Zhao, D.; Li, H.; Hou, J.; Gong, P.; Zhong, Y.; He, W.; Fu, Z. A Review of the Data-Driven Prediction Method of Vehicle Fuel Consumption. Energies 2023, 16, 5258. [Google Scholar] [CrossRef]
- Shao, Z.; Lyu, H.; Yin, Y.; Cheng, T.; Gao, X.; Zhang, W.; Jing, Q.; Zhao, Y.; Zhang, L. Multi-Scale Object Detection Model for Autonomous Ship Navigation in Maritime Environment. J. Mar. Sci. Eng. 2022, 10, 1783. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Z.; Yuan, J.; Wang, D.; Liu, X. Urban Water Demand Prediction Based on Attention Mechanism Graph Convolutional Network-Long Short-Term Memory. Water 2024, 16, 831. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; Liu, Y.; Yuan, Y.; Zhang, Q.; Li, Z. Fitting Analysis of Inland Ship Fuel Consumption Considering Navigation Status and Environmental Factors. IEEE Access 2020, 8, 187441–187454. [Google Scholar] [CrossRef]
- Kim, Y.-R.; Jung, M.; Park, J.-B. Development of a Fuel Consumption Prediction Model Based on Machine Learning Using Ship In-Service Data. J. Mar. Sci. Eng. 2021, 9, 137. [Google Scholar] [CrossRef]
- Uyanık, T.; Karatuğ, Ç.; Arslanoğlu, Y. Machine Learning Approach to Ship Fuel Consumption: A Case of Container Vessel. Transp. Res. Part D Transp. Environ. 2020, 84, 102389. [Google Scholar] [CrossRef]
Port | Longitude | Latitude | Size | Reference |
---|---|---|---|---|
Jazan, KSA | 42.53° | 16.90° | X-large | [43] |
Fujairah, UAE | 56.36° | 25.14° | Large | [44] |
Parameter | Value/Range |
---|---|
Learning Rate | 0.001–0.01 |
Batch Size | 32–128 |
Number of Epochs | 50–200 |
Optimization Algorithm | Adam, SGD, RMSprop |
Activation Function (CNN) | ReLU |
Activation Function (LSTM) | tanh, sigmoid |
Loss Function | MSE |
Framework | Training Time (hours) | Convergence (Epochs) |
---|---|---|
TensorFlow | 42 | 100 |
PyTorch | 48 | 120 |
Keras | 45 | 100 |
Scikit-Learn | 65 | 150 |
Theano | 58 | 130 |
Input Feature | Vessel Size | Vessel Weight | Engine Specs | Wind Speed | Temperature | Wave Height | Current Speed | Current Direction | Distance Traveled | Vessel Speed | Stay in Port Durations |
---|---|---|---|---|---|---|---|---|---|---|---|
Vessel Size | 1 | 0.45 | 0.5 | 0.13 | 0.18 | 0.09 | 0.22 | 0.05 | 0.33 | 0.27 | 0.15 |
Vessel Weight | 0.45 | 1 | 0.42 | 0.2 | 0.23 | 0.12 | 0.29 | 0.1 | 0.37 | 0.31 | 0.18 |
Engine Specs | 0.5 | 0.42 | 1 | 0.09 | 0.17 | 0.06 | 0.25 | 0.07 | 0.24 | 0.21 | 0.12 |
Wind Speed | 0.13 | 0.2 | 0.09 | 1 | 0.55 | 0.43 | 0.5 | 0.33 | 0.28 | 0.3 | 0.2 |
Temperature | 0.18 | 0.23 | 0.17 | 0.55 | 1 | 0.47 | 0.48 | 0.3 | 0.25 | 0.29 | 0.22 |
Wave Height | 0.09 | 0.12 | 0.06 | 0.43 | 0.47 | 1 | 0.37 | 0.35 | 0.22 | 0.21 | 0.19 |
Current Speed | 0.22 | 0.29 | 0.25 | 0.5 | 0.48 | 0.37 | 1 | 0.32 | 0.41 | 0.33 | 0.28 |
Current Direction | 0.05 | 0.1 | 0.07 | 0.33 | 0.3 | 0.35 | 0.32 | 1 | 0.16 | 0.18 | 0.14 |
Distance Traveled | 0.33 | 0.37 | 0.24 | 0.28 | 0.25 | 0.22 | 0.41 | 0.16 | 1 | 0.6 | 0.45 |
Vessel Speed | 0.27 | 0.31 | 0.21 | 0.3 | 0.29 | 0.21 | 0.33 | 0.18 | 0.6 | 1 | 0.55 |
Stay in Port Durations | 0.15 | 0.18 | 0.12 | 0.2 | 0.22 | 0.19 | 0.28 | 0.14 | 0.45 | 0.55 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghanmi, A.F.; Aljahdali, B.M.; Sulaimani, H.T.; Turan, O.; Alshareef, M.H. An Innovative Deep-Learning Technique for Fuel Demand Estimation in Maritime Transportation: A Step Toward Sustainable Development and Environmental Impact Mitigation. Water 2024, 16, 3325. https://doi.org/10.3390/w16223325
Alghanmi AF, Aljahdali BM, Sulaimani HT, Turan O, Alshareef MH. An Innovative Deep-Learning Technique for Fuel Demand Estimation in Maritime Transportation: A Step Toward Sustainable Development and Environmental Impact Mitigation. Water. 2024; 16(22):3325. https://doi.org/10.3390/w16223325
Chicago/Turabian StyleAlghanmi, Ayman F., Bassam M. Aljahdali, Hussain T. Sulaimani, Osman Turan, and Mohammed H. Alshareef. 2024. "An Innovative Deep-Learning Technique for Fuel Demand Estimation in Maritime Transportation: A Step Toward Sustainable Development and Environmental Impact Mitigation" Water 16, no. 22: 3325. https://doi.org/10.3390/w16223325
APA StyleAlghanmi, A. F., Aljahdali, B. M., Sulaimani, H. T., Turan, O., & Alshareef, M. H. (2024). An Innovative Deep-Learning Technique for Fuel Demand Estimation in Maritime Transportation: A Step Toward Sustainable Development and Environmental Impact Mitigation. Water, 16(22), 3325. https://doi.org/10.3390/w16223325