Optimization of Real-Time Control Approach: Number, Placement, and Proportional–Integral–Derivative Control Rules of Flow Control Devices in Distributed Flood Routing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modeling Tools (SWMM, SWMM_api, and PySWMM)
Control Strategies in the SWMM
2.3. Optimization Process/Methods
3. Results
3.1. Impact of a 10-Year Storm
3.2. Impact of a 5-Year Storm
3.3. Impact of 2-Year and 1-Year Storms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Seyboth, K. Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN). 2011. Available online: https://www.uncclearn.org/wp-content/uploads/library/ipcc15.pdf (accessed on 1 May 2011).
- Kordana, S. The identification of key factors determining the sustainability of stormwater systems. In Proceedings of the E3S Web of Conferences, Semarang, Indonesia, 14–15 August 2018; EDP Sciences: Les Ulis, France, 2018; Volume 45, p. 00033. [Google Scholar]
- Piro, P.; Turco, M.; Palermo, S.A.; Principato, F.; Brunetti, G. A Comprehensive Approach to Stormwater Management Problems in the Next Generation Drainage Networks. In The Internet of Things for Smart Urban Ecosystems; Springer: Cham, Switzerland, 2019; pp. 275–304. [Google Scholar]
- Sun, C.; Joseph-Duran, B.; Maruejouls, T.; Cembrano, G.; Meseguer, J.; Puig, V.; Litrico, X. Real-time control-oriented quality modelling in combined urban drainage networks. IFAC-PapersOnLine 2017, 50, 3941–3946. [Google Scholar] [CrossRef]
- Lee, J.G.; Selvakumar, A.; Alvi, K.; Riverson, J.; Zhen, J.X.; Shoemaker, L.; Lai, F.-H. A watershed-scale design optimization model for stormwater best management practices. Environ. Model. Softw. 2012, 37, 6–18. [Google Scholar] [CrossRef]
- Grebel, J.E.; Mohanty, S.K.; Torkelson, A.A.; Boehm, A.B.; Higgins, C.P.; Maxwell, R.M.; Nelson, K.L.; Sedlak, D.L. Engineered infiltration systems for urban stormwater reclamation. Environ. Eng. Sci. 2013, 30, 437–454. [Google Scholar] [CrossRef]
- Bloorchian, A.A.; Ahiablame, L.; Osouli, A.; Zhou, J. Modeling BMP and vegetative cover performance for highway stormwater runoff reduction. Procedia Eng. 2016, 145, 274–280. [Google Scholar] [CrossRef]
- Martel, J.-L.; Brissette, F.P.; Lucas-Picher, P.; Troin, M.; Arsenault, R. Climate change and rainfall intensity–duration–frequency curves: Overview of science and guidelines for adaptation. Int. J. Hydrogen Energy 2021, 26, 03121001. [Google Scholar] [CrossRef]
- Halder, S.; Saha, U. Future projection of extreme rainfall for flood management due to climate change in an urban area. J. Sustain. Water Built Environ. 2021, 7, 04021012. [Google Scholar] [CrossRef]
- Ahuja, S. Water Reclamation and Sustainability; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Schütze, M.; Campisano, A.; Colas, H.; Schilling, W.; Vanrolleghem, P.A. Real time control of urban wastewater systems—Where do we stand today? J. Hydrol. 2004, 299, 335–348. [Google Scholar] [CrossRef]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling – Urban drainage and beyond. Environ. Model. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Beeneken, T.; Erbe, V.; Messmer, A.; Reder, C.; Rohlfing, R.; Scheer, M.; Schuetze, M.; Schumacher, B.; Weilandt, M.; Weyand, M. Real time control (rtc) of urban drainage systems–a discussion of the additional efforts compared to conventionally operated systems. Urban Water J. 2013, 10, 293–299. [Google Scholar] [CrossRef]
- Fradet, O.; Pleau, M.; Marcoux, C. Reducing CSOs and giving the river back to the public: Innovative combined sewer overflow control and riverbanks restoration of the St Charles River in Quebec City. Water Sci. Technol. 2011, 63, 331–338. [Google Scholar] [CrossRef]
- Kerkez, B.; Gruden, C.; Lewis, M.; Montestruque, L.; Quigley, M.; Wong, B.; Bedig, A.; Kertesz, R.; Braun, T.; Cadwalader, O.; et al. Smarter Stormwater Systems. Environ. Sci. Technol. 2016, 50, 7267–7273. [Google Scholar] [CrossRef] [PubMed]
- Campisano, A.; Ple, J.C.; Muschalla, D.; Pleau, M.; Vanrolleghem, P. Potential and limitations of modern equipment for real time control of urban wastewater systems. Urban Water J. 2013, 10, 300–311. [Google Scholar] [CrossRef]
- Vitasovic, Z. Real Time Control of Urban Drainage Networks, Washington, DC, USA: United States Environmental Protection Agency (US EPA) and Office of Research and Development. 2006. Available online: https://www.iwapublishing.com/sites/default/files/ebooks/9781780408972.pdf (accessed on 18 August 2011).
- Lund, N.S.V.; Falk, A.K.V.; Borup, M.; Madsen, H.; Mikkelsen, P.S. Model predictive control of urban drainage systems: A review and perspective towards smart real-time water management. Crit. Rev. Environ. Sci. Technol. 2018, 48, 279–339. [Google Scholar] [CrossRef]
- Kroll, S.; Weemaes, M.; Van Impe, J.; Willems, P. A methodology for the design of RTC strategies for combined sewer networks. Water 2018, 10, 1675. [Google Scholar] [CrossRef]
- Eulogi, M.; Ostojin, S.; Skipworth, P.; Shucksmith, J.D.; Schellart, A. Hydraulic optimisation of multiple flow control locations for the design of local real time control systems. Urban Water J. 2021, 18, 91–100. [Google Scholar] [CrossRef]
- Eulogi, M.; Ostojin, S.; Skipworth, P.; Kroll, S.; Shucksmith, J.D.; Schellart, A. Optimal Positioning of RTC Actuators and SuDS for Sewer Overflow Mitigation in Urban Drainage Systems. Water 2022, 14, 3839. [Google Scholar] [CrossRef]
- Ardurra. Comprehensive S&WB-City of New Orleans Stormwater Management Model (SWMM), Consulting Engineers Report 2019. Available online: https://www.swbno.org/documents/Reports/July%2010%202019%20Rainfall%20Event%20Modeling%20Report.pdf (accessed on 1 September 2019).
- Mounce, S.R.; Shepherd, W.; Ostojin, S.; Abdel-Aal, M.; Schellart, A.N.A.; Shucksmith, J.D.; Tait, S.J. Optimisation of a fuzzy logic-based local real-time control system for mitigation of sewer flooding using genetic algorithms. J. Hydroinform. 2019, 22, 281–295. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model User’s Manual Version 5.1. 2015. Available online: https://www.epa.gov/sites/default/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf (accessed on 18 August 2015).
- Urban Hydrology for Small Watersheds (Technical Release 55). 1986. Available online: https://www.nrc.gov/docs/ML1421/ML14219A437.pdf (accessed on 1 February 2019).
- Krakowie, U.R.W.; Wałęga, A.; Cupak, A.; Amatya, D.M. Center for Forested Wetlands Research USDA Influence of time of concentration on variation of runoff from a small urbanized watershed. Geomat. Landmanag. Landsc. 2015, 2, 7–19. [Google Scholar]
- Keifer, C.J.; Chu, H.H. Synthetic storm pattern for drainage design. J. Hydraul. Div. 1957, 83, 1332-1-1332-25. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Zhang, C. The effect of design rainfall patterns on urban flooding based on the Chicago method. Int. J. Environ. Res. Public Health 2023, 20, 4245. [Google Scholar] [CrossRef]
- Brown, V.M.; Keim, B.D.; Black, A.W. Climatology and trends in hourly precipitation for the southeast United States. J. Hydrometeorol. 2019, 20, 1737–1755. [Google Scholar] [CrossRef]
- Ogata, K.; Brewer, J.W. Modern Control Engineering, 5th ed.; Prentice-Hall, Inc.: Hoboken, NJ, USA, 2009; pp. 681–751. [Google Scholar]
- Lust, T.; Tuyttens, D. Variable and large neighborhood search to solve the multiobjective set covering problem. J. Heuristics 2014, 20, 165–188. [Google Scholar] [CrossRef]
- Shishegar, S.; Duchesne, S.; Pelletier, G. Optimization methods applied to stormwater management problems: A review. Urban Water J. 2018, 15, 276–286. [Google Scholar] [CrossRef]
- Nicklow, J.; Reed, P.; Savic, D.; Dessalegne, T.; Harrell, L.; Chan-Hilton, A.; Karamouz, M.; Minsker, B.; Ostfeld, A.; Singh, A.; et al. State of the Art for Genetic Algorithms and Beyond in Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2010, 136, 412–432. [Google Scholar] [CrossRef]
- Abdel-Aal, M.; Shepherd, W.; Mounce, S.; Ostojin, S.; Schellart, A.; Shucksmith, J.; Skipworth, P.; Tait, S. Alleviating the risk of sewer flooding using fuzzy logic in a real time control system–an experimental study. In Proceedings of the 8th International Conference on Sewer Processes and Networks, Rotterdam, The Netherlands, 31 August–2 September 2016. [Google Scholar]
No | Option | Description |
---|---|---|
1 | Storm Design | Chicago Storm Hyetograph |
2 | Force Main Equation | Hazen–Williams |
3 | Infiltration Method | Horton’s Equation |
4 | Routing Method | Dynamic Wave |
Events | The Percentage of Flooded Junctions |
---|---|
10 Years | 100% |
5 Years | 70% |
2 Years | 30% |
1 Years | 10% |
No. | Orifice Name | Amount of Orifice Opening |
---|---|---|
1 | DPS04_35406_a | 0.723492703 |
2 | DPS04_34958_a | 0.432305127 |
3 | DPS04_34590_a | 0.340279824 |
4 | DPS04_34610_a | 0.709111527 |
5 | DPS04_35317_a | 0.615080009 |
6 | DPS04_34588_a | 0.486044229 |
7 | DPS04_34515_a | 0.168070492 |
8 | DPS04_36189_a | 0.818414757 |
9 | DPS04_35321_a | 0.73724803 |
10 | DPS04_35320_a | 0.720034622 |
11 | DPS04_36175_a | 0.745877744 |
12 | DPS04_35325_a | 0.951866165 |
13 | DPS04_35407_a | 0.609437972 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalili, H.; Chevalier, L.; Nicklow, J.W. Optimization of Real-Time Control Approach: Number, Placement, and Proportional–Integral–Derivative Control Rules of Flow Control Devices in Distributed Flood Routing. Water 2024, 16, 3331. https://doi.org/10.3390/w16223331
Jalili H, Chevalier L, Nicklow JW. Optimization of Real-Time Control Approach: Number, Placement, and Proportional–Integral–Derivative Control Rules of Flow Control Devices in Distributed Flood Routing. Water. 2024; 16(22):3331. https://doi.org/10.3390/w16223331
Chicago/Turabian StyleJalili, Hamidreza, Lizette Chevalier, and John W. Nicklow. 2024. "Optimization of Real-Time Control Approach: Number, Placement, and Proportional–Integral–Derivative Control Rules of Flow Control Devices in Distributed Flood Routing" Water 16, no. 22: 3331. https://doi.org/10.3390/w16223331
APA StyleJalili, H., Chevalier, L., & Nicklow, J. W. (2024). Optimization of Real-Time Control Approach: Number, Placement, and Proportional–Integral–Derivative Control Rules of Flow Control Devices in Distributed Flood Routing. Water, 16(22), 3331. https://doi.org/10.3390/w16223331